
r 'i I I

I I I ·
f - I I '

I I I

STARTING OUT WITH

C++
From Control Structures

through Objects

NINTH EDITION

] [! "
] ! :
1 ! . '
I , .
1

Tony Gaddis

STARTING OUT WITH

C++
From Control Structures

through Objects
NINTH EDITION

Haywood Community College

@Pearson
330 Hudson Sl reet, New York, NY 10013

Senior Vice President Courseware Portfolio
Management: Marcia J. Horton

Director, Portfolio Management: Engineering,
Computer Science & Global Editions: Julian Partridge

Portfolio Manager: Matt Goldstein
Portfolio Management Assistant: Kristy Alaura
Field Marketing Manager: Demetrius Hall

Product Marketing Manager: Yvonne Vannatta
Managing Producer, ECS and Math: Scott Disanno
Content Producer: Sandra L. Rodriguez
Composition: iEnergizer Aptara®, Ltd.
Cover Designer: Joyce Wells
Cover Photo: Samokhin/123RF

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
Credits page in the endmatter of this textbook.

Copyright© 2018, 2015, 2012, 2009 Pearson Education, Inc. Hoboken, NJ 07030. All rights reserved.
Manufactured in the United States of America. This publication is protected by copyright and permissions
should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise.
For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of theories and programs to determine their effectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental
or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education Japan

Pearson Education North Asia, Ltd., Hong Kong
Pearson Education de Mexico, S.A. de C. V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Hoboken

Pearson Education Australia PTY, Ltd

Library of Congress Cataloging-in-Publication Data

Names: Gaddis, Tony, author.
Title: Starting out with C++. From control structures through objects I Tony

Gaddis, Haywood Community College.
Other titles: From control structures through objects I Starting out with C

plus plus. From control structures through objects
Description: Ninth edition. I Boston : Pearson Education, Inc., (2017)
Identifiers: LCCN 20160564561 ISBN 9780134498379 (alk. paper) I ISBN

0134498372 (alk. paper)
Subjects: LCSH: C++ (Computer program language)
Classification: LCC QA76.73.C153 G334 20171 DDC 005.13/3-dc23 LC record available at

https://lccn.loc.gov/201605645 6

4 17

@Pearson
ISBN-13: 978-0-13-449837-9
ISBN-10: 0-13-449837-2

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Preface xvii

Introduction to Computers and Programming 1

Introduction to C++ 27

Expressions and Interactivity 85

Making Decisions 151

loops and Files 231

Functions 305

CHAPTER 7 Arrays and Vectors 381

CHAPTER 8 Searching and Sorting Arrays 463

CHAPTER 9 Pointers 503

CHAPTER 10 Characters, C-Strings, and More about the s tri ng Class 557

CHAPTER 11 Structured Data 613

CHAPTER 12 Advanced File Operations 665

CHAPTER 13 Introduction to Classes 719

CHAPTER 14 More about Classes 817

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 907

CHAPTER 16 Exceptions and Templates 989

CHAPTER 17 The Standard Template library 1029

CHAPTER 18 Linked lists 1123

CHAPTER 19 Stacks and Queues 1165

CHAPTER 20 Recursion 1223

CHAPTER 21 Binary Trees 1257

Appendix A: The ASCII Character Set 1287

Appendix 8: Operator Precedence and Associativity 1289
v

vi Contents at a Glance

Quick References 1291

Index 1293

Credit 1311

Online The following appendices are available at www.pearsonhighered.com/gaddis.

Appendix C: Introduction to Flowcharting

Appendix D: Using UML In Class Design

Appendix E: Namespaces

Appendix F: Passing Command Une Arguments

Appendix G: Binary Numbers and Bitwise Operations

Appendix H: STL Algorithms

Appendix I: Multi-Source File Programs

Appendix J: Stream Member Functions for Formatting

Appendix K: Unions

Appendix L: Answers to Checkpoints

Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: String Manipulation

Case Study 2: High Adventure Travel Agency-Part 1

Case Study 3: Loan Amortization

Case Study 4: Creating a String Class

Case Study 5: High Adventure Travel Agency-Part 2

Case Study 6: High Adventure Travel Agency-Part 3

Case Study 7: Intersection of Sets

Case Study 8: Sales Commission

-

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2 .14
2 .15
2.16
2.17

Preface xvii

Introduction to Computers and Programming 1

Why Program? 1
Computer Systems: Hardware and Software 2
Programs and Programming Languages 8
What Is a Program Made of? 14
Input, Processing, and Output 17
The Programming Process 18
Procedural and Object-Oriented Programming 22
Review Questions and Exercises 24

Introduction to C++ 27

The Parts of a C++ Program 27
The cout Object 31
The #include Directive 36
Variables, Literals, and Assignment Statements 38
Identifiers 42
Integer Data Types 43
The char Dara Type 49
The C++ string Class 53
Floating-Point Data Types 55
The bool Dara Type 58
Determining the Size of a Data Type 59
More about Variable Assignments and Initialization 60
Scope 62
Arithmetic Operators 63
Comments 71
Named Constants 73
Programming Style 75
Review Questions and Exercises 77
Programming Challenges 81

vii

viii Contents

CHAPTER 3 Expressions and Interactivity 85

3.1 The ci n Object 85
3.2 Mathematical Expressions 91
3.3 When You Mix Apples and Oranges: Type Conversion 100
3.4 Overflow and Underflow 102
3.5 Type Casting 103
3.6 Multiple Assignment and Combined Assignment 106
3.7 Formatting Output 110
3.8 Working with Characters and string Objects 120
3.9 More Mathematical Library Functions 126
3.10 Focus on Debugging: Hand Tracing a Program 132
3.11 Focus on Problem Solving: A Case Study 134

Review Questions and Exercises 138
Programming Challenges 144

CHAPTER4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

CHAPTERS

Making Decisions 151

Relational Operators 151
The if Statement 156
Expanding the i f Statement 164
The if /else Statement 168
Nested if Statements 171
The if/else if Statement 178
Flags 183
Logical Operators 184
Checking Numeric Ranges with Logical Operators 191
Menus 192
Focus on Software Engineering: Validating User Input 195
Comparing Characters and Strings 197
The Conditional Operator 201
The switch Statement 204
More about Blocks and Variable Scope 213
Review Questions and Exercises 216
Programming Challenges 222

Loops and Flies 231

5 .1 The Increment and Decrement Operators 231
5.2 Introduction to Loops: The whi 1 e Loop 236
5.3 Using the while Loop for Input Validation 243
5.4 Counters 245
5.5 The do-while Loop 246
5 .6 The for Loop 251
5.7 Keeping a Running Total 261
5 .8 Sentinels 264
5.9 Focus on Software Engineering: Deciding Which Loop to Use 265
5 .10 Nested Loops 266
5.11 Using Files for Data Storage 269
5.12 Optional Topics: Breaking and Continuing a Loop 288

Review Questions and Exercises 292
Programming Challenges 297

CHAPTER6 Functions 305

6.1 Focus on Software Engineering: Modular Programming 305
6.2 Defining and Calling Functions 306
6.3 Function Prototypes 315
6.4 Sending Data into a Function 317
6.5 Passing Data by Value 322
6.6 Focus on Software Engineering: Using Functions in a

Menu-Driven Program 324
6. 7 The return Statement 328
6.8 Returning a Value from a Function 330
6.9 Returning a Boolean Value 338
6.10 Local and Global Variables 340
6.11 Static Local Variables 348
6.12 Default Arguments 351
6.13 Using Reference Variables as Parameters 354
6.14 Overloading Functions 360
6.15 The exit() Function 364
6.16 Stubs and Drivers 367

Review Questions and Exercises 369
Programming Challenges 372

CHAPTER 7 Arrays and Vectors 381

7.1 Arrays Hold Multiple Values 381
7.2 Accessing Array Elements 383
7.3 No Bounds Checking in C++ 395
7.4 The Range-Based for Loop 398
7.5 Processing Array Contents 402
7.6 Focus on Software Engineering: Using Parallel Arrays 410
7.7 Arrays as Function Arguments 413
7.8 Two-Dimensional Arrays 424
7.9 Arrays with Three or More Dimensions 431
7.10 Focus on Problem Solving and Program Design: A Case Study 433
7.11 Introduction to the STL vector 435

Review Questions and Exercises 449
Programming Challenges 454

CHAPTER 8 Searching and Sorting Arrays 463

8.1 Focus on Software Engineering: Introduction to Search Algorithms 463
8.2 Focus on Problem Solving and Program Design: A Case Study 469

Contents ix

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 476
8.4 Focus on Problem Solving and Program Design: A Case Study 486
8.5 Sorting and Searching vectors 495

Review Qttestions and Exercises 498
Programming Challenges 499

CHAPTER9

9.1
9.2
9.3

Pointers 503

Getting the Address of a Variable 503
Pointer Variables 505
The Relationship between Arrays and Pointers 512

x Contents

9.4 Pointer Arithmetic 516
9.5 Initializing Pointers 518
9.6 Comparing Pointers 519
9.7 Pointers as Function Parameters 521
9 .8 Dynamic Memory Allocation 530
9.9 Returning Pointers from Functions 534
9.10 Using Smart Pointers to Avoid Memory Leaks 541
9 .11 Focus on Problem Solving and Program Design: A Case Study 544

Review Questions and Exercises 550
Programming Challenges 553

CHAPTER 10 Characters, C-Strlngs, and More about the string Class 557

10.1
10.2
10.3
10.4
10.5
10.6

10.7
10.8

Character Testing 557
Character Case Conversion 561
C-Strings 564
Library Functions for Working with C-Strings 568
String/Numeric Conversion Functions 579
Focus on Software Engineering: Writing Your Own

C-String-Handling Functions 585
More about the C++ string Class 591
Focus on Problem Solving and Program Design: A Case Study 603
Review Questions and Exercises 604
Programming Challenges 607

CHAPTER 11 Structured Data 613

11.1 Abstract Data Types 613
11.2 Structures 615
11.3 Accessing Structure Members 618
11.4 Initializing a Structure 622
11.5 Arrays of Structures 625
11.6 Focus on Software Engineering: Nested Structures 627
11. 7 Structures as Function Arguments 631
11.8 Returning a Structure from a Function 634
11.9 Pointers to Structures 637
11.10 Focus on Software Engineering: When to Use.,

When to Use->, and When to Use* 640
11.11 Enumerated Data Types 642

Review Questions and Exercises 653
Programming Challenges 659

CHAPTER 12 Advanced Fiie Operations 665

12.1 File Operations 665
12.2 File Output Formatting 671
12.3 Passing File Stream Objects to Functions 673
12.4 More Detailed Error Testing 675
12.5 Member Functions for Reading and Writing Files 678
12.6 Focus on Software Engineering: Working with Multiple Files 686
12.7 Binary Files 688
12.8 Creating Records with Structures 693

12.9
12.10

Random-Access Piles 697
Opening a File for Both Input and Output
Review Questions and Exercises 710
Programming Challenges 713

705

CHAPTER 13 Introduction to Classes 719

13.1
13.2
13.3
13.4
13.5

Procedural and Object-Oriented Programming 719
Introduction to Classes 726
Defining an Instance of a Class 731
Why Have Private Members? 744
Focus on Software Engineering: Separating Class Specification

from Implementation 745
Inline Member Functions 751
Constructors 754
Passing Arguments to Constructors 759
Destructors 767
Overloading Constructors 771
Private Member Functions 775
Arrays of Objects 777

Contents

13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15

Focus on Problem Solving and Program Design: An OOP Case Study 781
Focus on Object-Oriented Programming: Simulating Dice with Objects 788
Focus on Object-Oriented Design: The Unified Modeling

13.16

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Language (UML) 792
Focus on Object-Oriented Design: Finding the Classes and

Their Responsibilities 794
Review Questions and Exercises 803
Programming Challenges 808

More about Classes 817

Instance and Static Members 817
Friends of Classes 825
Memberwise Assignment 830
Copy Constructors 831
Operator Overloading 837
Object Conversion 864
Aggregation 866
Focus on Object-Oriented Design: Class Collaborations 871
Focus on Object-Oriented Programming: Simulating the Game

of Cho-Han 876
14.10 Rvalue References and Move Semantics 886

Review Questions and Exercises 895
Programming Challenges 900

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 907

15.1
15.2
15.3
15.4
15.5
15.6
15.7

What Is Inheritance? 907
Protected Members and Class Access 916
Constructors and Destructors in Base and Derived Classes 922
Redefining Base Class Functions 936
Class Hierarchies 941
Polymorphism and Virtual Member Functions 947
Abstract Base Classes and Pure Virtual Functions 963

xi

xii Contents

15.8 Multiple Inheritance 970
Review Questions and Exercises 977
Programming Challenges 981

CHAPTER 16

16.1
16.2
16.3
16.4

Exceptions and Templates 989

Exceptions 989
Function Templates 1008
Focus on Software Engineering: Where to Start When Defining Templates
Class Templates 1014
Review Questions and Exercises 1024
Programming Challenges 1026

CHAPTER 17 The Standard Template Library 1029

17.1 Introduction to the Standard Template Library 1029
17 .2 STL Container and Iterator Fundamentals 1029
17.3 The vector Class 1040
17.4 The map, multimap, and unordered_map Classes 1054
17.5 The set, multi set, and unordered_set Classes 1079
17.6 Algorithms 1086
17. 7 Introduction to Function Objects and Lambda Expressions 1107

Review Questions and Exercises 1114
Programming Challenges 1118

CHAPTER 18 Linked Lists 1123

18.1 Introduction to the Linked List ADT 1123
18.2 Linked List Operations 1125
18.3 A Linked List Template 1141
18.4 Variations of the Linked List 11S3
18.5 The STL 1 i st and forward_ list Containers 1154

Review Questions and Exercises 1158
Programming Challenges 1161

CHAPTER 19 Stacks and Queues 1165

19.1 Introduction to the Stack ADT 1165
19.2 Dynamic Stacks 1182
19.3 The STL stack Container 1193
19.4 Introduction to the Queue ADT 1195
19.5 Dynamic Queues 1207
19.6 The STL deque and queue Containers 1214

Review Questions and Exercises 1217
Programming Challenges 1219

CHAPTER 20 Recursion 1223

20.1
20.2
20.3

Introduction to Recursion 1223
Solving Problems with Recursion 122 7
Focus on Problem Solving and Program Design: The Recursive gcd

Function 1235

1014

20.4 Focus on Problem Solving and Program Design: Solving Recursively Defined
Problems 1236

(\
I

20.5

20.6

20.7
20.8

20.9
20.10

Focus on Problem Solving and Program Design: Recursive Linked List
Operations 1237

Focus on Problem Solving and Program Design: A Recursive Binary
Search Function 1241

The Towers of Hanoi 1243
Focus on Problem Solving and Program Design: The QuickSort

Algorithm 1246
Exhaustive Algorithms 1250
Focus on Software Engineering: Recursion versus Iteration 1253
Review Questio11s a11d Exercises 1253
Programming Challenges 1255

Contents

CHAPTER21 Binary Trees 1257

Online

21.1 Definition and Applications of Binary Trees 1257
21.2 Binary Search Tree Operations 1260
21.3 Template Considerations for Binary Search Trees 1277

Review Questio11s a11d Exercises 1283
Programming Challenges 1284

Appendix A: The ASCII Character Set 1287

Appendix B: Operator Precedence and Associativity 1289

Quick References 1291

Index 1293

Credit 1311

The following appendices are available at www.pearsonhighered.com/gaddis.

Appendix C: Introduction to Flowcharting

Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments

Appendix G: Binary Numbers and Bitwise Operations

Appendix H: STL Algorithms
Appendix I: Multi-Source File Programs
Appendix): Stream Member Functions for Formatting

Appendix K: Unions
Appendix L: Answers to Checkpoints
Appendix M: Answers to Odd Numbered Review Questions

Case Study 1: String Manipulation

Case Study 2: High Adventure Travel Agency-Part 1

Case Study 3: Loan Amortization

Case Study 4: Creating a String Class

Case Study 5: High Adventure Travel Agency-Part 2

Case Study 6: High Adventure Travel Agency-Part 3

Case Study 7: Intersection of Sets

Case Study 8: Sales Commission

xiii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter S

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

LOCATION OF VIDEONOTES IN THE TEXT

Introduction to Flowcharting, p. 20
Designing a Program with Pseudocode, p. 20
Designing the Account Balance Program, p. 25
Predicting the Result of Problem 33, p. 26

Using cout, p. 32
Variabe Definitions, p. 38
Assignment Statements and Simple Math Expressions, p. 63
Solving the Restaurant Bill Problem, p. 81

Reading Input with ci n, p. 85
Formatting Numbers with setpreci sion, p. 113
Solving the Stadium Seating Problem, p. 144

The if Statement, p. 156
The if I el se statement, p. 168
The if I else if Statement, p. 178
Solving the Time Calcu lator Problem, p. 223

The whi 1 e Loop, p. 236
The for Loop, p. 251
Reading Data from a File, p. 278
Solving the Calories Burned Problem, p. 297

Functions and Arguments, p. 317
Value-Returning Functions, p. 330
Solving the Markup Problem, p. 372

Accessing Array Elements with a Loop, p. 386
Passing an Array to a Function, p. 413
Solving the Chips and Salsa Problem, p. 455

The Binary Search, p. 466
The Selection Sort, p. 482
Solving the Charge Account Validation Modification Problem, p. 500

Dynamically Allocating an Array, p. 531
Solving the Pointer Rewrite Problem, p. 554

Writing a C-String-Handling Function, p. 585
More About the string Class, p. 591
Solving the Backward String Problem, p. 607

LOCATION OF VIDEONOTES IN THE TEXT (continued)

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Creating a Structure, p. 615
Passing a Structure to a Function, p. 631
Solving the Weather Statistics Problem, p. 659

Passing File Stream Objects to Functions, p. 673

Working with Multiple Files, p. 686
Solving the File Encryption Filter Problem, p. 716

Writing a Class, p. 726

Defining an Instance of a Class, p. 731
Solving the Emp 1 oyee Class Problem, p. 808

Operator Overloading, p. 837
Class Aggregation, p. 866
Solving the NumDays Problem, p. 901

Redefining a Base Class Function in a Derived Class, p. 936

Polymorphism, p. 947
Solving the Emp 1 oyee and Product i onWorker Classes Problem, p. 981

Throwing an Exception, p. 990
Handling an Exception, p. 990
Writing a Function Template, p. 1008

Solving the Exception Project Problem, p. 1028

The array Container, p. 1032
Iterators, p. 1034
The vector Container, p. 1040
The map Container, p. 1054
The set Container, p. 1079

Function Objects and Lambda Expressions, p. 1107

The Course Information Problem, p. 1119

Appending a Node to a Linked List, p. 1126

Inserting a Node in a Linked List, p. 1133

Deleting a Node from a Linked List, p. 1137
Solving the Member Insertion by Position Problem, p. 1162

Storing Objects in an STL stack, p. 1193

Storing Objects in an STL queue, p. 1216
Solving the File Compare Problem, p. 1221

Reducing a Problem with Recursion, p. 1228

Solving the Recursive Multiplication Problem, p. 1255

Inserting a Node in a Binary Tree, p. 1262

Deleting a Node from a Binary Tree, p. 1268

Solving the Node Counter Problem, p. 1284
'--~~~~~~~~-

Welcome ro Starting 0111 with C++: From Control Structures through Objects, 9th edition.

This book is intended for use in a two-semester C++ progra mming sequence, or an acceler

ated one-semester course. Students new to programming, as well as those with prior course

work in other languages, will find this text beneficial. The fundamentals of programming

are covered for the novice, while the details, pitfalls, and nuances of the C++ language are

explored in depth for both the beginner and more experienced student. The book is written

with clear, easy-ro-undersrand language, and it covers a ll the necessary topics for an intro

ducrory programming course. This text is rich in example programs that a re concise, practi

cal, and real-world oriented, ensuring that the student not only learns how to implement the

featu res and constructs of C++, but why and when to use them.

Changes in the Ninth Edition

T his book's pedagogy, organization, and clear writing style remain the same as in the previ

ous edition. Many improvements and updates have been made, which are summarized here:

• The material on the Srandard Template Library (STL) has been completely rewrircen and

expanded into its own chapte1.: Previously, Chapter 16 covered exceptions, templates,

and gave brief coverage co the STL. In chis edition, Chapter 16 covers exceptions and

templates, and Chapter 17 is a new chapter dedicated to the STL. The new chapter covers

the fo llowing topics:

0 The array and vector classes

o The various types of iterators
o Emplacement versus insertion

o The map, multi map, and unordered_map Classes

o The set, mult i set, and unordered_set Classes

o Sorting and searching algorithms

o Permutation algorithms
o Sec a lgorithms
;) Using function pointers with STL algorithms

o Function objects, or functors
o Lambda expressions

• Chapter 2 now includes a discussion of alterna tive forms of variable initializa tion, includ

ing functional noration, and brace notation (also known as uniform initialization).

xvii

xviii Preface

• Chapter 3 now mentions the round function, introduced in C++ I l.

• Chapter 7 now introduces a rray initialization much earlier.

• In Chapter 8, the bubble sort a lgorithm has been rewrinen and improved.

• A new example of sorting and searching a vector of strings has been added ro Chapter 8.

• [n Chapter 9, the section on smart pointers now gives an overview of shared_ptrs and
weak_pt rs, in addirion to the existing coverage of uni que_ptrs.

• In Chapter 10, a new /11 the Spotlight section on string tokenizing has been added.

• Chapter I 0 now covers the string-to-number conversion functions that were introduced
in C++ 11.

• The material on unions that previously appeared in Chapter 11 has been moved to
Appendix K, available on the book's companion Website.

• Chapter J 3 has new sections covering:

.J Member initialization liscs.
'.J In-place initialization.
o Constructor delegation.

• Several new copies were added ro Chapter 14, including:

.J Rvalue references and move semantics.
') Checking for self-assignment when overloading the = operato r.
') Using member ini tialization lists in aggregate classes.

• Chapter 15 includes a new section on constructor inheritance.

• Several new programming problems have been added throughout the book.

Organization of the Text
T his text reaches C++ in a step-by-step fashion. Each chapter covers a major ser of topics
and builds knowledge as the student progresses through the book. Although the chapte rs
can be easily taught in their existing sequence, some flexibili ty is provided. The d iagram
shown in Figure P-1 suggests possible sequences of instruction .

Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose ro skip this chapter if the class is a lready fa mil iar w ith those topics. Chapters 2
through 7 cover basic C++ syntax, data types, expressions, selection structures, repetition
struc tures, functions, and a rrays. Each of these chapters builds on the previous chapter and
should be covered in the o rder presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, o r jump to Chapter 9.

After Chapter 9 has been covered, C hapter 10, 11, 12 o r l3 may be covered. (If you jump
to Chapter 12 a r this point, you will need co postpone Sections 12.8, 12.9, and 12.1 0 unti l
Chapter 11 has been covered.} After Chapter 13, you may cover Chapters 14 through 18 in
sequence. Nex t, you can proceed to either Chapter 19 o r Chapter 20. Finally, Chapter 21
may be covered.

This text's approach starts w ith a fi rm foundation in structured, procedural programming
before delving fully into o bject-oriented programming and advanced da ta structures.

Figure P-1 Chapter dependency chart

Chapter 1
Introduct ion

Chapters 2- 7
Basic Language Elements

Chapter 8
Searching and Sorting Arrays

Chapter 9
Pointers

Chapter 10
Characiers, C-Strings, and More

about the string Class

Chapter 11
Structured Data

Chapter 13
Introduction to Classes

Chapter 14
More about Classes

Chapter 15
Inheritance. Polymorphism,

and Virtual Funciions

Chapter 16
Exceptions and Templates

Chapter 17
The Standard Template Llbrary

Chapter 19
Stacks and Queues

Chapter 18
Linked Lists

Chapter 20
Recursion

Chapter 21
Binary Trees

Chapter 12
Advanced File Operations

Preface xix

xx Preface

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides nn introduction to the fie ld of computer science and covers the fun
damentals of programming, problem solving, and software design. The components of pro
grams, such as key words, variables, operators, and punctuation, are covered. The cools of
the trade, such as pseudocode, flow charts, and hierarchy charts, are also presented.

Chapter 2 : Introduction to C++

This chapter gets the student started in C++ by introducing data types, identifiers, vari
able declarations, constants, comments, program output, simple arithmetic operations, and
C-str ings. Programming style conventions are introduced and good programming style is
modeled here, as ir is throughout the text.

Chapter 3: Expressions and Inte ractivity

In this chapter, the student learns to write programs that input and handle numeric, char
acter, and string data. The use of arithmetic operarors and the creation of mathematical
expressions are covered in greater derail, with emphasis on operator precedence. Debug
ging is introduced, with a section on hand tracing a program. Sections are also included on
simple output formatting, on data type conversion and type casting, and on using library
functions that work with numbers.

Chapter 4: Making Decisions

Here, the student learns about relational operators, relational expressions, and how to con
trol the flow of a program with the if, if/else, and if/else if statements. The condi
tiona l operator and the switch statement are also covered . Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

Chapter 5: Loops and Files

This chapter covers repetition control structures. T he while loop, do-whi l e loop, and for
loop are taught, along with common uses for these devices. Counters, accumulators, run
ning totals, sentinels, and other application-related topics are discussed. Sequential file 110
is also introduced. The student learns to read and write text fi les, and use loops to process
the data in a file.

Chapter 6: Functions

In this chapter, the student learns how and why ro modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu
ments should be passed by value versus when they need to be passed by reference. Scope of
variables is covered, and sections are provided on local versus globa l variables and on static
local variables. Overloaded functions are also introduced and demonstrated.

Preface xxi

Chapter 7: Arrays and Vectors

In this chapter, the student learns to create and work with single and multi-dimensional

arrays. Many examples of array processing are provided including examples illustrating

how to find the sum, average, highest, and lowest values in an array, and how to sum the

rows, columns, and all elements of a two-dimensional array. Programming techniques using

parallel arrays are also demonstrated, and the student is shown how to use a data file as an

input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Searching and Sorting Arrays

Here, the student learns the basics of sorting arrays and searching for data stored in them.

The chapter covers the Bubble Sorr, Selection Sort, Linear Search, and Binary Search algo

rithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with

reference variables. Other topics include pointer arithmetic, initialization of pointers, rela

tional comparison of pointers, pointers and arrays, pointers and functions, dynamic memory

allocation, and more.

Chapter 10: Characters, C-Strlngs, and More about the string Class

This chapter discusses various ways to process text at a detailed level. Library functions for

resting and manipulating characters are introduced. C-strings are discussed, and the tech

nique of storing C-strings in char arrays is covered. An extensive discussion of the string

class methods is also given.

Chapter 11: Structured Data

The student is introduced to abstract data types and taught how to create them using struc

tures, unions, and enumerated data types. Discussions and examples include using pointers

to structures, passing structures to functions, and returning structures from functions.

Chapter 12: Advanced Fiie Operations

This chapter covers sequential access, random access, text, and binary files. The various

modes for opening files are discussed, as well as the many methods for reading and writing

file contents. Advanced output formatting is also covered.

Chapter 13: Introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the fun

damental concepts of classes. Member variables and functions are discussed. The student

learns about private and public access specifications, and reasons to use each. The topics

of constructors, overloaded constructors, and destructors are also presented. The chapter

presents a section modeling classes with UML, and how to find the classes in a particular

problem.

xxii Preface

Chapter 14: More about Classes

This chapter continues the study of classes. Static members, friends, memberwise assign
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section on
class collaborations and the use of CRC cards.

Chapter 15: Inheritance, Polymorphism, and Virtual Functions

The study of classes continues in this chapter with the subjects of inheritance, polymor
phism, and virtual member functions. The topics covered include base and derived class
constructors and destructors, virtual member functions, base class pointers, static and
dynamic binding, multiple inheritance, and class hierarchies.

Chapter 16: Exceptions and Templates

The student learns to develop enhanced error trapping techniques using exceptions. Discus
sion then turns to function and class templates as a method for reusing code.

Chapter 17: The Standard Template Library

This chapter discusses the containers, iterators, and algorithms in the Standard Template
Library (STL). The specific containers covered are the array, vector, map, multimap,
unordered_map, set, multi set, and unordered_set classes. The student then learns
about sorting, searching, permutation, and set algorithms. The chapter concludes with a
discussion of function objects (functors) and lambda functions.

Chapter 18: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked list,
appending a node, traversing the list, searching for a node, inserting a node, deleting a node,
and destroying a list. A linked list class template is also demonstrated.

Chapter 19: Stacks and Queues

In this chapter, the student learns to create and use static and dynamic stacks and queues. The
operations of stacks and queues are defined, and templates for each ADT are demonstrated.

Chapter 20: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for finding factorials, finding a greatest common
denominator (GCD), performing a binary search, and sorting (QuickSort). The classic
Towers of Hanoi example is also presented. For students who need more challenge, there is
a section on exhaustive algorithms.

Chapter 21: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element,
test for an element, and destroy a tree.

Appendix A: The ASCII Character Set

A list of the ASCII and Extended ASCII characters and their codes

Appendix B: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence

The following appendices are available online at www.pearsonhighered.com/gaddis.

Appendix C: Introduction to Flowcharting

Preface xxiii

A brief introduction to flowcharting. This tutorial discusses sequence, decision, case, repeti
tion, and module structures.

Appendix D: Using UML in Class Design

This appendix shows the student how to use the Unified Modeling Language to design
classes. Notation for showing access specification, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

Appendix E: Namespaces

This appendix explains namespaces and their purpose. Examples showing how to define a
namespace and access its members are given.

Appendix F: Passing Command Line Arguments

Teaches the student how to write a C++ program that accepts arguments from the command
line. This appendix will be useful to students working in a command line environment, such
as Unix, Linux, or the Windows command prompt.

Appendix Ci: Binary Numbers and Bitwise Operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers

Appendix H: STL Algorithms

This appendix gives a summary of each of the function templates provided by the Standard
Template Library (STL), and defined in the <algorithm> header file.

Appendix I: Multi-Source Fiie Programs

Provides a tutorial on creating programs that consist of multiple source files. Function header
files, class specification files, and class implementation files are discussed.

Appendix J: Stream Member Functions for Formatting

Covers stream member functions for formatting such as setf

Appendix K: Unions

This appendix introduces unions. It describes the purpose of unions and the difference
between a union and a struct, demonstrates how to declare a union and define a union
variable, and shows example programs that use unions.

x.xiv Preface

Appendix L: Answe rs to Checkpoints

Students may rest thei r own progress by comparing their answers to the Checkpoint exer
cises against this appendix. The answers to all Checkpoints are included.

Appendix M: Answers to Odd Numbe red Review Questions

Another tool that students can use to gauge their progress

Features of the Text
Concept
Statements

Example Programs

Program Output

Each major sectio n of the text starts with a concept statement.
This statement summarizes the ideas of the section.

The text has hundreds of complete example programs, each
designed to highlight the topic currently being studied. In
most cases, these arc practical, real-world examples. Source
code for these programs is provided so that students can run
the programs th emselves.

After each example program, there is a sample of its screen
output. This immediately shows the student how the program
should function.

c;j)- In the Spotlight Each of these sections provides a programming problem and
a detailed, step-by-step analysis showing the student how to
solve ir. a VldeoNotcs

~ Checkpoints

<) Notes

CI) Warnings

Case Studies

Review Questions
and Exercises

A series of onlinc videos, developed specifically for this book,
is available for viewing at www.pearsonhighered.com/gaddis.
Icons appear throughout the text alerting the student to videos
about specific topics.

Checkpoints are questions placed throughout each chapter as a
self-rest study aid. Answers for all Checkpoint questions can be
downloaded from the book's Website a t www.pearsonhighered.
com/gaddis. This a llows students to check how well they have
learned a new topic.

Notes appear at appropriate places throughout the text. They
are short explanations of interesting or often misunderstood
points relevant to the topic at hand.

Warnings arc notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

Case studies that simulate real-world applications appear in many
chapters throughout the text. These case studies are designed to
highlight the major copies of the chapter in which they appear.

Each chapter presents a thorough and diverse set of review ques
tions, such as fill-in-the-blank and short answer, that check the stu
dent's mastery of the basic mareriaJ presented in the chapter. These
are followed by exercises requiring problem solving and analysis,
such as the Algorithm Workbench, Predict the Output, and
Find the Errors sections. Answers to the odd-numbered review
questions and review exercises can be downloaded from the book's
Website at www.pearsonhighered.com/gaddis.

Programming
Challenges

Group Projects

Software
Development
Project:
Serendipity
Booksellers

C++ Quick
Reference Gulde

C++ll

Supplements

Preface xxv

Each chapter offers a pool of programming exercises designed
to solidify the student's knowledge of the topics currently being
studied. In most cases, the assignments present real-world prob
lems to be solved. When applicable, these exercises include input
validation rules.

T here are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program's user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. T his process is similar ro
the way many professional programs are written and encourages
team work within the classroom.

Available for download from the book's Website a t www.
pearsonhighered.com/gaddis. T his is an ongoing project that
instrucrors can optionally assign to teams of students. It system
atically develops a "real-world" software package: a point-of
sale program for the fictitious Serendipity Booksellers organiza
tion. T he Serendipity assignment for each chapter adds more
functiona li ty to the software, using constructs and techniques
covered in that chapter. When complete, the program will act
as a cash register, manage an inventory database, and produce
a variety of reports.

For easy access, a quick reference guide to the C++ language is
printed on the inside back cover of the book.

Throughout the text, new C++ll language features are intro
duced. Look for the C++l 1 icon to find these new features.

Student Online Resources

Many student resources are available for this book from the publisher. The fo llowing items
are available on the Computer Science Porta l at www.pearsonhighered.com/gaddis:

• The source code for each example program in the book

• Access to the book's VideoNotes

• A full set of appendices, including answers to the Checkpoint questions and answers to
the odd-numbered review questions

• A collection of valuable Case Studies

• T he complete Serendipity Booksellers Project

xxvi Preface

Online Practice and Assessment with MyProgramminglab

MyProgrammingLab helps students fully grasp the logic, semancics, and synrax of program
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the basic
concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice exercises organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong- and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing's Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com.

Instructor Resources

The following supplements are available only to qualified instructors:

• Answers to all Review Questions in the text

• Solutions for all Programming Challenges in the text

• PowerPoinr presentation slides for every chapter

• Computerized rest bank

• Answers to all Student Lab Manual questions

• Solutions for all Student Lab Manual programs

Visit the Pearson Instructor Resource Center (www.pearsonhighered.com/irc) for information
on how to access instructor resources.

Textbook Web site

Student and instructor resources, including links to download Microsoft® Visual Studio
Express and other popular IDEs, for all the books in the Gaddis Starting Out with series
can be accessed at the following URL:

http://www.pearsonhighered.com/gaddis

Which Gaddis C++ book is right for you?
The Starting O ut with C++ Series includes three books, one of which is sure to fit your
course:

• Starting Out with C++: From Control Structures through Objects

• Starting Out with C++: Early Objects

• Starting Out ivith C++: Brief Version

The fo llowing chart will hel p you determine which book is right for your course.

• FROM CONTROL STRUCTURES
THROUGH OBJECTS

• BRIEF VERSION

LATE INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 13 of the stan
dard text and Chapter 11 of the brief text, after
control structures, functions, arrays, and poinrers.
Advanced OOP ropics, such as inheritance and
polymorphism, are covered in the fo llowing rwo
chapters.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION

Linked lists, Stacks and queues, and binary trees are
introduced in the final chapters of the standard text.
Recursion is covered afrer stacks and queues, but
before binary trees. These topics are not covered in
the brief text, though it does have appendices dealing
with linked lists and recursion.

Acknowledgments

'

i

Preface xxvii

• EARLY OBJECTS

EARLIER INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 7, after
control structures and functions, but before
arrays and pointers. Their use is then
integrated into the remainder of the text.
Advanced OOP topics, such as inheritance
and polymorphism, are covered in Chapters
11and 15.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION

linked lists, stacks and queues~ and binary
trees are introduced in the final chapters of
the text, after the chapter on recursion.

There have been many helping hands in the development and publication of this rext. \Yle
would like to thank the following faculty reviewers for their helpful suggestions and expertise.

Reviewers for the 9th Edition

Chia-Chin Chang
Lakeland College

William Duncan
Louisiana State University

Pranshu Gupta
DeSales University

Charles Hardnett
Gwinnett Technical College

Reviewers for Previous Editions

Ahmad Abuhejleh
University of Wisconsin-River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Vicki Allan
Utah State University

Svetlana Marzell i
Atlantic Cape Community College

Jie Meichsner
St. Cloud State University

Ron Del f>orto
Penn State Erie, The Behrend College

Lisa Rudnitsky
Baruch College

Karen M. Arlien
Bismarl< State College

Mary Asrone
Troy University

ljaz A. Awan
Savannah State University

Robert Baird
Salt Lake Com11111nity College

xxvlii Preface

Don Biggerstaff
Fayetteville Technical Community College

Michael Bolton
Northeastern Oklahoma State University

Bill Brown
Pikes Peak Community College

Robert Burn
Diablo Valley College

Charles Cadenhead
Richland Community College

Randall Campbell
Morningside College

Wayne Caruolo
Red Rocks Community College

Cathi Chambley-Miller
Aiken Technical College

C.C. Chao
Jacksonville State University

Joseph Chao
Bowling Green State University

Royce Curtis
Western Wisconsin Technical College

Joseph DeLibero
Arizona State University

Michael Dixon
Sacramento City College

Jeanne Douglas
University of Vermont

Michael Dowell
Augusta State University

Qiang Duan
Penn State University-Abington

William E. Duncan
Louisiana State University

Daniel Edwards
Oh/one College

Judy Erchison
Southern Methodist University

Dennis Fairclough
Utah Valley State College

Xisheng Fang
Oh/one College

Mark Fienup
University of Northern Iowa

Richard Flint
North Central College

Ann Ford Tyson
Florida State University

Jeanette Gibbons
South Dakota State University

James Gifford
University of Wisconsin-Stevens Point

Leon Gleiberman
Touro College

Barbara Guillott
Louisiana State University

Ranerte Halverson, Ph.D.
Midwestern State University

Ken Hang
Green River Community College

Carol Hannahs
University of Kentucky

Dennis Heckman
Portland Community College

Ric Heishman
George Mason University

Michael Hennessy
University of Oregon

Ilga Higbee
Black Hawk College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Mary Hovik
Lehigh Carbon Community College

Richard Hull
Lenoir-Rhyne College

Kay Johnson
Community College of Rhode Island

Chris Kardaras
North Central College

Willard Keeling
Blue Ridge Community College

A.J. Krygeris
Houston Community College

Sheila Lancaster
Gadsden State Community College

Ray Larson
Inver Hills Community College

Michelle Levine
Broward College

Jennifer Li
Oh/one College

Norman H. Liebling
San Jacinto College

Cindy Lindstrom
Lakeland College

Zhu-qu Lu
University of Maine, Presque Isle

Heidar Malki
University of Houston

Debbie Mathews
]. Sargeant Reynolds Community College

Rick Matzen
Northeastern State University

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

Dean Mellas
Cerritos College

Lisa Milkowski
Milwaukee School of Engineering

Marguerite Nedreberg
Youngstown State University

Lynne O'Hanlon
Los Angeles Pierce College

Frank Paiano

Preface xxix

Sottthwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Tino Posillico
SUNY Farmingdale

Frederick Pratter
Eastern Oregon University

Susan L. Quick
Penn State University

Alberto Ramon
Diablo Valley College

Bazlur Rasheed
Sault College of Applied Arts and
Technology

Farshad Ravanshad
Bergen Community College

Susan Reeder
Seattle University

Sandra Roberts
Snead College

Lopa Roychoudhuri
Angelo State University

Dolly Samson
Weber State University

Ruth Sapir
SUNY Farmingdale

Jason Schatz
City College of San Francisco

Dr. Sung Shin
South Dakota State University

Bari Siddique
University of Texas at Brownsville

xxx Preface
~

William Slater Ralph Tomlinson
Collin County Community College Iowa State University

Shep Smithline David Topham
University of Minnesota Oh/one College

Richard Snyder Roben Tureman
Lehigh Carbon Community College Paul D. Camp Community College

Donald Southwell Arisa K. Ude
Delta College Richland College

Caroline St. Claire Peter van der Goes
North Central College Rose State College

Kirk Stephens Stewan Venit
Southwestern Community College California State University, Los Angeles

Cherie Stevens Judy Walters
South Florida Community College North Central College

Dale Suggs John H. Whipple
Campbell University Northampton Community College

Mark Swanson Aurelia Williams
Red Wing Technical College Norfolk State University

Ann Sudell Thorn Chadd Williams r-\ Del Mar College Pacific University

Martha Tillman Vida Winans
College of San Mateo Illinois Institute of Technology

Preface xxxi

I would also like to thank my family and friends for their support in all of my projects.
I am extremely fortunate to have Matt Goldstein as my editor, and Kristy Alaura as edito
rial assistant. Their guidance and encouragement made it a pleasu re to write chapters and
meet deadlines. I am also fortu nate to have Demetrius Hall as my marketing manager. His
hard work is truly inspiring, and he does a great job of getting this book out to the academic
community. The production team, Jed by Sandra Rodriguez, worked tirelessly to make this
book a reality. Thanks to you all !

About the Author
Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
nearly two decades of experience teaching computer science courses, primarily at H aywood
Community College. Tony is a highly acclaimed instructor who was previously selected as
the North Carolina Community College Teacher of the Year and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out with series includes introductory te>..'tbooks covering Progranuning Logic
and Design, Alice, C++, Javani, Microsoft® Visual Basic®, Microsoft® Visual C#, Python,
and App Inventor, all published by Pearson.

PROGRAMMING PRACTICE

With MyProgrammingLab, your students will gain first-hand programming
experience in an interactive online environment.

IMMEDIATE, PERSONALIZED FEEDBACK

MyProgrammingLab automatically detects errors in the logic and syntax of their
code submission and offers targeted hints that enables students to figure out what
went wrong and why.

MyProgrammlngUl>

GRADUATED COMPLEXITY f I, I • ff ~"I-Al t\I"' 11 '"'-'ll 1 M ! Wl'ill'l'll -..,., --.. ---~,.,.,.....,acu..

T so; 'B a '"i"f' ::::-=:: ;:,- _,., ---

MyProgrammingLab breaks down programming
concepts into short, understandable sequences
of exercises. Within each sequence the level and
sophistication of the exercises increase gradually
but steadily. MyProcnmmlngl.a;;:,b' ________

DYNAMIC ROSTER

Students' submissions are stored in a roster that indicates whether
the submission is correct. how many attempts were made, and the
actual code submissions from each attempt.

PEARSON e TEXT

""

The Pearson e Text gives students access to their textbook anytime, anywhere.

STEP-BY-STEP VIDEONOTE TUTORIALS

These step-by-step video tutorials enhance the programming concepts presented
in select Pearson textbooks.

For more information and titles available with MyProgrammingl ab,

please visit www.myprogramminglab.com .

Copynght C> 2018 Pemon Edurnion, Inc. or Its :tffil~te(s). AB rights reseNed. HEL088173 • 11 /IS

__ ,.
~.....:!:=

ALWAY S LEARNING PEARSON

TOP ICS

1.1 Why Program?
1.2 Computer Systems: Hardware

and Software
1.3 Programs and Programming

Languages

1.4 What Is a Program Made of?
1.5 Input, Processing, and Output
1.6 The Programming Process
1. 7 Procedural and Object-Oriented

Programming

1~ Why Program?

-{_ CONCEPT: Compucers can do many Mfercnt jobs because they a<c prngcammablc.

Think about some of the different ways that people use computers. Jn school, students
use computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to conduct business transac
tions, communicate with customers and coworkers, analyze data, make presentations, con
trol machines in manufacturing fac ilities, and many many other tasks. At home, people use
computers for tasks such as paying bills, shopping online, social networking, and playing
computer games. And don't forget that smarcphones, MP3 players, DVRs, car navigation
systems, and many other devices are computers as well. The uses of computers are almost
limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. Th is
means computers are not designed to do just one job, bur any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task.
For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, tvvo com
monly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
without software, a computer can do nothing. All of the software we use to make our
computers useful is created by individua ls known as programmers or software developers.
A {Jrogramnrer, or software develo{Jer, is a person with the training and skills necessary
co design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers working in business, medicine, govern
ment, law enforcemenr, agriculture, academia, entertainment, and a lmost every other field.

1

2 Chapter 1 Introduction to Computers and Programming

Figure 1-1 A word processing program and a presentation program

~ ., • I Q4pl.rt~l.aa.cl(......,~ ... l) t.fad*! w- !Qll)G.- :T1 - Q '". ti ., . 11 ~ • ~ .• ,, . t I'{........... . ' ·".w.

... ~ u...... ~5 u. •,.. _ ~~ A(~~ .. • ••,. .;{ I. 1 ' "' ,...._ ,.,,.,1;0Hotl"'-1"'-l~·lr-'."-J.l(tQ;_.,. ,i ~, , .. _ ~ L.J

....
, ... ·-- .. .,... ,. . ..

1.4 H•"'" 1 Prognm Worb

C4W;p1 A l!<IM/M.t'l'"r CPU u.. tM!y ldtd~ M.ttrWDOiV dt4t - •1'ttffJ1 tit

m«lal'S#/~.-, 8#Cl.'IJIU~'fi1'1 fl"">' ~tJt to \oo'rfl'• nlifttt
J"f'O'irO/f.ll i11 nlllC'A~ IOllZ""P· oiiHt-prof"""'11tmt laJU~ h.'nv ~
Jmwu<fd

Eufiu,.~lltMedduittkCPUu.itwlllOllimpon.ar.&c~icac~1:1tt.-.ci:
udtirf*to/tlw~~,_....,... ~OieCPOUa!leclO.
·~, brba,' .tdH~.._, 'uiwt • A~llwW:M"~-..p-"°'

~~Id W)drn.tmd 1hM ltw CPU 11 DOt a bt&io,. .-1 tt" coc stAan. TV CPU b t.a

ekctrMIC. ~'Kc th.:. i:t deupd co do sp«lfi: duqi Tbt. CPU '"~ t0 pcrfooa
opn.alKll'I• •~1th ..

L.&ac a p.ecc of d&l-. tri)(ll. IG&ln Clalli(ll)'

A4d11a "''O C1&'1.\11r:n

s.ti.actJaC O*' .-bd' ltom ..::icbc1......,.
Mbtbplyq t-.>0 ru:abm
O.\tdiqCWll'!'~by.-odlcs tl!JO'lbtY

MMIR& • "'tte:of~r116oroOPC ium:iot)' 10<.iiooi.~
D«ttm.,W,g •il('tbts c.ie \lh,tc it~ to anothC1 \'1lllllC

Amlwb1111 .

A.. J'OltC.- K'C' &or:o lbst Lu • ., CPU peti;:nm Mm1Pit ~ oo S*<"-"' ol dat&. The
C1'U dco ~ 00 4$00.'11..~~ b m.-~)O)U.W. do, axl ~ . .. purprlK

of• P'Offllm A prao.a u ~ lftol)nl' i:hm a lut of 1Mtn1rbom th.a(**!: ck CPU 10

pafotai(lfln.al!Oafo.

iT mi r,i ~ L1
~ 'Sd«'&l-. #I ... ~

""_......., o,.,. 0-.· w. °""~ --

0 -- .2. -0

I l
! - ····..:.:o-=-=-- - o

Computer programming is both an art and a science. It is an arr beca use every aspect of
a program should be carefully designed. Listed below are a few of rhe things that must be
des igned for any real-world computer program:

• T he logica l flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• T he program's " user-friendliness"
• Documentation, help fi les, tut0ria ls, and so on

T here is also a scientific, or engineering, side to programming. Because programs rarely
work right the first t ime they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do nor understand English or other human languages. La nguages such as C++
have strict ru les that must be carefully fo llowed.

Both the artist ic and scientific nature of programming make writing computer software like
designing a car: Both cars and programs should be functio nal, efficient, powerful, easy co
use, and pleasing to look at.

1 .2 Computer Systems: Hardware and Software

-1__ CO N CEPT : All computer systems consist of similar hardware devices and software
components. T his section provides an overview o f standard computer
hardware and software organization.

1.2 Computer Systems: Hardware and Software 3

Hardware
Hardware refers to rhe physical components of which a computer is made. A computer, as
we generally think of it, is nor an individual device, but a system of devices. Like the instru
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

• The central processing unit (CPU)
• Main memory
• Secondary storage devices
• Input devices
• Output devices

The organization of a computer system is depicted in Figure 1-2.

Figure 1-2 Typical devices in a computer system

lko/Shutterstock

~
Chiyacav _..
Shutters tock

Input
Devices

Central Processing
Unit

Output
Devices

jocic/Shutterstock

Eikostas/Shuttcrstock ftJI
Main Memory

••• _.. .__ _ _ _ (_RA_M_) _ _ ___. _..) p-
!
T

tkemoVShutterstock Lusoimages/Shuttcrstock

Vitaly Korovin/Shutterstock Andre NiLSievsl:y/Shutterstock.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical compo
nents such as vacuum tubes and switches. Figure .l-3 shows such a device. The two women in

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer

U.S. Army Center of Military History

the photo are working with the historic ENIAC computer. The EN TAC, considered by many
to be the world's first programmable electronic computer, was built in 1945 to calculate
artillery ba llistic tables for the U.S. Army. This machine, which was primarily one big CPU,
was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern-day microprocessor. In addition t0 being much smaller than the
old electromechanical CPUs in early computers, microprocessors are also much more powerful.

Figure 1-4 A microprocessor

Cr<.>ativa/ Shutterstock

1.2 Computer Systems: Hardware and Software 5

The CPU's job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arith
metic and logic unit {ALU) . The control unit coordinates a ll of the compurer's operations.
It is responsible for determining where to get the next instruction and regulating the other
major components of the computer with control signals. The arithmetic and logic unit, as
its name suggests, is designed to perform mathematical operations. The organization of the
CPU is shown in Figure 1-5.

Figure 1-5 Organization of a CPU

Instruction
(Input)

......

Central Processing Unit

Arithmetic and
Logic Unit

..
Control Unit

Result
(Output)

A program is a sequence of instructions stored in the computer's memory. When a com
puter is running a program, the CPU is engaged in a process known formally as the fetch/
decode/execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch

Decode

Execute

The CPU's control un it fetches, from main memory, the next instruc
tion in the sequence of program instructions.

The instruction is encoded in the form of a number. The control
unit decodes the instruction and generates an electronic signal.

T he signal is routed to the appropriate component of the computer
(such as the ALU, a disk drive, or some other device). The signal
causes the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

You can think of main memory as the computer's work area . This is where the computer
stores a program while the program is running, as well as the data with which the program
is working. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access 1nemory or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in small chips.

A computer's memory is divided inro tiny storage locations known as byres. One byte is
enough memory to store only a letter of the alphabet or a small number. In order to do

6 Chapter 1 Introduction to Computers and Programming

anything meaningful, a computer must have lots of bytes. Most computers today have mil
lions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scienrists usually think of bits as tiny switches that can be either
on or off. Bits aren't actual "switches," however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered
from lowest to highest. A byte is identified by its address in much the same way a post
office box is identified by an address. Figure 1-6 shows a group of memory cells with their
addresses. In the illustration, sample data is stored in memory. The number 149 is stored
in the cell with the address 16, and the number 72 is stored at address 23.

Figure 1-6 Memory

Secondary Storage

Secondary storage is a rype of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary mem
ory and loaded into main memory as needed . Important data such as word processing
documents, payroll data, and inventory records is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onro a circular disk. Solid-state drives, which
store data in solid-state memory, are increasingly becoming popular. A solid-state drive has
no moving parts and operates foster than a traditional disk drive. Most computers have
some sort of secondary storage device, either a traditional disk drive or a solid-state drive,
mounted inside their case. External storage devices can be used to create backup copies
of important data or to move data to another computer. For example, USB (Universal
Serial Bus) drives and SD (Secure Digital) memory cards are sma ll devices that appear in
the system as disk drives. They are inexpensive, reliable, and small enough to be carried
in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
used for data storage. Data is nor recorded magnetically on an optical disc, but is encoded
as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits
and thus read the encoded data. Optical discs hold large amounrs of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

1.2 Computer Systems: Hardware and Software 7

Input Devices

Input is any data the computer collects from the outside world. T he device tha t collects the
information and sends it to the computer is called an input device. Common input devices
are the keyboard, mouse, rouchscreen, scanner, digital camera, and microphone. Disk
drives, CD/DVD drives, and USB drives can a lso be considered input devices because pro
grams and information are retrieved fro m them and loaded into the computer's memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The information is senr roan output device, which
formats and presents it. Common output devices are screens, printers, and speakers . Storage
devices can a lso be considered output devices because the CPU sends them data to be saved.

Software
If a computer is to function, software is not optional. Everything a computer does, from
the time you turn the power switch on until you shut the system down, is under the control
of software. There are two general categories of softwa re: system software and application
software. Most computer programs clea rly fit inro one of these rwo categories. Let's take
a closer look at each .

System Software

The programs that control and manage the basic operations of a computer a re generally referred
to as system software. System sofcware typically includes the following types of programs:

• Operating Systems
An operating system is the most fundamental set of programs on a computer. The
operating system controls the internal operations of the computer's hardware, man
ages all the devices connected to the computer, allows data to be saved to and retrieved
from storage devices, and allows other programs to run on the computer.

• Utility Programs
A 11tilit:y program performs a specialized task that enhances the computer's operation
or safeguards data. Examples of utility programs are virus scanners, fil e-compression
programs, and data-backup programs.

• Software Deve/o/Jment Tools
The software tools that programmers use to create, modify, and test software arc
referred to as software develop111e11t tools. Compilers and integrated development
environments, which we will discuss later in this chapte r, are examples of programs
that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks arc known as application soft
ware. T hese are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com
monly used applications- M icrosoft Word, a word processing program, and Microso ft

8 Chapter 1 Introduction to Computers and Programming

PowerPoint, a presentation program. Some other examples of application software are
spreadsheet programs, e-mail programs, web browsers, and ga me programs.

~ Checkpoint
1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execure cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary srorage.

l.7 What are the two general categories of software?

1.8 What fundamental set of programs control the internal operations of the
computer's hardware?

1.9 What do you call a program that performs a specialized task, such as a virus
scanner, a file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, web
browsers, and game programs belong to what category of software?

Programs and Programming Languages

...,__ CONCEPT: A program is a set of instructions a computer fo llows in order to perform
a task. A programming langu age is a special language used to write com
puter programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions that
tells the computer how to solve a problem or perform a task. For example, suppose we want
the computer to calculate someone's gross pay. Here is a list of things the computer should do:

l. Display a message on the screen asking "Ho\.V many hours did you work?"
2 . Wait for the user ro enter rhe number of hours worked. Once the user enters a number,

store it in memory.
3 . Display a message on the screen asking " How much do you get paid per hour?"
4 . Wait for rhe user to enter an hourly pay rate. Once the user enters a number, store it

111 memory.
5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.
6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are sequentially ordered.
Step 1 should be performed before Step 2, and so forth . It is important that rhese instruc
tions be performed in their proper sequence.

1.3 Programs and Programming Languages 9

Although you and [might easily understand the instructions in the pay-calculating algo

ri thm, it is not ready to be executed on a computer. A computer's CPU can only process

instructions that a re written in machine language. If you were to look at a machine lan

guage program, you would see a stream of binary numbers (numbers consisting of only l s

and Os). The binary numbers form machine language instructions, which the CPU interprets

as commands. Herc is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very

tedious and difficult. In addition, each different type of CPU has its own machine lan

guage. II you wrote a machine language program for computer A then wanted to run it on

computer B, which has a different type of CPU, you wou ld have to rewrite the program in

computer B's machine language.

Programming languages, which use words instead of numbers, were invented to ease the

task of programming. A program can be written in a programming language, such as C++,

which is much easier to understand than machine language. Programmers save their pro

grams in text files, then use specia l software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The "Program Output with Example Input" shows what the program will display on the

screen when it is running. In the example, the user enters 10 for the number of hours

worked and 15 for the hourly pay rate. The program displays the ea rnings, which are $150.

NOTE: The line numbers that are shown in Program 1-1 are not part of the program.

This book shows line numbers in all program listings to help point our specific parts

of the program.

Program 1-1

1 II This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main{)
6 {
7 double hours, rate, pay;
8
9 II Get the number of hours worked.

10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 II Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 II Cal cul ate the pay.
18 pay = hours • rate;

(program continues)

10 Chapter 1 Introduction to Computers and Programming

Program 1-1 (continued)

19
20 II Display the pay.
21 cout << "You have earned $ " << pay << endl ;
22 return O;
23

Program Output with Example Input Shown In Bold
How many hours did you work? 10 (enter!
How much do you get paid per hour ? 15 (enwrl
You have earned $150

Programming Languages
In a broad sense, t here a re two categories of programming languages: low-level and high
level. A low-level language is close to the level of the computer, w hich means it resembles
the numeric machine language of the computer more than the naniral language of humans.
The easiest languages for people to learn arc bigb-level la11g11ages. They are called " high
level" because they are closer to the level of human readability than computer readability.
Figure 1-7 illustrates the concept of language levels.

Figure 1 -7 Low-level versus high-level languages

High level (easily understood by humans)

t
Low level (machine language)

10100010 11101011

~
Many high-level languages have been created. Table 1-1 lists a few of the we ll -known ones.

Jn addition to the high-level features necessa ry fo r w riting applications such as payroll sys
tems and inventory programs, C++ also has many low-level fentures. C++ is based on the C
language, which was invenred for purposes such as writ ing operating systems and compilers.
Since C++ evolved from C, it carr ies all of C's low-level capabilities w ith it.

1.3 Programs and Programming languages 11

Table 1-1 Programming Languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming

language originally designed ro be simple enough for beginners ro learn.

FORTRAN Formula Translaror. A language designed for programming complex mathematical

algorithms.

COBOL Common Busincss-Orienced Language. A language designed for business applications.

Pascal A structured, general-purpose language designed primarily for teaching programming.

C A structured, general-purpose language developed at Bell Laboratories. Coffers

both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented featu res nor found in C. Also

invented at Bell Laboratories.

C# Pronounced "C sharp." A language invented by Microsoft for developing applica

tions based on the Microsoft .NET platform.

Java An object-oriented language that may be used to develop programs that run on

many differenr rypes of devices.

JavaScript JavaScript can be used to write small programs that run in webpages. Despite its

name, JavaScript is not related to Java.

Python Python is a general-purpose language created in the ea rly 1990s. It has become

popular in both business and academ ic applications.

Ruby Ruby is a general-purpose language chat was created in che 1990s. It is increas

ingly becoming a popular language for programs that run on web servers.

Visual A Microsoft programming language and software development environment that

Basic allows programmers to quickly create Windows-based applications.

0

C++ is popular not only because of its mixture of low- and high-level features, but also

because of its portability. T his means that a C++ program can be written on one rype of

computer, then run on many other types of systems. This usua lly requires the program to

be recompiled on each type of system, but the program itself may need little or no change.

NOTE: Programs written fo r specific graphica l environments often require significant

changes when moved to a different type of system. Exa mples of such graphica l environ

ments are Windows, the X-\Xlindow System, and the macOS operating system.

Source Code, Object Code, and Executable Code

\Xlhen a C++ program is written, it must be typed into the computer and saved ro a fi le. A text

editor, which is similar ro a word processing program, is used for this task. The statements

written by the programmer are called source code, and the file they are saved in is called the

source file.

After the source code is saved to a file, the process of translating it to machine language can

begin. During the first phase of this process, a program called the preprocessor reads the

source code. The preprocessor searches for specia l lines that begin with the# symbol. These

lines contain commands that cause the preprocessor to modify the source code in some way.

12 Chapter 1 Introduction to Computers and Programming

During the next phase, the compiler steps through rhe preprocessed source code, translat
ing each source code instruction into the appropriate machine language instruction. This
process will uncover any syntax errors that may be in the program. Syntax errors are illegal
uses of key words, operators, punctuation, and other language elements. If rhe program
is free of syntax errors, the compiler stores rhe translated machine language instructions,
which are called object code, in an object file.

Although an object file contains machine language instructions, it is nor a complete pro
gram. Here is why: C++ is conveniently equipped with a library of prewritten code for
performing common operations or sometimes-difficult tasks. For example, the library con
tains hardware-specific code for displaying messages on the screen and reading input from
the keyboard. Ir also provides routines for mathematical functions, such as calculating the
square root of a number. This collection of code, called the runtime library, is extensive.
Programs almost a lways use some part of it. When the compiler generates an object file,
however, it does not indude machine code for any runtime library routines the programmer
might have used. Du ring the last phase of the translation process, another program called
rhe linker combines the object file w ith the necessary library routines. Once the linker has
finished with this step, an executable file is created. The executable file contains machine
language instructions, or executable code, and is ready to run on the computer.

Figure 1-8 illusrrares rhe process of translating a C++ source file imo an executable file.

The entire process of invoking the preprocessor, compiler, and linker can be initiated with
a single action. For example, on a Linux system, the following command causes the C++
program named he 11 o. cpp to be preprocessed, compiled, and linked. The executable code
is stun:J iu a file named hello.

g++ -o hello hello.cpp

Figure 1-8 Translating a C++ source file to an executable fi le

Source Code

Preprocessor

Compiler

Linker

Executable Code

--- Source code is entered
with a text editor by
the programmer.

#include <iostream>
using namespace std;

int main()
{

cout<<"Hello World\n" ;
return O;

1.3 Programs and Programming Languages 13

Appendix F explains how compiling works in .Net. You can download Appendix F from

the Computer Science Portal at www.pearsonhighered.com/gaddis.

Many development systems, particularly those on personal computers, have integrated devel

optnent environments (TD Es). These environments consist of a te>..'t editor, compiler, debug

ger, and other utilities integrated into a package \.Vith a single set of menus. Preprocessing,

compi ling, linking, and even executing a program is done with a single click of a butron, or

by selecting a single item from a menu. Figure 1-9 shows a screen from the Microsoft Visual

Studio lDE.

Figure 1-9 An integrated development environment (IDE)

~ Gross Pay . M.c:1osoft Vr~I Studio Quick uunch (Ctr! · QJ p 0 x

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANAL VZE WINDOW HRP

0 - !IS • Iii! Iii tJl •.;> 1t> ") • Iii- l ocal Windows Debugger • C.. (+ Debug

m®Wl·li·C~l!§~·+m•1:11L ____ ________ ___________ _..:·: Solution E>:pl°'" • ~ x

(Global Scope) - 19 mainO ~ ·0 • ., 61 ~ ..
II This progam calcul at es the user 's pay.
#include <i ostream>
usi ng namespace std;

Fl in t main()
{

100% •

double hours. rate. pay ;

II Get the number of hours worked.
cout << "How many hours di d you wor k? "·
c1n >> hours ;

II Get the hourly pay ra t e .
cout << "How ~uch do you get pa id per hour? -
cin >> rate :

II Calculate tho pay .
pay = hours • rate;

II Display t ho pay .
cout << "You have earned S" <<pay << end1 ;
return 0 ;

+ Surch Sclution &plorer (Ctr!· P -
f:§l Gross P,,y

~ fiiil External D~pendencies
ii Header Files
ii Resource Files

" 6iJ Source Files
~ --. GrossPay.cpp

Solution Explortt Team Explorer

Properties • 11 x

main VCCodefunction

•11 fDi1 r ••. L!!.J
(Name)

Fole
fullNamt

WnJttted

(Name)

rNiin

c:~rs\tony\d

mU.
False

.., Xts/mums the name of the object.

Rtady Ln 23 Col 2 Ch 2 iNS

~ Checkpoint
l.11 W hat is an algorithm?

1.12 Why were computer programming languages invented?

1.13 What is the d ifference between a high-level language and a low-level language?

1 .14 What does portability mean?

1.15 Explain the operations carried out by the preprocessor, compiler, and linker.

1.1 6 Explain what is stored in a source fi le, an object file, and a n executable file.

1.17 What is an integrated development environment?

14 Chapter 1 Introduction to Computers and Programming

~
1.4 What Is a Program Made of?

~CONCEPT: There arc certain elements that are common to all programming languages.

Language Elements
All programming languages have a few things in common. Table 1-2 lists the common ele
ments you will find in a lmost every language.

Table 1-2 Language Elements

Language Element

Key Words

Programmer-Defined
Identifiers

Operators

Punctuation

Syntax

Description

Words that have a specia l meaning. Key words may only be used for
the ir intended purpose. Key words are also known as reserved words.

Words or names defined by the programmer. They are symbolic names
that refer ro variables or programming routines.

Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation characters that mark the beginning or end of a statement, or
sepnrnre items in a lisr.

Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where puncruarion
symbols must appear.

Let's look at some specific parts of Program 1-1 (the pay-calculacing program) ro sec examples
of each element listed in rhe table above. For your convenience, Program 1-1 is listed again.

Program 1-1

1 II This program calculates the user's pay .
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 II Get the number of hours worked.

10 cout « "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate .
14 cout << "How much do you get paid per hour? ";
15 cin >> rate:
16
17 // Calculate the pay.
18 pay = hours • rate;

1.4 What Is a Program Made of? 15

19
20 II Display the pay.
21 cout cc "You have earned $" cc pay cc endl;

22 ret urn O;
23

Key Words (Reserved Words)

T hree of C++'s key words appear on lines 3 and 5: using, names pace, and int. The word

doubl e, which appears on line 7, is a lso a C++ key word. These words, which are always

written in lowercase, each have a specia l meaning in C++ and can only be used for their

intended purposes. As you will see, the programmer is allowed to make up his or her own

names for cerrain things in a program. Key words, however, arc reserved and cannot be

used for anything other than their designated purposes. Part of learning a programming

language is learning what the key words are, what they mean, and how to use them.

() NOTE : The #include ciostream> statement in line 2 is a preprocessor directive.

() NOTE: In C++, key words a rc written in all lowercase.

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and

21 are programmer-defined identifiers. T hey are not pare of the C++ language, but rather

are names made up by the programmer. In this particular program, these are the names of

variables. As you will learn later in this chapter, variables are the names of memory loca

tions that may hold data.

Operators

On line 18 the following code appears:

pay = hours • rate;

T he = and • symbols arc both operators. T hey perfo rm operations on pieces of data known

as operands. The • operator mu ltiplies its two operands, which in this example are the

variables hours and rate. The = symbol is called rhe assignment operator. lt takes the

value of the expression on the right and stores it in the ,·ariable whose name appears on

the left. In this example, the = opcraror stores in the pay variable the result of the hours

variable mu ltiplied by rhc rate variable. In other words, the sraremenr says, "Make the pay

variable equal to hours times rate, or "pay is assigned the value of hour s times rate."

Punctuation

Notice lines 3, 7, 10, I I , 14, 'IS , '18, 2 1, and 22 a ll end with a semicolon. A semicolon in

C++ is similar to a period in English: lt marks the end of a complete sentence (or statement,

as it is called in programming jargon). Semicolons do nor appear at the end of every line in

a C++ program, however. There arc rules that govern where semicolons are required and

16 Chapter 1 Introduction to Computers and Programming

where rhey are nor. Parr of learning C++ is learning where to place semicolons and other
punctuarion symbols.

Lines and Statements
Often, the conrenrs of a program are thought of in terms of lines and sraremenrs. A "line"
is jusr that- a single line as it appears in rhe body of a program. Program 1-J has 23 lines.
Most of the lines contain something meaningful; however, some of the lines are empty. T he
blank lines are only there to make the program more readable.

A staremenr is a complete instruction that causes the computer to perform some action.
Here is the sta tement that appears in line 10 of Program l -1:

cout << "How many hours did you work? ";

This sratement causes the computer to display the message" How many hours did you work?"
on the screen. Statements can be a combination of key words, operators, and programmer
defined symbols. Statements often occupy on ly one line in a program, but sometimes they
are spread out over more than one line.

Variables
A variable is a named storage location in the computer's memory for holding a piece of
information. The information stored in variables may change while the program is run
ning (hence the name "variable"). Notice in Program 1-1 the words hours, rate, and pay
appear in several places. All three of these are the names of variables. The hours variable
is used to store the number of hours the user has worked. The rate variable stores the
user's hourly pay rate. The pay variable holds the result of hours multiplied by rate, which
is the user's gross pay.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the va riables were used for just by reading their
names. This will be discussed further in Chapter 2.

Variables are symbol ic names that represent loca tions in the computer's random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named 1 ength. Figure 1-10 illustrates the way the vari
able name represents a memory location.

Figure 1-10 A variable name represents a memory location

0 2 3 4 5 6 7 8 9

10

20

length

~

1.5 Input, Processing, and Output 17

In Figure 1-10, rhe variable length is holding rhe value 72. The number 72 is acrually srored

in RAM ar address 23, bur rhe name length symbolically represents this srorage location. If it

helps, you can think of a variable as a box thar holds informarion. [n Figure 1-10, the number

72 is stored in the box named length. Only one item may be stored in the box at any given

rime. If the program srores another value in the box, it will rake the place of the number 72.

Variable Definitions
Jn programming, there arc two general types of data: numbers and characters. Numbers

arc used to perform mathematical operations, and characters are used to print data on the

screen or on paper.

Numeric data can be categorized even further. For instance, the following are all whole

numbers or integers:

5
7
-129
32154

The following are real or floating-point numbers:

3 .14159
6.7
1. 0002

When creating a variable in a C++ program, you must know what type of data the program

will be sroring in it. Look at line 7 of Program 1- 1:

double hours, rate, pay;

The word double in this statement indicates that the variables hours, rate, and pay will

be used to hold double precision floating-point numbers. This sratemenr is called a variable

definition. It is used to define one or more variables that will be used in the program and

to indicate the type of data they will hold. The variable definition causes the variables to be

created in memory, so all varia bles must be defined before they can be used. If you review

the listing of Program 1-1 , you will see that the variable definitions come before any other

statements using rhose variables.

NOTE: Programmers often use the term "variable declaration" to mean the same thing

as "variable definition." Strictly speaking, there is a difference berween rhe two rerms.

A definition Statement nlways causes a variable to be created in memory. Some types of

declaration statements, however, do not cause a variable ro be created in memory. You

will learn more about declarations larer in this book.

1.5 Input, Processing, and Output

'1_ CONCEPT: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a rbree-step process of gathering input, performing

some process on the informarion gathered, then producing output. lnpur is information a

18 Chapter 1 Introduction to Computers and Programming

program collects from the outside world. lt can be scnr to the program from the use1; who
is entering darn at tbe keyboard or using the mouse. It can also be read from disk files or
hardware devices connected ro the computer. Program 1-1 allows the user to enter two
pieces of information: the number of hours worked and the hourly pay rate. Lines 11 and
15 use the cin (pronounced "see in ") object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate a re multiplied in line
18, and the result is assigned to the pay variable:

pay = hours • rate;

Output is information rhar a program sends to the outside world. It can be words or graph
ics displa)1ed on a screen, a report sent to the printer, data stored in a file, or information
senr to any device connected to the computer. Lines 10, 14, and 2 1 in Progra m 1-1 a ll
perform output:

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? "·
cout <<"You have earned$" << pay << e ndl;

These lines use the cout (pronounced "see out") object to display messages on the com
puter's screen. You will learn more derails about the ci n and cout objects in Chapter 2.

~ Checkpoint
1.18

1.19

1.20

1.2.1

1.22

1.23

1.24

~

Describe the difference between a key word and a progrnmmcr-defined idenrifier.
Describe the difference between operators and punctuation symbols.
Describe the difference between a program line and a statement.

Why are variables called "variable"?

What happens to a variable's current contenrs when a new va lue is stored there?
What must rake place in a program before a variable is used?
What are the three primary activities of a program?

1 .6 The Programming Process

~CONCEPT: T he programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program
Now that you have been introduced to what a program is, it's rime to consider the process
of creating a program. Quire often, when inexperienced students arc given progra mming
assignments, they have trouble getting starred because they don't know what to do fi rst. If
you find yourself in this dilemma, rhe steps listed in Figure 1-·11 may help. These are the
steps recommended for the process of writing a program.

1.6 The Programming Process 19

Figure 1-11 Steps for writing a program

1. Clearly define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools such as a hierarchy chart, flowcharts,

or pseudocode to create a model of the program.
4. Check the model for logical errors.
5. Type the code, save it, and compile it.
6. Correct any errors found during compilation. Repeat

Steps 5 and 6 as many times as necessary.
7. Run the program with test data for input.
8. Correct any errors found while running the program.

Repeat Steps 5 through 8 as many times as necessary.
9. Validate the results of the program.

The steps listed in Figure 1-11 emphasize the importance of planning. Just as there are good

ways and bad ways to paint a house, there are good ways and bad ways to create :i program.

A good program always begins with pl:inning.

With the pay-calculating program as our example, let's look at each of the steps in more

derail.

J. Clearly define what the program is to do.

This step requires that you identify the purpose of the program, the information that is co

be input, the processing that is to take place, and the desired output. Let's examine each of

these requirements fo r the example program:

Purpose

Input

Process

Output

To calculate the user's gross pay.

Number of hours worked, hourly pay rare.

Multiply number of hours worked by hourly pay rare. The result is the

user's gross pay.

Display a message indicating the user's gross pay.

2. Visualize the program running on the computer.

Before you create a progra m on the computer, you should first create ir in your mind.

Step 2 is the visual ization of the program. Try to imagine what the computer screen looks

like while the progra m is running. If it helps, draw picrures of the screen, with sample input

and output, at v:irious points in the progr:im. For instance, here is the screen produced by

the pay-c:ilculating program:

How many hours did you work? 10
How much do you get paid per hour? 15
You have earned $150

In this step, you must put yourself in the shoes of the use r. What messages should the pro

gram display? What questions should it ask? By addressing these concerns, you will have

a lready determined most of the program's output.

20 Chapter 1 Introduction to Computers and Programming

3. Use design tools such as a hierarchy charc, flowcharcs, or pseudocode to create a model
of the program.

While planning a program, the programmer uses one or more design tools to create a model
of the program. Three common design tools are hierarchy charts, flowcharts, and pseudo
code. A hierarchy chart is a diagram that graphically depicts the structure of a program. It
has boxes that represent each step in the program. The boxes are connected in a way that
illustrates their relationship to one another. Figure 1-12 shows a hierarchy chart for the
pay-calculating program.

Figure 1-12 Hierarchy chart

VldeoNo te

Introduction to
Flowchartlng

V1deoNote

Designing a
Program with
Pseudocode

Calculate
Gross Pay

I
l l l

Get Payroll Data
Multiply Hours

Display Worked by
from User Pay Rate Gross Pay

l
l l

Read Number of Read Hourly
Hours Worked Pay Rate

A hierarchy chart begins with the overall task then refines it inco smaller subtasks. Each of
the subtasks is then refined into even smaller sets of subtasks, until each is small enough to
be easily performed . For instance, in Figure 1-12, the overall task "Calculate Gross Pay" is
listed in the top-level box. That task is broken into three subtasks. T he first subtask, "Get
Payroll Data from User," is broken further into two subtasks. This process of "d ivide and
conquer" is known as top-down design.

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program performs and the order in which the operations are to
occur. For more information see Appendix C, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can't understand pseudocode, programmers often find it helpful to write an
algorithm in a language that's "almost" a programming language, but still very similar
to natural language. For example, here is pseudocode that describes the pay-calculating
program:

Get payroll data .
Calculate gross pay.
Display gross pay.

Although the pseudocode above gives a broad view of the program, it doesn't reveal a ll the
program's details. A more derailed version of the pseudocode follows:

Display "How many hours did you work?".
Input hours.
Display "How much do you get paid per hour?".
Input rate.
Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

1.6 The Programming Process

Notice the pseudocode contains statements that look more like commands than the English

statements that describe the algorithm in Section 1.4 (What Is a Program Made of?). The

pseudocode even names variables and describes mathematical operations.

4. Check the model for logical errors.

Logical errors are mistakes that cause the program to produce erroneous results. Once a

hierarchy chart, flowchart, or pseudocode model of the program is assembled, it should be

checked for these errors. The programmer should trace through the charts or pseudocode,

checking the logic of each step. If an error is found, the model can be corrected before the

next step is attempted.

5. Type the code, save it, and compile it.

Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been created,

checked, and corrected, the programmer is ready to write source code on the computer.

The programmer saves the source code to a file and begins the process of translating it to

machine language. During this step, the compiler will find any syntax errors that may exist

in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as

necessary.

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated

until the program is free of compile-time errors.

7. Run the program with test data for input.

Once an executable file is generated, the program is ready to be tested for runtime errors.

A runtime error is an error that occurs while the program is running. These are usually

logical errors, such as mathematical mistakes.

Testing for runtime errors requires that the program be executed with sample data or

sample input. The sample data should be such that the correct output can be predicted. If
the program does not produce the correct output, a logical error is present in the program.

8. Correct any errors found while running the program. Repeat Steps 5 through 8 as many

times as necessary.

When runtime errors are found in a program, they must be corrected. You must identify the

step where the error occurred and determine the cause. Desk-checking is a process that can

help locate runtime errors. The term desk-checking means the programmer starts reading the

program, or a portion of the program, and steps through each statement. A sheet of paper

is often used in this process to jot down the current contents of all variables and sketch

what the screen looks like after each output operation. When a variable's contents change,

or information is displayed on the screen, this is noted. By stepping through each statement,

many errors can be located and corrected. If an error is a result of incorrect logic (such as an

improperly stated math formula), you must correct the statement or statements involved in

21

22 Chapter 1 Introduction to Computers and Programming

1.7

the logic. If an error is due ro an incomplete understanding of rhe program requiremenrs, then
you must restate the program purpose and modify the hierarchy and/or flowcharts, pseudo
code, and source code. T he program must then be saved, recompiled, and retested. This
means Steps 5 through 8 must be repeated until the program reliably produces satisfactory
results.

9. Validate the results of the program.

When you believe you have corrected all the runtime errors, enter test data and determine
whether the program solves the origina l problem.

What Is Software Engineering?
The field of software engineering encompasses the whole process of crafting computer
sofnva re. It includes designing, writing, resting, debugging, documenting, modifying, and
maintaining complex softwa re development projects. Like traditional engineers, softwa re
engineers use a number of tools in their craft. Here are a few examples:

• Program specifications
• Charts and diagrams of screen output
• Hierarchy charts and flowcharts
• Pseudocode
• Examples of expected input and desired output
• Special software designed for resting programs

Most commercial software applications arc very la rge. In many instances, one or more
reams of programmers, not a single individual, develop them. It is important that the pro
gram requirements be thoroughly analyzed and divided into subtasks that are handled by
individual teams, or individua ls within a ream.

In Step 3 of the programming process, you were introduced ro the hierarchy chart as a
tool for top-down design. The subtasks identified in a top-down design can easily become
modules, or separate components of a program. If the program is very large or complex, a
team of software engineers can be assigned to work on the individual modules. As the proj
ect develops, the modules are coordinated to finally become a single software application.

Procedural and Object-Oriented Programming

'1_ CONCEPT: Procedural programming and object-oriented programming arc two ways
of thinking about software development and program design.

C++ is a language that can be used for two methods of writing computer programs: proce
dural programming and object-oriented programming. This book is designed ro teach you
some of both.

In procedural programming, the programmer constructs procedures (or functions, as they
are ca lled in C++). The procedures are collections of programming statements that perform
a specific task. The procedures each contain their own variables and commonly share va ri
ables with other procedures. This is illustrated in Figure 1- 13.

1.7 Procedural and Object-Oriented Programming 23

Figure 1-1 3 Procedures in a program

Program

PROCEDURE A
Variables
Programming

END OF PROCEDURE A

PROCEDURE B
Variables
Programming

END OF PROCEDURE B

Procedural programming is cenrered on the procedure, or function. Object-orienred pro

gramming (OOP), on the other hand, is centered on the object. An object is a programming

element that contains data and che procedures that operate on the data. It is a self-contained

unit. This is illustrated in Figure 1-14.

Figure 1-14 Objects in a program

Program

Object A Object B Object C

Variables Variables Variables

PROCEDURE A PROCEDURE A PROCEDURE A

Variables Variables Variables

Programming Programming Programming

END OF PROCEDURE A END OF PROCEDURE A END OF PROCEDURE A

PROCEDURE B PROCEDURE B PROCEDURE B

Variables Variables Variables

Programming Programming Programming

END OF PROCEDURE B END OF PROCEDURE B END OF PROCEDURE B

The objects contain, within themselves, both information and the ability to manipulate the

information . Operations are carried our on the information in an object by sending the

object a message. When an object receives a message instructing it co perform some opera

tion, it carries out the instruction. As you study chis text, you will encounter many other

aspects of objecc-orienccd programming.

~ Checkpoint
1.25 What four items should you identify when defining what a program is co do?

1.26 What does it mean to ''visualize a program running"? What is the value of such

an activity?

1.27 What is a hierarchy chart?

1.28 Describe the process of desk-checking.

24 Chapter 1 Introduction to Computers and Programming

1.29 Describe what a compiler does with a program's source code.

1.30 What is a runtime error?

1.31 ls a syntax error (such as misspelling a key word) found by the compiler or when
the program is running?

1.32 What is the purpose of testing a program with sample data or input?

1.33 Briefly describe the difference between procedural and object-oriented
programming.

Review Questions and Exe rcises
Short Answer

1. Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

2. What is the difference between system software and application software?

3. What type of software controls the internal operations of the computer's hardware?

4. Why must programs written in a high-level language be translated into machine lan-
guage before they can be run?

5. Why is it easier to write a program in a high-level language than in machine language?

6. Explain the difference between an object file and an executable file.

7. What is the difference between a syntax error and a logical error?

Fill-in-t he-Blank

8. Computers can do many different jobs because they can be ___ _

9. The job of the is to fetch instructions, carry out the operations commanded
by the instructions, and produce some outcome or resultant information.

10. Internally, the CPU consists of the and the ___ _

11. A(n) is an example of a secondary storage device.

12. The two general categories of software are and ___ _

13. A program is a set of ___ _

14. Since computers can't be programmed in natural human language, algorithms must be
written in a(n) language.

15. is the only language computers really process.

16. languages are close to the level of humans in terms of readability.

17. languages are close to the level of the computer.

18. A program's ability to run on several different types of computer systems is called

19. Words that have special meaning in a programming language are called ___ _

20. Words or names defined by the programmer are called ___ _

21. ____ arc characters or symbols that perform operations on one or more
operands.

VldeoNote

Designing
the Account
Balance
Program

Review Questions and Exercises 25

22. characters or symbols mark the beginning or end of programming state-
ments, or separate items in a list.

23. The rules rhar must be followed when constructing a program are called ___ _

24. A(n) is a named storage location.

25. A variable must be before it can be used in a program.

26. The three primary activities of a program are ____ ,and

27. ____ is information a program gathers from the outside world.

28. is information a program sends to the outside world.

29. A(n) is a diagram that graphically illustrates the structure of a program.

Algorithm Workbench

Draw hierarchy charts or flowcharts that depict the programs described below. (See Appendix C

for instructions on creating flowcharts.)

30. Available Credit

The following steps should be followed in a program that calculates a customer's
available credit:

l. Display the message "Enter rhe customer's maximum credit."

2. Wait for the user to enter the customer's maximum credit.

3. Display the message "Enter the amount of credit used by the customer."

4. Wait fo r the user to enter the customer's credit used.

5. Subtract the used credit from the maximum credit to get the customer's available
credit.

6. Display a message that shows rhe customer's available credit.

31. Sales Tax

Design a hierarchy chart or flowchart for a program that calculates the total of a retail
sale. The program should ask the user for:

- The retail price of the item being purchased
- The sa les tax race

Once these items have been entered, the program should calculate and display:
- The sales tax for the purchase
- The coral of the sale

32. Account Balance

Design a hierarchy chart or flowchart for a program that calculates the current balance
in a savings account. The program must ask the user for:

- The starting balance
- The total dollar amount of deposits made
- The total dollar amount of withdrawals made
- The monthly interest rate

Once the program calculates the current balance, it should be displayed on the screen.

26 Chapter 1 Introduction to Computers and Programming

VldooNote

Predicting
the Result of
Problem 33

Predict the Result

Questions 33-35 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

33. The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1 to x.
Add 1 toy.
Add x and y, and store the result in y.
Display the value in y on the screen.

34. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable 1 starts with the value 4.
Store the va lue of j rimes kin j.
Store rhe value of k times 1 in 1.
Add j and 1, and store the result in k.
Display the value in k on the screen.

35. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the va lue 100.
The variable x starts with the value 0.
Store the value of c times 3 in x.
Add the value of b times 6 to rhe value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Find the Error

36. The following pseudocode algorithm has an error. The program is supposed to ask the
user for the length and width of a rectangular room, then display the room's area. The
program must multiply the width by the length in order to determine the area. Find
the error.

area = width X length.

Display "What is the room's width? ".

Input width.

Display "What is the room's length?".

Input length.

Display area.

TOPICS

2.1 The Parts of a C++ Program 2.10 The boo 1 Data Type

2.2 The cout Object 2.11 Determining the Size of a

2.3 The #inc 1 ude Directive Data Type

2.4 Variables, Literals, and Assignment 2.12 More about Variable Assignments

Statements and Initialization

2.5 Identifiers 2.13 Scope

2.6 Integer Data Types 2.14 Arithmetic Operators

2.7 The char Data Type 2.15 Comments
2.8 The Ct 1 string Class 2.16 Named Constants

2.9 Floating-Point Data Types 2.17 Programming Style

The Parts of a C++ Program

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
arc nor always in the same p lace. Nevertheless, the parts arc there, and your first step in
learning C++ is co learn what they are. \Y/c will begin by look ing at Program 2-1.

Let's examine the program line by line. Here's the first line:

II A simple C++ program

The 11 marks the beginning of a comment. The compiler ignores everything from the
double s lash ro the end of the line. That means you can type anything you want on that line
and the compiler will never complain! Although commenrs are not required, they are very
important to programmers. Most programs are much more complicated than the example
in Program 2-1, and comments help explain what 's going on.

27

28 Chapter 2 Introduction to C++

Program 2-1

1 //A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming i s great fun!" ;
8 return O;
9

The output of the program is shown below. This is what appears on the screen when the
program runs.

Program Output
Programming is great fun!

Line 2 looks like this:

#include <iostream>

Because this line starts with a #, it is ca lled a preprocessor directive. The preprocessor
reads your program before it is compiled and only executes those lines beginning with a #
symbol. Think of the preprocessor as n program that "sets up" your source code for the
compiler.

The #include directive causes the preprocessor to include the contents of another file,
known as a header file, in the program. It is called a header file because it should be included
at the head, or top, of a program. The word that is enclosed in brackets, ; ostream, is the
name of the header file that is to be included. (The name of the fi le is i ostream. The
brackets<> indicate that it is a standard C++ header file.) The <i ostream> header file con
tains code thnt a llows a C++ program to display output on the screen and read input from
the keyboard. Because this program uses cout to display screen output, the <iost ream>
header file must be included. The contents of the <i ostream> file nre included in the pro
gram at the point the #include sratemenr appears.

Line 3 reads:

using namespace std;

Programs usuall y contain several items with unique names. In th is chapter, you will
learn to create variables. In Chapter 6, you will learn to create functions. In Chapter 13,
you will learn to create objects. Variables, functions, and objects are examples of program
entities that must have names. C++ uses namespaces ro organize the names of program enti
ties. The srntemem using names pace std; declares rhar the program will be accessing
entities whose names are part of rhe namespace called std. (Yes, even namespaces have
names.) T he reason the program needs access to the std namespace is because every name
created by the iostream file is part o f that namespace. In order for a program to use the
entities in i os t ream, it must have access to the std namespace.

CD

2.1 The Parts of a C++ Program 29

Line 5 reads:

int main()

This marks the beginning of a function . A funclion can be thought of as a group of one or

more programming statements that collectively has a name. The name of this function is
main, and the set of parentheses that follows the name indicate that it is a function . The

word int stands for " integer." It indicates that the function sends an integer value back to

the operating system when it is finished executing.

Although most C++ programs have more than one function, ever)' C++ program must

have a function called main. It is the starring point of the program. If you are ever reading

someone else's C++ program and want ro find where it starts, just look for the function

named main.

NOTE: C++ is a case-sensitive language. T har means it regards uppercase letters as

being entirely different characters than their lowercase counterparts. In C++, the name

of the function main must be written in a ll lowercase leners. C++ doesn't see "Main"

the same as " main," or "IN!" the same as " int.'' This is true for all the C++ key
words.

Line 6 contains a s ingle, solitary character:

This is called a left brace, or an opening brace, and it is associated with the beginning of the

function main. All the statements that make up a function are enclosed in a set of braces.

If you look at the third line down from the opening brace, you'll sec the closing brace.

Everything between the two braces is the content of the function main.

WARNING I Make sure you have a closing brace for every opening brace in your

program!

After the opening brace, you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout

and the << operator later in this chapter. The message "Programming is great fun!" is

printed without the quotation marks. In programming terms, the group of characters inside

the quotation marks is called a string literal or string constant.

NOTE: This is the only line in the program that causes anything to be printed on the

screen. The other lines, like #include <i ostream> and int main (), nre necessary for

the framework of your program, but they do not cause any screen output. Remember,
a program is a set of instructions for the computer. If something is ro be displayed on

the screen, you must use a programming statement for that purpose.

30 Chapter 2 Introduction to C++

At the end of the line is a semicolon . Just as a period marks the end of a sentence, a semi
colon marks the end of a complete statement in C++. Comments are ignored by the com
piler, so the semicolon isn't required at the end of a comment. Preprocessor directives, like
#include statements, simply end at the end of the line and never require semicolons. The
beginning of a function, like int main (), is nor a complete statement, so you don't place
a semicolon there either.

Ir might seem that the rules for where to put a semicolon are not clear at a ll. Rather than
worry about it now, just concentrate on learning the parrs of a program. You'll soon get a
feel for where you should and should not use sem icolons.

Line 8 reads:

return O;

This sends the integer va lue 0 back co the operating system upon the program's completion .
The value 0 usually indicates chat a program executed successfu lly.

Linc 9 contains the closing brace:

This brace marks the end of the main function . Since main is the only function in this pro
gram, it also marks the end of the program.

In the sample program, you encountered severa l sets of special characters. Table 2-1 pro
vides a shorr summary of how they were used.

Table 2 -1 Special Characters

Character Name

11 Double slash

Pound sign

< > Opening and closing brackets

Opening and closing parentheses

O pening and closing braces

Opening and closing quotation
marks

Semicolon

~ Checkpoint

Description

Marks the beginning of a comment.

Marks the beginning of a preprocessor directive.

Enclose a fil ename when used with the
#include directive.

Used in naming a function, as in int main ().

Enclose a group of statements, such as the con
tents of a function.

Enclose a sering of characters, such as a message
char is to be printed on the screen.

Marks the end of a complete programming
statement.

2.1 The fo llowing C++ program will not compile because the lines have been mixed up.

int main ()

II A crazy mixed up program

return 0 ;

"""

2.2 The cout Object 31

#include <iostream>

cout << "In 1492 Columbus sailed the ocean blue.";

{

using namespace std;

When the lines are properly arranged, the program should display the fo llowing
on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 The cout Object

~CONCEPT: Use the cout object to display information on the computer's screen.

In this section, you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is merely
plain text. The word console is an old computer term. It comes from the days when a com
puter operator interacted with the system by typing on a terminal. The terminal, which
consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows o r Mac OS
X, console output is usually displayed in a window such as the one shown in Figure 2-1. In
C++, you use the cout object ro produce console output. (You can think of the word cout
as meaning console output.)

Figure 2 -1 A console window

tij C:\Windows\system32\ cmd.exe D x

cout is classified as a stream object, which means it works with streams of data. To print
a message on the screen, you send a stream of characters to cout. Let's look at line 7 from
Program 2-1:

cout << "Programming is great fun!";

32 Chapter 2 Introduction to C++

VideoNote
Using cout

Notice the « operator is used to send the string "Programming is great fun!" to cout.
When the « symbol is used this way, it is called the stream insertion operator. T he item
inunediately to the right of the operator is sent to cout then displayed on the screen.

The stream insertion operator is always written as cwo less-than signs with no space
between them. Because you are using it to send a stream of data to the cout object, you
can think of rhe stream insertion operator as an arrow that must point toward cout. T his
is illustrated in Figure 2-2.

Program 2-2 is another way to write the same program.

Figure 2-2 Think of« as an arrow pointing to cout

Program 2-2

cout <<"Programming is great fun!";

Think of the stream insertion operator as an
arrow that points toward cout.

cout - "Programming is great fun!";

1 //A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is " << "great fun!" ;
8 return 0;
9

Program Output
Programming is great fun!

As you can see, the stream insertion operator can be used to send more than one item to

cout. The output of this program is identical to that of Program 2-1. Program 2-3 shows
yet another way to accomplish the same thing.

Program 2-3

1 //A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main ()
6 {
7 cout << "Programming is ";
8 cout << "great fun!" ;
9 return O;

10

Program Output
Programming is great fun !

2.2 The cout Object 33

An important concept to understand about Program 2-3 is that, a lthough the output is
broken up into two programming statements, this program will still display the message
on one line. Unless you specify otherwise, the information you send tO cout is displayed in
a continuous stream. Sometimes this can produce less-than-desirable results. Program 2-4
is an example.

The layout of the actual output looks nothing li ke the arrangement of the strings in the
source code. First, notice there is no space displayed between the words "sellers" and "dur
ing," or between "June:" and "Computer." cout displays messages exactly as they are sent.
If spaces are to be displayed, they must appear in the strings.

Program 2-4

1 //An unruly printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6
7
8
9

cout << "The following items
cout << "during the month of
cout << "Computer games";

10 cout << "Coffee";
11 cout << "Aspirin";
12 return O;
13

Program Output

were top sellers";
June:" ;

The following items were top sellersduring the month of J une:Computer
gamesCoffeeAspirin

Second, even though the output is broken into five lines in the source code, it comes out
as one long line of output. Because the output is too long to fit on one line on the screen,
it wraps around to a second line when displayed. The reason the output comes out as one
long line is because cout does not start a new line unless told to do so. There are rwo ways
to instruct cout to start a new line. The iirst is to send cout a stream manipulator called
endl (which is pronounced "end-line" or "end-L") . Program 2-5 is an example.

Program 2-5

1 //A well-adjusted printing program
2 #inc lude <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The fo 11 owing items were top se 11 ers" << endl ;
8 cout << "during the month of J une:" << endl;

(program continues)

34 Chapter 2 Introduction to C++

Program 2-5 (continued)

9 cout << "Computer games" <<
10 cout << "Coffee" << endl ;
11 cout << "Aspirin" << endl;
12 return o· '
13

Program Output
The fo 11 owing items were top se 11 ers
during the month of June :
Computer games
Coffee
Aspirin

endl ;

0 NOTE: The last character in endl is the lowercase letter L, not the number one.

Every time cout encounters an endl stream manipulator, it advances the output position
ro the beginning of the next line for subsequent printing. The manipulator can be inserted
anywhere in the stream of characters senr to cout, outside the double quotes. T he following
statements show an example.

cout << "My pets are" << endl << "dog";
cout << endl <<"cat"<< endl <<"bird"<< endl;

Another way ro cause cout to go to a new line is ro insert an escape sequence in the string
itself. An escape sequence starts with the backslash cha racter (\) and is followed by one or
more control characters. It allows you to conrrol the way output is displayed by embedding
commands within the string itself. Program 2-6 is an example.

Program 2-6

1 //Yet another well -adjusted printing program
2 #include <iostream>
3 using namespace std ;
4
5 int main()
6
7 cout << "The following items were top sellers\n";
8 cout << "during the month of June:\n";
9 cout << "Computer games\nCoffee";

10 cout << "\nAspirin\n";
11 return O;
12

Program Output
The followi ng items were top sellers
during the month of June:
Computer games
Cof fee
Aspirin

2.2 The cout Object 35

The newline escape sequence is \n. When cout encounters \n in a string, it doesn't print it
on the screen, but interprets it as a special command to advance the output cursor to the
next line. You have probably noticed inserting the escape sequence requires less typing than
inserting endl. Thar's why many programmers prefer it.

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a backslash (\) when trying to write an escape sequence. This will not work. For example,
look at the following code:

II Error!
cout << "Four ScorelnAnd sevenlnYears ago.In";

In this code, the programmer accidentally wrote In when he or she meant to write \ n. The
cout object will simply display the In characters on the screen. This code will display the
following output:

Four ScorelnAnd sevenlnYears ago.In

Another common mistake is to forget to put the \ n inside quotation marks. For example,
the following code will not compile:

II Error! This code will not compile.

cout << "Good" << \n;
cout << "Morning" << \n;

This code will result in an error because the \n seq uences are nor inside quotation marks.
\Y/e can correct the code by placing the \ n sequences inside the string literals, as shown here:

II This will work.

cout << "Good\n" ;
cout << "Morning \ n";

There a re many escape sequences in C++. T hey give you the ability to exercise greater
control over the way information is output by your program. Table 2-2 lists a few of
them.

Table 2-2 Common Escape Sequences

Escape
Sequence Name

\n Newline

\t Horizontal tab

\a Alarm

\b Backspace

\r Return

\\ Backslash

\ ' Single quote

\ " Double quote

Description

Causes the cursor to go to the next line for subsequent printing.

Causes the cursor to skip over to the next rab stop.

Causes rhe computer to beep.

Causes the cursor to back up, or move left one position.

Causes the cursor tO go to the beginning of the current line, not
the next line.

Causes a backslash to be printed.

Causes a single quotation mark to be printed.

Causes a double quotation mark to be printed.

36 Chapter 2 Introduction to C++

CD WARNING! When using escape sequences, do not put a space between the back
slash and the control character.

When you type an escape sequence in a string, you type two characters (a backslash fo l
lowed by another character). However, an escape sequence is stored in memory as a single
character. For example, consider the following string literal:

"One\ nTwo\nThree\n"

The diagram in Figure 2-3 breaks this string into its individual characters. Notice how each
of the \ n escape sequences are considered one character.

Figure 2-3 Individual characters in a string

The #include Directive

~ C 0 NC E PT: The #include directive causes the contents of another file to be inserted
into the program.

CD

Now is a good time ro expand our discussion of the #include directive. The following line
has appeared near the rop of every example program.

#include <iostream>

The header fil e iostream must be included in any program that uses the cout object. Thjs
is because cout is not part of the "core" of the C++ language. Specifically, it is part of the
input-output stream library. The header file, i ostream, contains information describing
i ost ream objects. Without it, the compiler will not know how ro properly compile a pro
gram that uses cout.

Preprocessor directives are nor C++ statements. They are commands to the preprocessor,
which runs prior ro the compiler (hence the name "preprocessor"). The preprocessor's job
is to set programs up in a way that makes life easier for the programmer.

For example, any program thar uses the cout object must contain the extensive setup
information found in i ostream. The programmer could type all this information into the
progra m, but it would be roo time consuming. An alternative would be to use an editor to
"cur and paste" the information into rhe program, but that would quickly become tiring as
well. The solution is to let the preprocessor insert the contents of iostream automatically.

WARNING! Do not pur semicolons at the end of processor directives. Because pre
processor directives are not C++ statements, they do nor require semicolons. In many
cases, an error will result from a preprocessor directive terminated with a semicolon.

An #include directive must ah.vays contain the name of a file. The preprocessor inserts the
entire contents of the file into rhe program at the point it encounters rhe #inc 1 ude directive.

2.3 The #include Directive 37

The compiler doesn't actually see the #include directive. Instead, it sees the code that was
inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically, it describes complex objects like
cout. Later, you will learn to create your own header files.

~ Checkpoint
2.2 The following C++ program will nor compile because the lines have been mixed up.

cout << "Success\n";

cout << " Success\n\n";

int main()

cout << "Success";

using namespace std;

II It's a mad, mad program

#include <iostream>

cout << "Success\n";

return O;

When the lines are properly arranged, rhe program should display the following
on the screen:

Success

Success Success

Success

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.3 Study the following program and show what it will prim on the screen:

II The Works of Wolfgang

#include <iostream>

using namespace std;

int main()

cout << "The works of Wolfgang\ninclude the following";

cout << "\nThe Turkish March" << endl;

cout << "and Symphony No. 40 ";

cout << "in G minor." << endl;

return 0;

38 Chapter 2 Introduction to C++

2.4 Write a program tha t will display your name on the first line, your street address
on the second line, your ciry, state, and ZIP code on the third line, and your
telephone number on the fourth line. Place a comment with today's date at the top
of the program. T est your program by compiling and running it.

2~ Variables, Literals, and Assignment Statements

-{_ CONCEPT: Vaciablos cep.csent storage locations in the computer's memory. Literals
a re constant values that are assigned to variables.

VidcoNotc
Var iable
Definitio n s

As you discovered in Chapter 1, variables allow you to store and work with data in the com
puter's memory. They provide an " interface" to RAM. Parr of the job of programming is tO

determine how many variables a program will need and what t ypes of information they will
hold. Program 2-7 is an example of a C++ program with a variable. Take a look at Line 7:

int number;

This is called a variable definition. It tells the compiler the variable's name and the type of
data it will hold. This line indicates the variable's name is number. The word int stands
for integer, so number w ill only be used to hold integer numbers. Later in this chapter, you
will learn all the types of data that C++ allows.

Program 2-7

II This program has a variable.
2 #inc l ude <iostream>
3 using namespace std;
4
5 i nt main()
6 {
7 i nt numbe r ;
8
9 number = 5;

10 cout << "The va l ue in number is " << number << endl;
11 return O;
12

Program Output

The value in number is 5

NOTE: You must have a definition for every variable you inrend rouse in a program.
fn C++, variable definitions can appear at any point in the program. Later in this chap
ter, and throughout the book, you will learn the best places to define variables.

Notice variable definitions end with a semicolon. Now look at line 9:

number = 5;

2.4 Variables, Literals, and Assignment Statements 39

This is called an assignment. The equal sign is an operator that copies the value on its right (5)
into the variable named on its left (number). Afrer this line executes, number will be set to 5.

NOTE: This line does not print anything on the computer's screen. It runs silently
behind the scenes, storing a value in RAM.

Look at line 10:

cout << "The value in number is " << number << endl;

The second item sent to cout is the variable name number. When you send a variable
name ro cout, it prims the variable's contents. Notice there are no quotation marks around
number. Look at what happens in Program 2-8.

Program 2-8

1 // This program has a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6
7 int number;
8
9 number = 5;

10 cout cc "The value in number is " cc "number" cc endl ;
11 return O;
12

Program Output
The value in number is number

When double quotation marks are placed around the word number, it becomes a string
literal and is no longer n variable name. When string literals are sent to cout, they a re
printed exactly as they appear ins ide the quotation marks. You've probably noticed by
now that the endl stream manipulator has no quotation marks around it, for the sa me
reason.

Sometimes a Number Isn't a Number

As shown in Program 2-8, just placing quorarion marks around a variable name changes
the program's resu lts. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Program
2-8, the number 5 was assigned to the variable number. It would have been incorrect to

perform the assignment this way:

number= "5";

40 Chapter 2 Introduction to C++

In this line, 5 is no longer an integer, bur a string literal. Because number was defined as an
integer variable, you can only store integers in it. The integer 5 and the string literal "5"
are nor the same thing.

The fact that numbers can be represented as strings frequently confuses srudenrs who are
new tO programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primari ly
for mathematical operations. You cannot perform math on strings. Before numbers can be
displayed on the screen, they must first be converted to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.}

Literals
A literal is a piece of data that is written directly into a program's code. One of the most
common uses of literals is to assign a value to a variable. For example, in the following
statement, assume number is an int variable. The sta tement assigns the literal value 100
to the variable number.

number = 100 ;

Another common use of literals is to display somethjng on the screen. For example, the
following statement displays the string literal "Welcome to my program."

cout <<"Welcome to my program."<< endl;

Program 2-9 shows an example that uses a variable and several literals.

Program 2-9

1 / / This program has literals and a variable.
2 #include <iostream>
3 using namespace std;
4
5 int ma i n()
6 {
7 int apples;
8
9 apples = 20 ;

10 cout << "Today we sold " <<apples<< • bushels of apples . \n";
11 return O;
12

Program Output
Today we sold 20 bushels of apples .

Of course, the variable is app 1 es. It is defined as an integer. Table 2-3 lists the literals found
in the program.

2.4 Variables, Literals, and Assignment Statements 41

Table 2-3 Literals and Their Types

Literal Type of Literal

20

"Today we sold"

"bushels of apples.\n"

Integer literal

String literal

String literal

Integer literal 0

0 NOTE: Literals are also called constants.

~ Checkpoint

2.5 Examine the following program:

II This program uses variables and literals.

#include <iostream>

using namespace std;
int main()

int little;
int big;

little = 2;
big = 2000;

cout << "The little number is " << little << endl;

cout <<"The big number is"<< big<< endl ;

return 0;

List all the variables and literals that appear in the program.

2.6 What will the following program display on the screen?

#include <iostream>
using namespace std;
int main()

int number;
number = 712;
cout <<"The value is "<<"number"<< endl ;

return 0;

42 Chapter 2 Introduction to C++

~
2.5 Identifiers

1._ CONCEPT: Choose variable names that indicate what the variables arc used for.

An identifier is a programmer-defined name char represents some elemenr of a program.
Variable names arc examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
"core" of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note they arc all lowercase.

Table 2-4 The C++ Key Words

alignas con st for private throw

alignof constexpr friend protected true

and const_cast goto public try

and_eq continue if register typedef

asm decltype inline reinterpret_cast typeid

auto default int return typename

bitand delete long short union

bi tor do mutable signed unsigned

bool double namespace sizeof using

break dynamic_cast new static vi rtua 1

case else noexcept static_assert void

catch en um not static_cast volatile

char explicit not_eq struct wchar_t

char16_t export null ptr switch while

char32_t extern operator template xor

class

compl

false or this xor_eq

float or_eq thread_ l ocal

You shouJd always choose names for your variables that give an indication of what rhe
variables are used for. You may be tempted to define variables with names like this:

int x;

The rather nondescript name, x, gives no clue as ro the variable's purpose. Herc is a bener
example.

int i temsOrdered;

The name i temsOrdered gives anyone reading the program an idea of the variable's use. T his
way of coding helps produce self-documenring programs, which means you gee an under
standing of what the program is doing just by reading irs code. Because real-world programs
usually have thousands of lines, it is important that they be as self-documenting as possible.

2.6 Integer Data Types 43

You probably have noticed the mi xture of uppercase and lowercase letters in the name

i temsOrdered. Although all of C++'s key words must be written in lowercase, you may

use uppercase letters in variable names.

T he reason the 0 in i temsOrdered is capita lized is to improve readabil ity. Normally "items

ordered" is two words. Unfortunately, you cannot have spaces in a variable name, so the

cwo words must be combined into one. When "items" and "ordered" are stuck together,

you get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and succeeding words makes i temsOrdered

easier co read. Ir should be mentioned that this sryle of coding is nor required. You are

free co use all lowercase letters, all uppercase letters, or any combination of both. In face,

some programmers use the underscore character to separate words in a variable name, as in

the following.

int items _ordered;

Legal Identifiers

Regardless of which sryle you adopt, be consistent and make your variable names as sen

sible as possible. H erc are some specific rules that must be followed with all identifiers.

• The first character must be one of the letters a through z, A through Z, or an under

score character (_).

• After the first character you may use the letters a through z or A through Z, the digits

0 through 9, or underscores.
• Uppercase and lowercase characters are distinct. This means ItemsOrdered is not the

same as i temsordered .

Table 2-5 lists variable names and rells whether each is legal or illega l in C++.

Table 2-5 Some Variable Names

Variable Name

dayOfWeek

3dGraph

_ employee_num

June1997

Mixture#3

Legal or lllcgal?

Legal.

Illegal. Variable names can not begin with a digit.

Legal.

Legal.

Illegal. Variable names may only use letters, d igits, or underscores.

2.6 Integer Data Types

~CONCEPT : There are many different types of data. Variables are classified according

to their data type, which determines the kind of information that may be

stored in them. Integer variables can only hold whole numbers.

44 Chapter 2 Introduction to C++

Computer programs collect pieces of data from the real world and manipulate them in
va rious ways. There are many different rypes of data. In the realm of numeric information,
for example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. And there are numbers so large, and others so small, they don't even
have a name. Then there is textual information. Names and addresses, for instance, are
stored as groups of characters. When you write a program, you must determine what types
of information ir will be likely ro encounter.

Jf you are writing a program to calculare the number of miles to a distant srar, you'll need
variables that can hold very large numbers. If you are designing software to record microscopic
dimensions, you'll need co store very small and precise numbers. Additionally, if you are writ
ing a program that must perform thousands of intensive calculations, you'll want variables
that can be processed quickly. The data type of a variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two: numeric
and character. Numeric dara types are broken into two additional categories: integer and
floating point. Integers arc whole numbers like 12, l57, -34, and 2. Floating-point num
bers have a decimal point, like 23.7, 189.0231, and 0.987. Additionally, the integer and
floating-point data types are broken into even more classifications. Before we discuss the
character data type, let's carefully examine the variations of numeric data.

You r primary considerations for selecting a numeric data type are

• The largest nnd smallest numbers that may be stored in the variable
• How much memory rhe variable uses
• Whether the variable stores signed or unsigned numbers
• The number of decimal places of precision the variable has

T he size of a variable is the number of bytes of memory it uses. Typically, the larger a vari
able is, the greater the range it can hold.

Table 2-6 shows the C++ integer data types with their typical sizes and ranges.

NOTE: The data type sizes and ranges shown in Table 2-6 are typical on many sys
tems. Depending on your operating system, the sizes and ranges may be different.

Table 2-6 Integer Data Types

Data Type Typical Size Typical Range
short int 2 byres - 32,768 to +32,767
unsigned short int 2 byres 0 ro +65,535
int 4 byres -2,147,483,648 to +2,147,483,647
unsigned int 4 byres 0 to 4,294,967,295
1 ong int 4 byres -2,147,483,648 to +2,147,483,647
unsigned long int 4 byres 0 co 4,294,967,295
1 ong 1 ong int 8 byres - 9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
unsigned long long int 8 byres 0 to 18,446,744,073,709,551,615

Here are some examples of variable definitions:

int days;
unsigned int speed ;
short int month;
unsigned short int amount;

long int deficit ;
unsigned long int insects ;

2.6 Integer Data Types 4 5

Each of the data types in Table 2-6, except int, can be abbreviated as follows:

• short int can be abbreviated as short

• unsigned short int can be abbreviated as unsigned short

• unsigned int can be abbreviated as unsigned

• long int can be abbreviated as long

• unsigned l ong int can be abbreviated as unsigned long

• long long int can be abbreviated as long long

• unsigned long long int can be abbreviated as unsigned 1 ong long

Because they simpli fy definition statements, programmers commonly use the abbrevia ted

data type names. Here a rc some examples:

unsigned speed ;
short month;
unsigned short amount ;
long deficit ;
unsigned long insects;
long long grandTotal;
unsigned long long lightYearDistance;

Unsigned data types can only store nonnegative values. They can be used when)' OU know

your program will not encounter negative values. Fo r example, variables that hold ages or

weights would rarely hold numbers less rhan 0.

Notice in Table 2-6 the int and long data types have the same sizes and ranges, and that

the unsigned int da ta type has the same size and range as the uns i gned 1 ong data rype.

This is not a lways true because the s ize of integers is dependent on the type of system you

are using. Here are the only guarantees:

• Integers are at least as big as short integers.

• Long integers a re a t least as big as integers .

• Unsigned short integers are the same size as short integers.

• Unsigned integers a re the same size as integers.

• Unsigned long integers are the same size as long integers.

• The long long int and the unsigned long long int data types a re guaranteed

to be a t least 8 bytes (64 bits) in size.

Later in this chapte r, you will learn to use the si zeof operator to determine how la rge all

the data types are on your computer.

NOTE: The long l ong int and the unsigned long long i nt data rypes were inrro

duced in C++ 11.

46 Chapter 2 Introduction to C++

As mentioned before, va riables are defined by stating the data type key word fo llowed
by the name of the variable. ln Program 2-lO, an integer, an unsigned integer, and a long
integer have been defined.

Program 2-10

cout << "We have made
cout << " miles.\n";
cout << "Our checking
cout << "\nThe galaxy
cout << " light years
return O;

Program Output
We have made a long journey of 4276 mil es .
Our checking account balance is -20
The galaxy is about 100000 light years in diameter .

In most programs, you will need more than one variable of any given data rype. lf a pro
gram uses two integers, 1 ength and wi dth, they could be defined separately, like this:

int length;
int width;

Ir is easier, however, to combine both variable definitions on one line:

int length, width;

You can define several variables of the same type like this, simply by separating their names
with commas. Program 2- l 1 illustrates this.

Program 2 -11

1 // This program shows three variables defined on the same line.
2 #include <iostream>
3 using namespace std;

2.6 Integer Data Types 47

4
5 int main()
6
7 int floors , r ooms, sui tes;

8
9 floors = 15;

10 rooms = 300 ;
11 suites = 30;
12 cout << "The Grande Hote l has " <<floors << " floors\n";

13 cout << "wi th " << rooms << " rooms and " << suites;

14 cout « " suites. \n";
15 return O;
16

Program Output
The Grande Hotel has 15 floo rs
with 300 rooms and 30 suites.

Integer and Long Integer Literals

In C++, if a numeric literal is an inreger (nor written wirh a decimal poinr) and it fits

within the ra nge of an int (see Table 2-6 for the minimum and maximum values), then the

numeric literal is treated as an int. A numeric litera l tha t is treared as an int is called an

integer literal. For example, look at lines 9, 10, and l 1 in Progrnm 2-11:

fl oors = 15 ;
rooms = 300;
suites = 30;

Each of these statements assigns an inrcger literal ro a variable.

One of the pleasing characteristics of the C++ language is that it a llows you to control

almost every aspect of your program. If you need ro change the way something is stored in

memory, rhe tools a rc provided to do that. For example, what if you are in a s ituation where

you have :rn integer litcrnl , bur you need it to be stored in memory as a long integer? (Rest

assured, this is a situation that does arise.) C++ allows you to force an integer literal to be

stored as a long integer b}' placing the letter Lat the encl of the number. Here is an example:

long amount;
amount = 32L;

The first sraremenr defines a 1 ong varia ble named amount . The second statement assigns

the litera l va lue 32 to the amount variable. ln the second statement, the literal is written as

32L, which makes it a long integer literal. This means the literal is treated as a 1 ong.

If you want an integer literal to be treated as a 1 ong 1 ong int, you can append LL at the

end of the number. Herc is an example:

long long amount;
amount = 32LL ;

48 Chapter 2 Introduction to C++

The first statement defines a 1 ong 1 ong variable named amount. The second statement
assigns the literal value 32 to the amount variable. In the second statement, the literal is
written as 32LL, which makes it a long long integer literal. This means the literal is treated
as a 1 ong long int.

TIP : When writing long integer literals or long long integer literals, you can use either
an uppercase or a lowercase L. Because the lowercase 1 looks like the number I, you
should always use the uppercase L.

If You Plan to Continue in Computer Science: Hexadecimal
and Octal Literals
Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) arc popular because they make certa in pro
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes rhar aU integer literals are expressed in decimal. You express hexa
decimal numbers by placing Ox in from of them. (T his is zero-x, nor oh-x.) Here is how the
hexadecimal number F4 would be expressed in C++:

OxF4

Octal numbers must be preceded by a 0 (zero, nor oh). For example, rhe octal 3 1 would
be written

031

NOTE: You will not be writing programs for some time that require chis type of manip
ulation. Ir is important, however, that you understand this material. Good programmers
should develop the skills for reading other people's source code. You may find yourself
reading programs that use items like long integer, hexadecimal, or octal literals.

~ Checkpoint

2.7 Which of the following are illegal variable names, and why?
x
99bottles
july97
theSal esFigureForFiscalYear98
r&d
grade_report

2.8 ls the variable name Sal es the same as sales? Why or why nor?
2.9 Refer to the data types listed in Table 2-6 for these questions.

A) If a variable needs to hold numbers in the range 32 to 6,000, what data type
would be best?

B) If a variable needs to hold numbers in the range 240,000 ro 140,000, what
data type would be best?

C) Which of the following literals uses more memory? 20 or 20L

~

2.7 The char Data Type 49

2. 10 On any computer, which data rype uses more memory, an integer or an unsigned

integer?

2.1 The char Data Type
The char data type is used to store individual characters. A variable of the char data type

can hold only one character at a time. Herc is an example of how you might declare a char

variable:

char l etter;

This statement declares a char variable named letter, which can store one character. In

C++, character literals are enclosed in s ingle quotation marks. Here is an example showing

how we would assign a character to the letter variable:

letter = 'g' ;

This statement assigns the character 'g' to the letter variable. Because char variables

can hold only one character, they are nor compatible with strings. For example, you can

not assign a string tO a char variable, even if the string contains only one character. The

following statement, for example, will not compile because it attempts to assign a string

literal to a char variable.

letter = "g"; II ERROR! Cannot assign a string to a char

It is important that you do not confuse character literals, which are enclosed in single quo

tation marks, with string literals, which arc enclosed in double quotation marks.

Program 2-12 shows an example program that works with characters.

Program 2-12

1 II This program works
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A':

10 cout << letter <<
11 l etter = ' B';
12 cout << letter <<
13 return o· '
14

Program Output

A
B

with characters.

endl ;

endl ;

50 Chapter 2 Introduction to C++

Although the char data rype is used for storing characters, it is acrually an integer da ta type
that rypically uses I byre of memory. (The size is system dependent. On some systems, the
char data type is la rger than I byte.)

T he reason an integer data rype is used to store characters is because char:icrcrs are internally
represented by numbers. Each printable character, as well as many nonprinrable characters,
is assigned a unique number. The most commonly used method for encoding characters is
ASCII, which stands for the American Standard Code for Information Interchange. (There
are orher codes, s uch as EBCDIC, which is used by many IBM mainframes.)

When a character is srored in memory, it is acrua lly the numeric code that is stored. When
the computer is instructed to print the value on the screen, it d isplays the character that
corresponds with the numeric code.

You may want to refer ro Appendix A, which shows the ASC II character set. Notice the num
ber 65 is the code for A, 66 is the code for B, and so on. Program 2-13 demonstrates that when
you work with characters, you are actually working with numbers.

Program 2-13

1 II This program demonstrates the close relationship bet wee n
2 II characters and integers.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13
14
15

int ma i n()

char letter ;

1 etter = 65;
cout << 1 etter << endl ;
1 etter = 66;
cout << letter << endl ;
return O;

Program Output

A
B

Figure 2-4 illustrates that when characters, such as A, B, and C, are stored in memory, it is
really the numbers 65, 66, and 67 that are stored .

The Difference between String Literals
and Character Literals
It is important tha t you do not confuse character literals \Vith string literals. Strings, which
a re a series of characters stored in consecutive memory locations, can be virtually any

2.7 The char Data Type 51

Figure 2 -4 Characters and their ASCII codes

is stored in memory as

length. This means that there must be some way for the program to know how long a string

is. In C++, an extra byre is appended ro the end of string literals when they arc stored in

memory. In this Inst byre, rhe number 0 is stored. It is called the 11111/ terminator or 11t11l

c/Jarrzcler, and it marks the end of the string.

Don't confuse the nu ll terminaror with the character 'O'. If you look at Appendix A,

you will see that ASCII code 48 corresponds to the clrnracter '0', whereas the null

terminator is the same as the ASCII code 0. If you want to print rhe character 0 on rhe

screen, you use ASCII code 48. If you want to mark the end of a string, however, you

use ASCII code 0.

Let's look at an exnmplc of how a string literal is stored in memory. Figure 2-5 depicts the

way the string literal "Sebastian" would be stored.

Figure 2-5 The string literal "Sebastian "

s e b a s a n \0

First, notice rhe quotation marks are nor stored with the string. They nre simply a way

of marking the beginning and end of the string in your source code. Second, notice rhe

very last byre of the string. Ir contains the null terminator, which is represented by the \0

character. The addition of this last byte means that although the srring "Sebastian" is 9

characters long, it occupies 10 bytes of memory.

The null terminator is another example of something rhar sirs quietly in rhe background.

Ir doesn't print on rhc screen when you display a string, but nevertheless, it is there silently

doing its job.

0 NOTE: C++ automatically places the nul l terminator at the end of string lircrnls.

Now let's compare the way a string and a char are stored. Suppose you ha ve the literals

'A' and "A" in a program. Figure 2-6 depicts their internal storage.

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters

are really stored as ASCII codes, Figure 2-7 shows what is actually being stored in

memory.

52 Chapter 2 Introduction to C++

Figure 2-6 ·A · as a character and "A" as a string

'A' is stored as A

"A• is stored as A \0

Figure 2-7 ASCII codes

'A' is stored as 65

"A" is stored as 65 0

Because char variables are only large enough to hold one character, you cannot assign
string literals to them. For example, the following code defines a char variable named
letter. The character literal •A' can be assigned to the variable, but the string literal "A"
cannot.

char letter;

letter = 'A'; II This will work.
letter= "A"; II This will not work!

One final topic about characters should be discussed. You have learned that some strings
look like a single character but really aren't. It is also possible to have a character that looks
like a string. A good example is the newline character, \n. Although it is represented by two
characters, a slash and an n, it is internally represented as one character. In fact, all escape
sequences, internally, are just 1 byte.

Program 2- L 4 shows the use of \ n as a character literal, enclosed in single quotation marks.
If you refer to the ASCII chart in Appendix A, you will see that ASCII code 10 is the linefeed
character. This is the code C++ uses for the newline character.

Program 2-14

1 //This program uses character literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A';

10 cout << letter << · \n';
11 letter='B';

2.8 The C++ string Class 53

12 cout << letter << '\n';
13 return O;
14

Program Output
A
B

Let's review some important points regarding characters and strings:

• Prinrable characters are internally represented by numeric codes. Most computers use

ASCII codes for this purpose.
• Characters normally occupy a single byte of memory.

• Strings are consecutive sequences of characters that occupy consecutive byres of memory.

• String literals are always stored in memory with a null terminator at the end. This

marks the end of the string.
• Character literals are enclosed in single quotation marks.

• String literals are enclosed in double quotation marks.

• Escape sequences such as '\n' are stored internally as a single character.

The C++ string Class

CONC EPT: Standard C++ provides a special data type for storing and working with

strings.

Because a char variable can store only one character in its memory location, another data

type is needed for a variable able to hold an entire string. Although C++ does not have a

built-in data type able to do this, standard C++ provides something called the string class

that a llows the programmer ro create a string type variable.

Using the string Class

The first step in using the string class is to #i nc 1 ude the <st ring> header file. This is

accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string rype variable, called a string object. Defining a string

object is similar to defining a variable of a primitive type. For example, the following state

ment defines a string object named movi eTitl e.

string movieTitle ;

You can assign a string literal to movi eTi t 1 e with the assignmenr operator:

movieTitle = "Wheels of Fury" ;

You can use cout to display the value of the movi eTit 1 e object, as shown in the next

statement:

cout <<"My favori te movie is "<< movieTitle << endl;

54 Chapter 2 Introduction to C++

Program 2- 15 is a complete program that demonstrates the preceding statements.

Program 2-15

1 // This program demonstrates the string class.
2 #include <iostream>
3 #include <string> // Required for the string class.
4 using namespace std;
5
6 int main()
7
8 string movieTitle;
9

10 movieTitle = "Wheels of Fury";
11 cout << "My favorite movie is " << movieTitle << endl;
12 return O;
13

Program Output

My favorite movie is Wheels of Fury

As you can see, working \.Vi th string objects is similar to working with variables of
other types. Throughout this text, we will continue to discuss string class features and
capabilities.

~ Checkpoint
2.11 What arc the ASCTI codes for the following characters? (Refer to Appendix A.)

c
F
w

2. l 2 Which of the following is a character literal?

'B'
11911

2.13 Assuming the char data type uses 1 byte of memory, how many bytes do the
following literals use?
'Q'

"Q"
"Sales"
, \ n,

2.14 Write a program that has the following character variables: fi r st, middle, and
last. Store your initials in these variables then display them on the screen.

2.15 What is wrong with the fo llowing program statement?

char letter= "Z";

2.16 What header file must you include in order to use string objects?

2. l 7 Write a program that stores your name, address, and phone number in three
sepn rate string objects. Display the contents of the string objects on the screen.

2.9 Floating-Point Data Types 55

~
2.9 Floating-Point Data Types

~ CONCEPT: Floating-point data types are used to define variables tbat can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In progra mming terms, these are called floating-point numbers.

Internally, floating-poinc numbers are stored in a manner similar to scientific notation.
Take the number 47,281.97. In scienrific notation, this number is 4.728197 X 104

• (104

is equal to 10,000, and 4.728197 x 10,000 is 47,281.97.) The first part of the number,
4.728197, is called the mantissa. The mantissa is multiplied by a power of 10.

Computers typically use £ 11otatio11 ro represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the Eis the man
tissa, and the part after rhe E is rhe power of 10. When a floating-point number is stored
in memory, it is stored as the mantissa and rhe power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

Table 2-7 Floating-Point Representations

Decimal Notation

247.91

0.00072

2,900,000

Scientific Notation

2.4791 x 102

7.2 x 10-4

2.9 x 106

E Notation

2.4791E2

7.2E-4

2.9E6

In C++, there a re three data types that can represent floating-point numbers. They are

fl oat
double
long double

The fl oat data type is considered single precision. The double data type is usually twice
as big as fl oat, so it is considered double precision. As you've probably guessed, the long
daub le is inrendccl to be larger than the double. Of course, the exact s izes of these data
types are dependent on the computer you are using. The only guarantees are

• A double is at leasr as big as a float.
• A long double is at least as big as a double.

Table 2-8 shows the typical sizes and ranges of floating-point data types.

Table 2-8 Floating-Point Data Types on PCs

Data Type

Single precision

Double precision

Long double precision

Key Word Description

fl oat 4 bytes. Numbers between :::3.4E- 38 and :d.4E38

double 8 bytes. Numbers between :::1.7£-308 and :::l.7E308

long double 8 byres•·. Numbers benveen ±1.7E-308 and ±1.7E308

*Some compilers use I 0 byres for long doubles. This allows a range of ±3.4E-4932 tO ± 1.1£4832.

56 Chapter 2 Introduction to C++

You will notice there are no unsigned floating-point data types. On all machines, variables
of the fl oat, doub 1 e, and 1 ong doub 1 e data types can srore positive or negative numbers.

Floating-Point Literals
Floating-point literals may be expressed in a variety of ways. As shown in Program 2-16,
E notation is one method. When you are writing numbers that are extremely large or extremely
small, this will probably be the easiest way. E notation numbers may be expressed with an
uppercase E or a lowercase e. Notice in the source code, the literals were written as 1.495979El 1
and 1.989£30, but the program printed them as 1.49598e+011 and l.989e+30. The two sets
of numbers are equivalent. (The plus sign in front of the exponent is also optional.) In Chapter
3, you will learn to control the way cout displays E notation numbers.

Program 2-16

1 // This program uses floating-point data types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 float distance;
8 double mass;
9

10 distance= 1.495979E11;
11 mass = 1 .989E30;
12 cout << "The Sun is " <<distance<< " meters away.\n";
13 cout << "The Sun\'s mass is " <<mass<<" kilograms.\n";
14 return O;
15

Program Output
The Sun is 1 .49598e+011 meters away.
The Sun's mass is 1.989e+030 kilogra~s.

You can also express floating-point literals in decimal notation. The literal l.495979El 1
could have been written as:

149597900000.00

Obviously rhe E norarion is more convenient for lengthy numbers, but for numbers like
47.39, decimal notation is preferable to 4.739El.

All of the following floating-point literals arc equivalent:

1 . 4959E11
1 .4959e11
1. 4959E+11
1 .4959e+11
149590000000.00

()

2.9 Floating-Point Data Types 57

Floating-point literals a re normally stored in memory as doub 1 es. But remember, C++
provides tools for handling just about any situation. Just in case you need to force a literal
to be stored as a fl oat, you can append the letter For f to the end of it. For example, the
following litera ls would be stored as fl oats:

1.2F
45.907f

N OTE : Because floating-point literals are normally stored in memory as doub 1 es,
most compilers issue a warning message when you assign a floating-point literal tO a
fl oat variable. For example, assuming num is a fl oat, rhe following statement might
cause the compiler tO generate a warning message:

num = 14.725;

You can suppress the warning message by appending the f suffix to the floating-point
literal, as shown below:

num = 14.725f;

If you want to force a value to be stored as a 1 ong doub 1 e, append an L or l to it, as in
the following examples:

1034.56L
89.21

The compiler won 't confuse these with long integers because they have decimal points.
(Remember, the lowercase L looks so much like the number 1 that you should always use
the uppercase L when suffixing literals.)

Assigning Floating-Point Values to Integer Variables
W hen a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. For example, look a t the following
code:

int number;
number = 7.5 ; II Assigns 7 to number

This code a ttempts to assign the floating-point value 7.5 to the integer variable number. As
a result, the value 7 will be assigned to number, with the fractional part discarded. When
part of a value is discarded, it is said to be truncated.

Assigning a floating-point variable roan integer variable has the same effect. For example,
look at the fol lowing code:

int i ;
fl oat f;
f = 7. 5;
i = f ; II Assigns 7 to i.

When the fl oat variable f is assigned to the int varia ble i , the value being assigned (7.5)
is truncated. After this code executes, i will hold the value 7 and f will hold the value 7.5.

58 Chapter 2 Introduction to C++

NOTE: When a floating-point value is truncated, it is not rounded. Assigning the value
7.9 to an int variable will result in the value 7 being stored in the variable.

CD WARNING! Floating-po inc variables can hold a much larger range of values than
integer variables can. If a floating-point value is being stored in an integer variable,
and the whole part of the value (the part before the decimal point) is coo large for the
integer variable, an invalid value will be stored in the integer variable.

~

2.10 The boo 1 Data Type

-1.._CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815-1864).

The bool data type allows you ro create small integer variables that are suitable for hold
ing true or false values. Program 2-17 demonstrates the definition and assignment of a
boo 1 variable.

Program 2-17

1 //This program demonstrates boolean variables .
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool boolValue;
8
9 boolVa l ue = true;

10 cout << boolValue << endl;
11 boolVa l ue = false;
12 cout << boolValue << endl;
13 return O;
14

Program Output
1
0

As you can see from the program output, the va lue true is represented in memory by
the number 1, and false is represented by 0. You will not be using bool variables until
Chapter 4, however, so just remember they are useful for evaluating conditions that are
either true or false.

2.11 Determining the Size of a Data Type 59

~
z. 11) Determining the Size of a Data Type

-1_ C 0 NC E PT: The s i zeof operator may be used to determine the size of a data type
on any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,
one of the problems of portability is rhe lack of common sizes of data types on all machines.
If you are nor sure what the sizes of data types are on your computer, C++ provides a way
to find our.

A special operator called si zeof will report rhe number of byres of memory used by any
data type or variable. Program 2-18 illusrrates its use. The first line that uses the operator
is line ·10:

cout <<"The size of an integer is"<< sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the
operator. The operator "returns" the number of byres used by that item. This operaror
can be invoked anywhere you can use an unsigned integer, including in mathematical
operations.

Program 2-18

II This program determines the size of integers, l ong
2 II integers, and long doubles.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13
14
15
16
17

int
{

}

main()

long double apple;

cout << "The size of
cout << " bytes .\n";
cout << "The size of
cout << " bytes.\n";
cout << "An apple can
cout << " bytes!\n";
return O;

Program Output

an integer is " << sizeof(int);

a l ong integer is " << sizeof(long) ;

be eaten in " << sizeof(apple);

The size of an integer is 4 bytes .
The size of a long integer is 4 bytes .
An apple can be eaten in 8 bytes!

60 Chapter 2 Introduction to C++

~ Checkpoint
2.18 Yes or No: Is there an unsigned floating-point data type? If so, what is it?

2.19 How would the following number in scientific notation be represented in E
notation?

6.31 x10 17

2.20 Write a program that defines an integer variable named age and a fl oat
variable named weight. Score your age and weight, as literals, in the variables.
The program shou ld display these values on the screen in a manner similar co
the following:

My age is 26 and my weight is 180 pounds.

(Feel free co lie to the computer about your age and your weight-it'll
never know!)

More about Variable Assignments
and Initialization

C 0 NC E PT: An assignment operation assigns, or copies, a value into a variable.
When a value is assigned to a variable as part of the variable's definition,
it is called an initialization.

As you have already seen in several examples, a value is scored in a variable with an assign
ment statement. For example, the following statement copies the value 12 into the variable
unitsSold:

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data.
The data that operators work with are called operands. The assignment operator has two
operands. In the previous statement, the operands are unitsSo l d and 12.

In an assignment statement, C++ requires the name of the variable receiving the assignment
to appear on the left side of the operator. The following statement is incorrect:

12 = unitsSold; II Incorrect!

In C++ terminology, the operand on the left side of the= symbol must be an /value. It is
called an lvalue because it is a value that may appear on the left side of an assignment
operator. An !value is something that identifies a place in memory whose contents may be
changed. Most of the time this will be a va riable name. The operand on the right side of the
= symbol must be an rvalue. An rvalue is any expression that has a value. The assignment
statement rakes the value of the rvalue and puts it in the memory location of the object
identified by the lvalue.

You may also assign va lues to variables as part of the definition. This is called initialization.
Program 2-19 shows how it is done.

2.12 More about Variable Assignments and Initialization 61

Program 2-19

II This program shows variable initialization.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int month = 2, days = 28;
8
9 cout << "Month " <<month<<" has " <<days<< "days.\n";

10 return O;
11

Program Output
Month 2 has 28 days.

As you can see, this simplifies the program and reduces the number of statements that must
be typed by the programmer. Here are examples of other definition statements that perform
initialization:

double interestRate = 12.9;
char stockCode = 'D';
l ong customerNum = 459L;

Of course, there are always variations on a theme. C++ allows you to define several vari
ables and only initialize some of them. Here is an example of such a definition:

int flightNum = 89, travelTime, departure = 10, distance;

The variable fl i ghtNum is initialized to 89 and departure is initialized to 10. The vari
ables travel Ti me and di stance remain uninitialized.

Declaring Variables with the auto Key Word

C++ 11 introduces an alternative way ro define variables, using the auto key word and an
initialization value. Here is an example:

auto amount = 100;

Notice this statement uses the word auto instead of a data type. The auto key word tells the
compiler to determine the variable's data type from the in itialization value. In this example,
the initialization value, 100, is an int, so amount will be an int variable. Here are other
examples:

auto interestRate = 12.0;
auto stockCode = 'D';
auto customerNum = 459L;

In this code, the i nterestRate variable will be a double because the initialization value,
12.0, is a double. The stockCode variable will be a char because the initialization value,

62 Chapter 2 Introduction to C++

~

' D' , is a char. The customerNum variable will be a 1 ong because the initialization value,
459L, is a 1 ong.

These examples show how to use the auto key word, but they don't really show its useful
ness. The auto key word is intended to simplify the syntax of declarations that are more
complex than the ones shown here. Later in the book, you will see examples of how the
auto key 'Nord ca n improve the readability of complex definition statements.

Alternative Forms of Variable Initialization
The most common way to init ialize a variable is to use the assignment operator in the vari
able definition statement, as shown here:

int value = 5;

However, there are two alternative techniques for initia liz ing variables. The first is to

enclose the initialization value in a set of parentheses, just after the variable name. Here is
how you would define the value variable and initia lize it to 5 using this techn ique:

int va l ue(5);

The second alternative, introduced in C++ 11, is to enclose the initialization value in a set of
curly braces, just after the variable name. Here is how you would define the value variable
and initialize it to 5 using the brace notation:

int value {5}; II This only works with C++ 11 or higher.

Most programmers continue to use the assignment operator to initialize regular variables,
as we do throughout this book. However, the brace notation offers an advantage. It checks
to make sure the value you are initializing the va riable with matches the data type of the
variable. For exa mple, assume that doubleVal is a double variable with 6.2 stored in it.
Using the assignment operator, it is possible to write either of the fo llowing statements:

int value1 = 4 .9;
int value2 = doubleVal;

II This will store 4 i n value1
II This will store 6 in value2

In both cases, rhe fractional part of the value wi ll be truncated before it is assigned to the
variable being defined. T his could cause problems, yet C++ compilers allow it. They do
issue a warning, bur they still build an executable fi le you can run. If the brace noration
is used, however, the compiler indicates that these statements produce an error, and no
executable is created . You will have to fix the e rrors and rebui ld the project before you can
run the program.

2.13 Scope

-1._CONCEPT: A variable's scope is the part of the program tha t has access to
the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be used. The rules that define a variable's scope are complex, and you will

2. 14 Arithmetic Operators 63

only be introduced to the concept here. ln other sections of the book, we will revisit this
ropic and expand on it.

The first rule of scope you should lea rn is that a variable cannot be used in any part of the
program before the definition. Program 2-20 illustrates this.

Program 2-20

1 //This program can't find its variable.
2 #include <iostream>
3 using namespace std ;
4
5 int main()
6
7 cout <<value; // ERROR! value not defined yet!
8
9 int value = 100;

10 return O;
11

"""

The program will not work beca use line 7 attempts to send the contents of the variable
value to cout before the variable is defined. The compiler reads your program from top
to bottom. lf it encounters a statement that uses a variable before the variable is defined,
an error will result. To correct the program, the variable definition must be put before any
srarement that uses it.

2.14 Arithmetic Operators

~CONCEPT: There arc many operators for manipulating numeric values and perform
ing arithmetic operations.

Vid&<>tlot&
As.slgnment
Statements and
Simple Math
Expressions

C++ offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
o perator requires.

Unary operators only require a single operand. For example, consider the following
expression:

-5

Of course, we understand this represents the value negative five. The literal 5 is preceded by
the minus sign. The minus sign, when used chis way, is called the negation operator. Since
it only requires one operand, it is a unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. C++ has only one
ternary operator, which will be discussed in Chapter 4.

Arithmetic operations are very common in programming. Table 2-9 shows the common
arithmetic operarors in C++.

64 Chapter 2 Introduction to C++

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Type Example

+

%

Addition Binary total = cost + tax;

Subtraction Binary cost = total - tax;

Multiplication Binary t ax = cost . rate;

Division Binary sal ePrice = original 2 ;

Modulus Binary remainder = value % 3;

Each of these operators works as you probably expect. T he addition operator returns the

sum of its two operands. In the following assignment statement, the variable amount will

be assigned the value 12:

amount = 4 + 8;

The subt raction operator returns the value of its right operand subtracted from its left

operand. This statement will assign the value 90 co temperature:

temperature = 120 - 30;

The multiplicat ion operator returns the product of its two operands. In the following state

ment, markUp is assigned the value 3:

markUp = 12 • 0.25;

T he division operator returns the quot ient of its left operand divided by its right operand.

In the next statement, poi nts is assigned the value 5:

point s = 100 I 20;

It is important co note char when both of the division operator's operands arc integers, the

result of the division will also be an integer. If the result has a fractional part, it will be

thrown away. We will discuss this behavior, which is known as integer division, in greater
detail later in this section.

The modulus operator, which only works with integer operands, returns the remainder of
an integer d ivision. T he following statement assigns 2 to 1 eftOve r :

leftove r = 17 % 3;

ln Chapter 3, you will lea rn how to use these operators in more complex mathematical

formulas . For now, we will concentrate on their basic usage. For example, suppose we need

to write a program that calculates and displays an employee's total wages for the week.
T he regular hours for the work week are 40, and any hours worked over 40 are considered

overtime. The employee earns $18.25 per hour for regular hours, and $27.78 per hour for

overtime hours. The employee has worked 50 hours this week. T he following pseudocode

algorithm shows the program's logic:

Regular wages = base pay rate x regular hours
O vertime wages = overtime pay rate x overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-21 shows the C++ code for the program.

2.14 Arithmetic Operators 65

Program 2-21

1 // This program calculates hourly wages, including overtime.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double regularWages,
8 basePayRate = 18.25 ,
9 regularHours = 40.0,

10 overtimeWages ,
11 overtimePayRate = 27 .78 ,
12 overtimeHours = 10,
13 total Wages ;
14
15 / / Calculate the regular wages.

fl To hold regular wages
II Base pay rate
I f Hours worked less overtime
II To hold overtime wages
II Overtime pay rate
II Overtime hours worked
I I To hold total wages

16 regularWages = basePayRate • regularHours ;
17
18 / / Calculate the overtime wages.
19 overtimeWages = overtimePayRate • overtimeHours ;
20
21 / / Calculate the total wages.
22 totalWages = regularWages + overtimeWages ;
23
24 II Display the total wages.
25 cout << "Wages for this week are $" << totalWages << endl;
26 return O;
27

Program Output
Wages for this week are $1007 .8

Let's take a closer look at the program. As mentioned in the comments, there are variables
for regular wages, base pay rate, regular hours worked, overtime wages, overtime pay rate,
overtime hours worked, and tota l wages.

Here is line 16, which multiplies basePayRate by regul arHours and stores the result in
regul arWages:

r egularWages = basePayRate • regul arHours;

Here is line 19, which multiplies overtimePayRate by overtimeHours and stores the
result in overt i meWages:

overtimeWages = overtimePayRate • overtimeHours;

Line 22 adds the regular wages and the overtime wages and stores the result in tot a 1 Wages:

totalWages = regularWages + overtimeWages;

Line 25 displays the message on the screen reporting the week's wages.

66 Chapter 2 Introduction to C++

Integer Division
When both operands of a division statement are integers, the statement will result in integer
di11isio11. This means the result of the division will be an integer as well. If there is a remain
der, ir will be discarded. For example, look ar the following code:

double number;
number = 5 I 2;

This code divides 5 by 2 and assigns the result to the number variable. What will be stored
in number? You would probably assume thar 2.5 would be stored in number because that is
the result your calculator shows when you divide 5 by 2. However, that is not what happens
when the previous C++ code is executed. Because the numbers 5 and 2 are both integers,
the fractional part of the result will be thrown away, or truncated. As a result, the value 2
will be assigned to the number variable.

In the previous code, it doesn't matter that the number variable is declared as a double
because the fractional part of the result is disca rded before the assignment takes place. fn
order for a division operation to return a floating-point value, one of the operands must be
of a floating-point data type. For example, the previous code could be ·written as follows:

double number;
number = 5.0 I 2;

In this code, 5.0 is treated as a floating-point number, so the division operation will return
a floating-point number. The result of the division is 2.5.

In the Spotlight:
Calculating Percentages and Discounts
Determining percentages is a common calculation in computer programming. Although
the % symbol is used in general mathematics ro indicate a percentage, most programming
languages (including C++) do not use the % symbol for this purpose. In a program, you
have to convert a percentage to a floating-point number, just as you would i£ you were us
ing a calculator. For example, 50 percent would be written as 0.5, and 2 percent would be
written as 0.02.

Lee's look at an example. Suppose you earn $6,000 per month and you are allowed to con
tribute a portion of your gross monthly pay to a retirement plan. You want to detennine
the amount of your pay that will go into the plan if you contribute 5 percent, 7 percent, or
I 0 percent of your gross wages. To make this determination, you write the program shown
in Program 2-22.

Program 2-22

1 // This program calculates the amount of pay that
2 // will be contributed to a retirement plan if 5%,
3 // 7%, or 10% of monthly pay is withheld.
4 #include <iostream>

5 using namespace std;
6
7 int main()
8 {
9 // Variables to hold the monthly pay and the

10 // amount of contribution.
11 double monthlyPay = 6000.0, contribution;
12
13 // Calculate and display a 5% contribution.
14 contribution = monthlyPay • 0.05;
15 cout << "5 percent is $" << contribution
16 « 11 per month.\n";
17
18 // Calculate and display a 7% contribution.
19 contribution = monthlyPay * 0.07;
20 cout << 11 7 percent is $" << contribution
21 « 11 per month.\n";
22
23 // Calculate and display a 10% contribution.
24 contribution= monthlyPay * 0.1;
25 cout << "10 percent is $" << contribution
26 << " per month.\n";
27
28 return O;
29

Program Output
5 percent is $300 per month .
7 percent is $420 per month .
10 percent i s $600 per month.

2.14 Arithmetic Operators 67

Linc 11 defines two variables: month l yPay and contribution. The month l yPay variable,
which is initialized with the value 6000.0, holds the amount of your monthly pay. The con
tribution variable will hold the amount of a contribution ro the retirement plan.

The statements in lines 14 through 16 calculate and display 5 percent of the monthly
pny. The calculation is done in line 14, where rhe monthlyPay variable is multiplied by
0.05. The result is assigned to the contribution variable, which is then displayed in
line 15.

Similar steps are taken in lines 18 through 21, which calculate and display 7 percent of
the monthly pay, and lines 24 through 26, which calculate and display 10 percent of the
monthly pay.

Calculating a Percentage Discount

Another common calculation is determining a percentage discount. For example, suppose
a retail business sells an item that is regularly priced at $59.95, and is planning to have a
sale where the item's price will be reduced by 20 percent. You have been asked to write a
program to calculate the sale price of the item.

68 Chapter 2 Introduction to C++

To determine che sale price, you perform two calculations:

• First, you gee the amount of the discount, which is 20 percent o f the item's regular price.
• Second, you subtract the discount amount from the item's regular price. This gives

you the sale price.

Program 2-23 shows how this is done in C++.

Program 2-23

1 II This program calculates the sale price of an item
2 II that is regularly priced at $59.95, with a 20 percent
3 II discount subtracted .
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 II Variables to hold the regular price, the

10 II amount of a discount, and the sale price.
11 double regularPrice = 59.95, discount, salePrice;
12
13 II Calculate the amount of a 20% discount .
14 di scount = regularPrice * 0.2 ;
15
16 II Calculate the sale price by subtracting the
17 II discount from the regular price.
18 salePrice = regularPrice - discount ;
19
20 II Display the results.
21 cout << "Regular price: $" << regularPrice << endl;
22 cout << "Discount amount: $" << discount << endl ;
23 cout << "Sale price: $" << salePrice << endl;
24 return O;
25

Program Output

Regular price: $59 . 95
Discount amount: $11 .99
Sale price : $47 . 96

Line 11 defines three variables. The regularPrice variable holds the item's regular price,
and is initialized with the value 59.95. The discount variable will hold the amounr of the
discoum once ic is calculated. The sa 1 ePri ce variable will hold the item's sale price.

Line 14 calculates the amount of the 20 percent discount by multiplying regularPri ce
by 0.2. The result is stored in the discount variable. Line 18 calculates the sale price by
subtracting discount from regul arPri ce. The result is stored in the salePri ce variable.
The cout statements in lines 21 through 23 display the item's regular price, che amount of
the discount, and the sale price.

2.14 Arithmetic Operators 69

In the Spotlight:
Using the Modulus Operator and Integer Division

The modulus operacor (%) is surprisingly useful. For example, suppose you need to extracr
the rightmost digit of a number. If you djvide the number by 10, the remainder will be the
rightmost digit. For instance, 123 + 10 = 12 with a remainder of 3. In a computer program,
you would use the modulus operacor to perform this operation. Recall that the modulus
operator divides an integer by another integer, and gives the remainder. This is demon
strated in Program 2-24. The program extracts the rightmost digit of the number 12345.

Program 2-24

1 II This program extracts the rightmost digit of a number.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number = 12345;
8 int rightMost = number % 10;
9

10 cout << "The rightmost digit in
11 << number << • i s •
12 << rightMost << endl ;
13
14 return O;
15

Program Output

The rightmost digit in 12345 is 5

Interestingly, the expression number % 100 will give you the rightmost rwo digits in
number, the expression number % 1000 will give you the rightmost three digits in number,
and so on.

The modulus operator (%) is useful in many other situations. For example, Program 2-25
converts 125 seconds to an equivalent number of minutes, and seconds.

Program 2-25

II This program converts seconds to minutes and seconds.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 II The total seconds is 125.

(program continues)

70 Chapter 2 Introduction to C++

Program 2-25 (continued)

8 int totalSeconds = 125;
9

10 // Variables for the minutes and seconds
11 int minutes, seconds;
12
13 //Get the number of minutes.
14 minutes = totalSeconds I 60;
15
16 // Get the r emai ning seconds.
17 seconds = totalSeconds % 60;
18
19 // Display the results.
20 cout << totalSeconds << " seconds is equivalent to:\n";
21 cout <<"Minutes: •<<minutes<< endl;
22 cout << "Seconds: • << seconds << endl;
23 return O;
24

Program Output
125 seconds is equivalent to :
Minutes: 2
Seconds: 5

Let's take a closer look at the code:

• Line 8 defines an int variable named total Seconds, initialized with the value 125.
• Line 11 declares the int variables minutes and seconds.
• Line 14 calculates the number of minutes in the specified number of seconds. There

are 60 seconds in a minute, so this statement divides tot a 1 Seconds by 60. Notice we
are performing integer division in this statement. Both tot a 1 Seconds and the numeric
literal 60 are integers, so the division operator will return an integer result. This is
intentional because we want the number of minutes with no fractional part.

• Line 17 calculates the number of remaining seconds. There are 60 seconds in a min
ute, so this statement uses the % operaror to divide the tot a 1 Seconds by 60, and get
the remainder of the division. The result is the number of remaining seconds.

• Lines 20 through 22 display the number of minutes and seconds.

~ Checkpoint

2.21 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

2.22 How would you consolidate the following definitions into one statement?

int x = 7;
int y = 16;
int z = 28;

2.15 Comments 71

2.23 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;

int main()
{

number= 62.7;
double number;
cout << number << endl ;
return 0;

2.24 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 70 I 3;

Comments

CONCEPT: Comments are notes of explanation that document Lines or sections of a
program. Comments are part of the program, but the compiler ignores
them. They are intended for people who may be reading the source code.

It may surprise you thar one of rhe most important parts of a progr:tm has absolutely no
impact on the way it runs. [n fact, the compiler ignores this part of a program. Of course,
I'm speaking of the comments.

As a beginning programmer, you might be resistant to the idea of liberally writing com
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial, however, that you develop the habit of thoroughly annotat
ing your code with descriptive comments. It might take extra time now, but it will a lmost
certainly save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of C++
code. Once you have written the code and satisfactorily debugged it, you happily put it
away and move on to the next project. Ten months later, you are asked to make a modifica
tion to the program (or worse, track down and fix an elusive bug). You open the file that
contains your source code and stare at thousands of statements that now make no sense at
all. If only you had left some notes to yourself explaining the program's code. Of course
it's too late now. All that's left to do is decide what will take less time: figuring out the old
program, or completely rewrit ing it!

This scenario might sound extreme, but it's one you don't want to happen to you. Real
world programs are big and complex. Thoroughly documented code will make your life
easier, not to mention the other programmers who may have to read your code in the future.

Single-Line Comments
You have already seen one way to place comments in a C++ program. You simply place
n:vo forward slashes (I I) where you want the comment to begin. The compiler ignores

72 Chapter 2 Introduction to C++

everything from that point to the end of the line. Program 2-26 shows that comments may
be placed liberally throughout a program.

Program 2-26

II PROGRAM: PAYROLL.CPP
2 II Written by Herbert Dorfmann
3 II This program calculates company payroll
4 11 Last modification: 812012017
5 #include <iostream>
6 using namespace std;
7
8 int main()
9 {

10 double payRate; 11 Holds the hourly pay rate
11 double hours; 11 Holds the hours worked
12 int employNumber; 11 Holds the employee number

(The remainder of this program is left out.)

In addition to telling who wrote the program and describing the purpose of variables, com
ments can also be used to explain complex procedures in your code.

Multi-Line Comments

The second type of comment in C++ is the multi-line comment. Multi-line comments start
with I* (a forward slash followed by an asterisk) and end with •I (an asterisk followed
by a forward slash). Everything between these markers is ignored. Program 2-27 illustrates
how multi-line comments may be used. Notice a multi-line comment starts in line 1 ·with
the I • symbol, and it ends in line 6 with the •I symbol.

Program 2-27

1 I*
2
3
4
5
6 *I
7

PROGRAM: PAYROLL.CPP
Written by Herbert Dorfmann
This program calculates company payroll
Last modification: 812012017

8 #include <iostream>
9 using namespace std;

10
11 int main()
12 {
13 double payRate; II Holds the hourly pay rate
14 double hours; II Holds the hours worked
15 int employNumber; II Holds the employee number

(The remainder of this program is left out.)

2.16 Named Constants 73

Unlike a comment started with / /, a multi-line comment can span several lines. This makes

it more convenient to write large blocks of comments because you do not have to mark

every line. Consequently, the multi-line comment is inconvenient for writing single-line

comments because you muse type both a beginning and ending commenr symbol.

NOTE: Many programmers use a combination of single-line comments and multi-line

comments in their programs. Convenience usually dictates which sryle ro use.

Remember the following advice when using multi-line comments:

• Be careful nor to reverse the beginning symbol with the ending symbol.

• Be sure nor to forger the ending symbol.

Both of these mistakes can be difficult to crack down and will prevent the program from

compiling correctly.

2.16 Named Constants

-1._ CONCEPT: Literals may be given names that symbolically represent them in
a program.

Assume rhe following statement appears in a banking program that calculates data pertain

ing ro loans:

amount = balance • 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than

the original programmer what 0.069 is. It appears ro be an interest rare, but in some situa

tions there arc fees associated with loan payments. How can the purpose of this statement

be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the

program and must be changed periodically. Assuming the number is an interest rare, what

if the rare changes from 6.9 percent co 7.2 percent? The programmer will have to search

through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is
like a variable, but its content is read-only and ca nnot be changed while the program is

running. Here is a definition of a named constant:

const double INTEREST_RATE = 0.069;

Ir looks just like a regular variable definition except rhar rhe word const appears before

the data rype name, and the name of the variable is written in all uppercase characters.

The key word const is a qualifier rhat tells the compiler ro make che variable read-only.

!rs value will remain constant throughout the program's execution. Ir is nor required that

the variable name be written in all uppercase characters, bur many programmers prefer co

w rite them this way so that they are easily distinguishable from regular variable names.

An initialization value must be given when defining a constant with the const qualifier, or

an error will result when the program is compiled. A compiler error will also result if there

are any statements in the program that attempt ro change the value of a named constant.

74 Chapter 2 Introduction to C++

An advantage of using named constants is that they make programs more self-documenting.
The statement

amount = balance • 0.069;

can be changed tO read

amount = balance • INTEREST_ RATE;

A new programmer can read the second statement and know what is happening. It is evident
that balance is being multiplied by the interest rate. Another advantage to this approach
is that widespread changes can easily be made to the program. Let's say the inte rest rate
appears in a dozen different statements throughout the program. \X' hcn the rate changes,
the initialization value in the definition of the named constant is the only value that needs to
be modified. If the rate increases to 7.2 percent, the definition is changed to the following:

const double INTEREST_ RATE = 0.072;

The program is then ready to be recompiled. Every statement that uses INTEREST _ RA TE
will then use the new value.

Named constants can also help prevent typographica l errors in a program's code. For exam
ple, suppose you use the number 3.14159 as the value of pi in a program that performs
various geometric calculations. Each time you type the number 3. J 4159 in the program's
code, there is a chance that you will make a mistake with one or more of the digits. As a
result, the program will not produce the correct results. To help prevent a mistake such as
this, you can define a named constant for pi, initia lized with the correct value, then use that
constant in a ll of the formulas that require its value. Program 2-28 shows an example. It
calculates the circum fe rence of a circle that has a diameter of 10.

Program 2-28

1 II This program calculates the circumfe rence of a circle.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6
7 II Constants
8 const double PI = 3.14159;
9 const double DIAMETER = 10 .0;

10
11 II Variable to hold the circumference
12 double circumference;
13
14 II Calculate the circumference .
15 circumference = PI • DIAMETER ;
16
17 If Display the circumference.
18 cout << "The circumference is: " << circumference << endl;
19 r eturn O;
20

Program Output
The circumference is : 31.4159

2.17 Programming Style 75

Let's take a closer look at the program. Linc 8 defines a constant double named PI , initial

ized with the value 3.14 159. This constant will be used for the value of pi in the program's

calculation. Line 9 defines a constant double named DIAMETER, initialized with the va lue

10. This will be used for the circle's diameter. Line 12 defines a double variable named

circumference, which will be used to hold the circle's circumference. Line 15 calculates

the circle's circumference by multiplying PI by DIAMETER. The result of the calcul:nion is

assigned to the circumference variable. Line 18 displays the circle's circumference.

~ Checkpoint
2.25 Write statements using the const qualifier to create named constants for the

following literal val ues:

Literal Value Description

2.71828

5.256E5

32.2
9.8
1609

Euler's number (known in mathematics as e)

Number of minutes in a year

The gravitational acceleration constant (in ft/s2)

The gravitational acceleration constant (in m/s2)

Number of meters in a mile

2.11 Programming Style

~CONCEPT: Programming style refers to the way a programmer uses identifi ers,

spaces, tabs, blank lines, and punctuation characters to visua lly arrange

a program's source code. T hese are some, bur not all, of the clements of

programming style.

In Chapter 1, you learned that syntax rules govern the way a language may be used.

The syntax rules of C++ dictate how and where to place key words, semicolons, commas,

braces, and other components of the language. The compiler's job is to check for syntax

errors and, if there arc none, generate object code.

When the compiler reads a program, it processes it as one long stream of characters. The

compiler doesn't care that each statement is on a separate line, or that spaces separate

operators from operands. Humans, on the other hand, find it difficult to read programs

that aren't written in a visually pleasing manner. Consider Program 2-29 for example.

Program 2-29

1 #include <iostream>
2 using namespace std;int main(){double shares=220.0;
3 double avgPrice=14.67;cout<<"There were "<<shares
4 <<" shares sold at S"<<avgPrice<<" per share.\n";
5 return O;}

Program Output

There wer e 220 shares so l d a t $14 .67 per share .

76 Chapter 2 Introduction to C++

Although the program is syntactically correct (it doesn't violate any rules of C++), it is very dif
ficult to read. The same program is shown in Program 2-30, written in a more reasonable style.

Program 2-30

II This example is much more readable than Program 2-29.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double shares = 220.0;
8 double avgPrice = 14.67;
9

10 cout << "There were "<<shares<< " shares sold at$";
11 cout « avgPrice << " per share. \n";
12 return O;
13

Program Output
There were 220 shares sold at $14 . 67 per share.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis
tent method of putting spaces and indentions in a program so visual cues are created. These
cues quickly tell a programmer important information about a program.

For example, notice in Program 2-30 that inside the function mai n's braces each line is
indented. It is a common C++ style to indent all the lines inside a set of braces. You will
a lso notice the blank line between the variable definitions and the cout statements. This is
intended to visually sepa rate the definitions from the executable statements.

NOTE: Although you are free to develop your own sryle, you should adhere to com
mon programming practices. By doing so, you will write programs that visually make
sense to other programmers.

Another aspect of programming sryle is how to handle statements that are too long to fit on
one line. Because C++ is a free-flowing language, it is usually possible to spread a statement
over several lines . For example, here is a cout statement that uses five lines:

cout << "The Fahrenheit temperature is "
<< fahrenhei t
<< " and the Celsius temperature is "
<< celsius
<< endl ;

This statement will work just as if it were typed on one line. Here is an example of variable
definitions treated similarly:

int fahrenhei t,
celsius ,
kelvin;

There are many other issues related to programming style. They will be presented through
out the book.

Review Questions and Exercises

Short Answer

Review Questions and Exercises 77

1. H ow many operands does each of the following types of operators require?
___ Unary
___ Binary
___ Ternary

2. How may the double variables temp, weight, and age be defined in one statement?

3. How may the int variables months, days, and years be defined in one statement,

with months initialized co 2 and years initialized to 3?

4. Write assignment statements char perform the following operations with the variables

a, b, and c:

A) Adds 2 to a and scores che result in b.

B) Multiplies b by 4 and stores the result in a.

C) Divides a by 3.14 and stores the result in b.

D) Subtracts 8 from b and stores the result in a.

E) Srores the value 27 in a.

F) Scores the character 'K' in c.

G) Stores the ASCII code for 'B' in c.

5. Is the following comment written using single-line or multj-line comment symbols?

/* This program was written by M. A. Codewriter*/

6. Is the following comment written using single-line or multi-line comment symbols?

II This program was written by M. A. Codewriter

7. Modify the foUowing program so it prints rwo blank lines between each line of text.

#include <iostream>
using namespace std;
int main()

cout << "Two mandolins 1 i ke creatures in the";

cout << "dark":
cout << "Creating the agony of ecstasy.";

cout << - George Barker";
return o· I

8. What will the following programs print on the screen?

A) #include <iostream>
using namespace std;
int main()

int freeze = 32, boil = 212;

78 Chapter 2 Introduction to C++

freeze = o;
boil = 100;
cout <<freeze<< endl <<boil << endl;
return O;

B) #include <iostream>
using namespace std ;

int main()
{

}

int x = 0, y = 2 ;
x = y • 4;
cout << x << endl << y << endl;
return O;

C) #include <iostream>
using namespace std;

int main()

cout << " I am the incredible";
cout << "computing\nmachine";
cout << "\ nand I will\namaze\n";
cout << "you.";
return 0;

D) #include <i ost ream>
using namespace std;

int main()
{

cout << "Be careful\n";
cout << "This might/n be a trick";
cout << "question\n";
return O;

E) #include <iostream>
using namespace std;

int main()

}

int a. x = 23;
a = x % 2;
cout << x << endl <<a<< endl;
return 0;

Multiple Choice

9. Every complete statement ends with a(n) ___ _

A) period
B) # symbol
C) semicolon

D) ending brace

10. Which of the fo llowing statements is correct?

A) #include (iost ream)

B) #include {iost ream}

C) #inc 1 ude <i ost ream>

0) #include [iost ream]

E) AJI of the a bove

1 J. Every C++ program must have a ___ _

A) cout statement
B) function ma i n
C) # i nclude sta tement

D) All of the above

12. Preprocessor direct ives begin with ___ _

A) #
B)
C) <
D) •
E) None of the above

13. The following data

72

'A'

"Hello World "

2 . 8712

a re all examples of _ _ _ _

A) variables

B) litera ls or constants
C) strings
D) none of the above

Review Questions and Exercises 79

14. A group o f sta tements, such as the contents of a function, is enclosed in _ _ _ _

A) braces {}
B) parentheses ()
C) brackets <>
D) a ll of the above will do

15 . Which o f the following a re not valid assignment sta tements? (Select all that apply.)

A) total = 9 ;

B) 72 = amount;
C) profit = 129
D) letter = 'W ';

80 Chapter 2 Introduction to C++

16. Which of rhe following are not valid cout statements? (Select all chat apply.)
A) cout « "Hello World":
B) cout « "Have a nice day"\n;
C) cout < value;
D) cout << Programming is great fun ;

17. Assume w = 5, x = 4, y = 8, and z = 2. What value will be stored in result in each of
the following statements?

A) result = x + y;
B) result = z . 2;
C) result = y I x;
D) result = y - z;
E) result = w % 2;

18. How would each of the following numbers be represented in E notation?
A) 3.287 x 106

B) -978. 65 x 1012

C) 7 .65491 x 10-3

D) -58710 . 23 x 10-4

19. The negation operator is ___ _

A) unary
B) binary
C) ternary
D) none of the above

20. A(n) is like a variable, but its va lue is read-only and cannot be changed
during the program's execution.

A) secure variable
B) uninitialized variable
C) named constant
D) locked variable

21. When do preprocessor directives execute?
A) Before the compiler compiles your program
B) After the compiler compiles your program
C) At the same time as the compiler compiles your program
D) None of the above

True or False

22. T F A variable must be defined before it can be used.
23. T F Variable names may begin with a number.
24. T F Variable names may be up to 31 characters long.
25. T F A left brace in a C++ program should always be followed by a right brace later

in the program.
26. T F You cannot initialize a named constant that is declared with the const

modifier.

VldeoNote
Solving the
Restaura n t Biii
f>roblem

Programming Challenges 81

Algorithm Workbench

27. Convert the following pseudocode to C++ code. Be sure to define rhe appropriate

variables.

Store 20 in rhe speed variable.
Store 10 in the time variable.
Multiply speed by time and store the result in the distance variable.

Display the contents of the distance variable.

28. Convert the following pseudocode to C++ code. Be sure to define the appropriate variables.

Store l 72.5 in the force variable.
Srore 27.5 in rhe area variable.
Divide area by force and store the result in the pressure variable.

Display the contents of the pressure variable.

Find the Error

29. There are a number of syntax errors in rhe following program. Locate as many as you

can.

•t What's wrong with this program? t•
#include iostream
using namespace std;
int main();
}

{

int a , b, c \\ Three integers
a = 3
b = 4
c = a + b
Cout < "The value of c is %d" < C;
return O;

Programming Challenges

Visit www.myprogrammi11glab.com to complete 111011)1 of these Programming Challenges

online and get instant feedback .

1. Sum of Two Numbers

Write a program that stores the integers 50 and 100 in variables, and stores the swn oi
these two in a variable named total.

2. Sales Prediction

The East Coast sales division of a company generates 58 percent of total sales. Based

on that percentage, write a program that will predict how much the East Coast division

will generate if rhe company has $8.6 million in sa les this year.

3. Sales Tax

Write a program chat will compute the total sales tax on a $95 purchase. Assume the

state sales tax is 4 percent, and the county sales tax is 2 percent.

4. Restaurant Bill

Wricc a program that computes the tax and tip on a restaurant bill for a patron with

a $88.67 meal charge. The tax should be 6.75 percent of the meal cost. The rip should

82 Chapter 2 Introduction to C++

be 20 percent of the toral after adding the tax. Display che meal cost, tax amount, tip
amount, and coral bill on the screen.

5. Average of Values

To gee the average of a series of va lues, you add the values up then divide the sum by
the number of values. Write a program that stores the following values in five differ
ent variables: 28, 32, 37, 24, and 33. The program should first calculate the sum of
these five variables and store the result in a separate variable named sum. Then, the
program should divide the sum variable by 5 to get tbe average. Display the average
on the screen.

~: TIP: Use the doubl e data type fo r all variables in this program.

6. Annual Pay

Suppose an employee gees paid every two weeks and earns $2,200 each pay period. In
a year, the employee gees paid 26 times. Write a program that defines che following
variables:

pay Amount

payPeriods

annual Pay

This variable will bold the amount of pay the employee earns each
pay period. Initialize the variable with 2200.0.
This variable will hold the number of pay periods in a year. Initialize
the variable with 26.
This variable will hold the employee's tota l a111mal pay, which will
be calculated.

The program should calculate the employee's total annual pay by multiplying the
employee's pay amount by the number of pay periods in a year and store the result in
che annual Pay variable. Display the total annual pay on the screen.

7. Ocean Levels

Assuming the ocean's level is currently rising ac about 1.5 millimeters per year, write
a program chat displays:

• The number of millimeters higher than the current level that the ocean's level will
be in 5 years.

• The number of millimeters higher than the current level that the ocean's level will
be in 7 years.

• The number of millimeters higher than the current level that the ocean's level will
be in 10 years.

8. Total Purchase

A customer in a score is purchasing five items. The prices of the five items are as follows:

Price of item 1 = $15.95
Price of item 2 = $24.95
Price of item 3 = $6.95
Price of item 4 = $12.95
Price of item 5 = $3.95

Programming Challenges 83

Write a program that holds the prices of the five items io five variables. Display each

item's price, the subtotal of the sale, the amount of sales tax, and the total. Assume the

sales tax is 7 percent.

9. Cyborg Data T ype Sizes

You have been given a job as a programmer on a Cyborg supercomputer. In order to

accomplish some calculations, you need to know how many bytes the following data

types use: char, int, float, and double. You do nor have any technical documenta

tion, so you can't look this information up. Write a C++ program that will determine

the amount of memory used by these types and display the information on the screen.

10. Miles per Gallon

A car holds 15 gallons of gasoline and can travel 375 miles before refueling. Write a

program that calculates the number of miles per gallon the car gets. Display the result

on the screen.

Hint: Use the fo llowing formula to calculate miles per gallon (MPG):

MPG = M iles Driven/Gallons of Gas Used

11. Distance per T ank of Gas

A car with a 20-gallon gas tank averages 23.5 miles per gallon when driven in town,

and 28.9 miles per gallon when driven on the highway. Write a program that calculates

and displays the distance the car can travel on one rank of gas when driven in town

and when driven on the highway.

Hint: T he following form ula can be used co calculate the distance:

Distance = N umber of Gallons X Average Miles per Gallon

12. Land Calculation

One acre of land is equivalent to 43,560 square feet. Write a program that calculates

the number of acres in a tract of land with 391 ,876 square feet.

13. Circuit Board Price

An electronics company sells circuit boards at a 35 percent profit. Write a program th at

will calculate the selling price of a circuit board that costs $14.95. Display the result

on the screen.

14. Personal Information

Write a program that displays the fo llowing pieces of information, each on a separate line:

Your name
Your address, with city, state, and ZIP code

Your telephone number
Your college major

Use only a single cout statement to display all of this information.

15. Triangle Pattern

Write a program that displays rhe following pattern on the screen:
..

,.

84 Chapter 2 Introduction to C++

16. Diamond Pattern

Write a program that displays the following pattern:

•••

........

17. Stock Commission

Kathryn bought 750 shares of stock at a price of $35.00 per share. She must pay her
stockbroker a 2 percent commission for the transaction. Write a program that calcu
lates and displays the following:

• The amount paid for the stock alone (without the commission).
• The amount of the commission.
• The total amount paid (for the stock p lus the commission).

18. Energy Drink Consumption

A soft drink company recently surveyed 16,500 of its customers and found that approxi
mately 15 percent of those surveyed purchase one or more energy drinks per week. Of
those customers who purchase energy drinks, approximately 58 percent of them prefer
cirrus-flavored energy drinks. Write a program that displays rhe following:
• The approximate number of customers in the survey who purchase one or more

energy drinks per week.
• The approximate number of customers in the survey who prefer citrus-flavored

energy drinks.

19. Annual High Temperatures

The average July high temperarure is 85 degrees Fahrenheit in New York City, 88 degrees
Fahrenheit in Denver, and 106 degrees Fahrenheit in Phoenix. Write a program that
calculates and reports what the new average July high temperature would be for each of
these cities if temperatures rise by 2 percent.

20. How Much Paint

A particular brand of paint covers 340 square feet per gallon. Write a program to
determine and report approximately how many gallons of paint will be needed to paint
two coats on a wooden fence that is 6 feet high and 100 feet long.

TOPICS

3.1 The ci n Object 3.7 Formatting Output

3.2 Mathematical Expressions 3.8 Working with Characters and string

3.3 When You Mix Apples and Objects

Oranges: Type Conversion 3.9 More Mathematical Library Functions

3.4 Overflow and Underflow 3.10 Focus on Debugging: Hand Tracing

3.5 Type Casting a Program

3.6 Multiple Assignment and 3.11 Focus on Problem Solving:

Combined Assignment A Case Study

.....
3~ The cin Object

CONCEPT: The cin object can be used to read data typed at the keyboard.

VideoNote
Reading Input
with cin

So far you have written programs with built-in data. Without giving the user an opportu

nity co enter his or her own data, you have initialized the variables with the necessary start

ing values. These types of programs are limited to performing their task with only a single

set of starting data. If you decide ro change the initial value of any variable, the program

must be modified and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means

the program does not have to be modified if the user wants to run it several times with

different sets of data. For example, a program that calculates payroll for a small busi

ness might ask the user to enter the name of the employee, the hours worked, and the

hourly pay rate. When the paycheck for chat employee has been printed, the program

could start over again and ask for the name, hours worked, and hourly pay rate of the

next employee.

Just as cout is C++'s standard output object, ci n is the standard input object. It reads input

from the console (or keyboard) as shown in Program 3-1.

85

86 Chapter 3 Expressions and Interactivity

Program 3-1

1 II This program asks the user to enter the length and width of
2 II a rectangle. It calculates the rectangle's area and displays
3 II the value on the screen .
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int length , width, area;

10
11 cout <<"This program calculates the area of a ";
12 cout << "rectangle.\n";
13 cout << "What is the length of the rectang l e? " ;
14 cin >> length;
15 cout << "What is the width of the rectangle? ";
16 cin >> width;
17 area = length • width ;
18 cout <<"The area of the rectangle is " <<area<< " . \ n" ;
19 return O;
20

Program Output with Example Input Shown In Bold
This program calculates the area of a rectangle.
What is the 1 ength of the rectang 1 e? 10 (Enter)
What is the width of the rectangle? 20 (Enter)

The area of the rectangle is 200.

Instead of calculating the area of one rectangle, this program can be used ro get the area of
any rectangle. The values that are stored in the length and width variables arc entered by
the user when the program is running. Look at lines 13 and 14:

cout << "What is the length of the rectangle? ";
cin >> length;

In line 13, the cout object is used to display the question "What is the length of the rect
angle?" This question is known as a prompt, and it tells the user what data he or she should
enter. Your program should always display a prompt before it uses ci n to read input. This
way, the user will know that he or she must type a va lue at the keyboard.

Line 14 uses the cin object ro read a va lue from rhe keyboa rd. The » symbol is the
stream extraction operator. It gees cha racters fro m the stream object on its lefr and
stores them in the va riable whose name appears on irs right. In this line, cha racters are
taken from the ci n o bject (which gets chem from the keyboard) and arc stored in the
1 ength variable.

Gathering input from the user is normally a two-step process:

l. Use the cout object ro display a prompt on the screen.
2. Use the ci n object to read a value from the keyboard.

3.1 The ci n Object 87

The prompt should ask the user a question, or tell the user to enter a specific value. For

example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

When the user sees this prompt, he or she knows to enter the rectangle's length. After the

prompt is displayed, the program uses the ci n object to read a value from the keyboard

and store the value in che length variable.

Notice the << and >> operators appea r to point in che direction that data is flowing. In

a statement that uses the cout object, the << operator a lways points toward cout. T his

indicates that data is flowing from a variable or a literal ro the cout object. In a statement

that uses the ci n object, the >> operaror always points roward the variable that is receiv

ing the value. T his indicates that data is flowing from ci n to a variable. This is illustrated

in Figure 3-1 .

Figure 3-1 The << and » operators

cout <<"What is the length of the rectangle? ";
cin >> length ;

Think of the « and >> operators as arrows that point in
the direction that data is fl owing.

cout +- "What is the 1 ength of the rectangle? "·
cin ~ length ;

The ci n object causes a program to wait until data is typed at the keyboard and the (Enterl

key is pressed . No other lines in the program will be executed unril ci n gets its input.

ci n automatically converts the data read from the keyboard to the data type of the variable

used to store ir. If the user types 10, it is read as the characters 'l' and '0'. ci n is smart

enough to know this wi ll have ro be converted ro an int value before it is stored in the

length variable. ci n is also smart enough to knovv a value like 10. 7 cannot be stored in

an integer variable. If the user enters a floating-point va lue for an integer va riable, c i n will

not read the part of the number after the decimal point.

0 N OTE : You must include the <iostream> header file in any program that uses cin.

Entering Multiple Values

The ci n o bject may be used to gather multiple va lues at once. Look at Program 3-2, which

is a modified version of Program 3-1.

Line 15 waits for the user to enter two values. The first is assigned to length and the second

ro width.

cin >> length >> widt h ;

88 Chapter 3 Expressions and Interactivity

Program 3-2

1 II This program asks the user to enter the length and width of
2 II a rectang le. I t calculates the rectangle's area and displays
3 II t he val ue on the screen.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int length, width, area ;

10
11
12
13
14
15
16
17
18

cout << "This program calculates the area of a ";
cout << "rectangle.\n";
cout << "Enter the length and width of the rectangl e ";
cout << "separated by a space.\n";
cin >> length >> width;
area = length • width;
cout <<"The area of the rectangle is·<< area << endl;
return 0:

19 }

Program Output with Example Input Shown In Bold
This program calculates the area of a r ectangl e .
Enter the length and width of the rectangle separat ed by a space.
10 20 (Enter]

The area of the rectangle is 200

In the example output, the user entered J 0 and 20, so 10 is stored in 1 ength and 20 is
scored in width.

Notice the user separates the numbers by spaces as they are entered. This is how ci n knows
where each number begins and ends. le doesn't matter how many spaces are entered between
the individual numbers. For example, the user could have entered

10 20

<) NOTE: The~ key is pressed after the last number is entered.

ci n will also read multiple values of different data rypes. This is shown in Program 3-3.

Program 3-3

II This program demonstrat es how cin can read multiple values
2 II of different data types.
3 #include <iostream>
4 using namespace std;
5

6 int main()
7 {
8 int whole;
9 double fractional;

10 char letter;
11

3.1 The cin Object 89

12 cout << "Enter an integer, a double, and a character: ";
13 cin >> whole >> fractional >> letter ;
14 cout << "Whole: • << whole << endl;
15 cout <<"Fractional: "<<fractional << endl;
16 cout <<"Letter: " <<letter<< endl;
17 return O;
18

Program Output with Example Input Shown In Bold

Enter an integer , a double , and a character: 4 5 .7 b (Enter)

Whole: 4
Fractional: 5 .7
Letter: b

As you can see in rhe example output, che values are stored in rheir respective variables. Bur

what if rhe user had responded in the following way?

Enter an integer, a double, and a character: 5.7 4 b (Enter)

\Xlhen the user types v:ilues :it the keyho:ird, those values arc first stored in an area of

memory known as rhe keyboard buffer. So, when the user enters the values 5.7, 4, and b,

they arc srored in the keyboard buffer as shown in Figure 3-2.

Figure 3-2 The keyboard buffer

Keyboard buffer

I 5 I I 1

t
ci n begins
reading here.

4 b l!enterJI

When the user presses the (Enter! key, ci n reads the va lue 5 into the variable who 1 e. It does

not read rhe decimal point because whole is an integer variable. Next it reads .7 and stores

rhar value in the double variable fractional. The space is skipped, and 4 is the next

value read. It is stored as a character in the variable 1 etter. Because chis ci n statcmenc

reads only three values, the b is lefr in the keyboard buffer. So, in this situarion the program

would have stored 5 in whole, 0.7 in fractional, and rhe character '4' in letter. Ir is

imporranc that the user enccrs values in rhe correct order.

Checkpoint
3.1 Whar bender file must be included in programs using ci n?

3.2 True or fol se: ci n requires the user to press the [Enter) key when finished entering

data.

90 Chapter 3 Expressions and Interactivity

3.3 Assume value is an integer variable. If the user enters 3.14 in response to the
following programming statement, what will be stored in value?

cin >> value;

A) 3.14

B) 3

C) 0
D) Nothing. An error message is displayed.

3.4 A program has the following variable definitions.

long miles;
int feet;
float inches;

Write one ci n statement that reads a value into each of these variables.

3.5 The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

II This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()
{

}

double first, second, product;

cin >> first >> second;
product = first • second;
cout << product:
return O;

3.6 Complete the following program skeleton so it asks for the user's weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main{)
{

}

double pounds, kilograms:

II Write code here that prompts the user
II to enter his or her weight and reads
II the input into the pounds variable.

If The following line does the conversion.
kilograms = pounds I 2.2;

II Write code here that displays the user's weight
II in kilograms.
return O;

3.2 Mathematical Expressions 91

Mathematical Expressions

C++ allows you to construct complex mathematical expressions using

multiple operators and grouping symbols.

In Chapter 2, you were introduced to the basic mathematical operators, which are used

to build mathematical expressions. An expression is a programming sratement that has a

value. Usually, an expression consists of an operator and its operands. Look ar the following

statement:

sum = 21 + 3;

Since 21 + 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.

Expressions do not have to be in the form of mathematical operations. In the following

statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the

value of an expression:

result x· I
resu l t = 4 •

'
result = 15 I 3;
result = 22 . number;
result = sizeof(int);
result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears

on the right side of the = symbol. A value is obtained from each of these and stored in

the variable result. These are all examples of a variable being assigned the value of an

expression.

Program 3-4 shows how mathematical expressions can be used with the cout object.

Program 3-4

1 // This prog ram asks the user to enter the numerator
2 // and denominator of a fraction and it displays the
3 II decimal value.
4
5 #include <iostream>
6 using namespace std;
7
8 int main()
9 {

10 double numerator, denominator;
11
12 cout << "This program shows the decimal value of ";
13 cout << •a fraction. \ n • ;

(program continues)

92 Chapter 3 Expressions and Interactivity

Program 3-4 (continued)

14 cout << "Enter the numerator: ";
15 cin >> numerator;
16 cout << "Enter the denominator: ";
17 cin >> denominator;
18 cout << "The decimal value is ";
19 cout << (numerator I denominator) << endl;
20 return O;
21

Program Output with Example Input Shown in Bold

This program shows the decimal value of a fraction.
Enter the numerator: 3 (Enter)

Enter the denominator: 16 (Enter)

The decimal value is 0.1875

The cout object will display the value of any legal expression in C++. In Program 3-4, the
value of the expression numerator I denominator is displayed.

NOTE: The example input for Program 3-4 shows the user entering 3 and 16. Since
these values are assigned to doub 1 e variables, they are stored as the doub 1 e values 3.0
and 16.0.

NOTE: When sending an expression that consists of an operator to cout, it is a lways
a good idea to put parentheses around the expression. Some advanced operators will
yield unexpected results otherwise.

Operator Precedence
It is possible to build mathematical expressions with several operators. The following state
ment assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Some expressions are nor that straightforward, however. Consider the following statement:

outcome = 12 + 6 I 3;

What value will be stored in outcome? 6 is used as an operand for both the addition and
division operators. outcome could be assigned either 6 or 14, depending on whether the
addition operation or the division operation takes place first. The answer is 14 because the
division operaror has higher precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an
operand, the operator with the highest precedence works first. Multiplication and division
have higher precedence than addition and subtraction, so the statement above works like this:

A) 6 is divided by 3, yielding a result of 2
B) 12 is added to 2, yielding a result of 14

It could be diagrammed in the following way:

outcome = 12 + 6 I 3
\ I

outcome = 12 + 2

outcome = 14

3.2 Mathematical Expressions 93

Table 3-1 shows the precedence of the arithmetic operarors. The operarors a t the rop of the

table have higher precedence rhan the ones below them.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

(unary negation) -

• I %

+ -

The mu ltiplication, division, and modulus operators have the same precedence. This is also

true of the addition and subtraction operators. Table 3-2 shows some expressions with
their values.

Table 3-2 Some Simple Expressions and Their Values

Expression

5 + 2 • 4

10 I 2 - 3

8 + 12 • 2 - 4

4+17%2-

6 - 3 • 2 + 7 -

Associativity

Value

13

2

28

4

6

An operator's associativity is either left co right, or right co left. If two operators sharing

an operand have the same precedence, they work according to their associativity. Table 3-3

lists the associativity of the arithmetic operators. As an example, look at the fo llowing

expression:

5 - 3 + 2

Both the - and + operators in this expression have the same precedence, and they have

left to right associativity. So, the operators will work from left to right. This expression is

the same as:

((5 - 3) + 2)

Here is another example:

12 I 6 • 4

Because the I and • operators have the same precedence, and they have left to right asso

ciativity, they will work from left to right. This expression is the same as:

((12 I 6) . 4)

94 Chapter 3 Expressions and Interactivity

Table 3-3 Associativity of Arithmetic Operators

Operacor

(unary negation) -

• I %

+ -

Grouping with Parentheses

Associativi ty

Right to left

Lefr to right

Left co right

Parts of a mathematical expression may be grouped with parentheses to force some operations
to be performed before others. In the following sratemenr, the sum of a + bis divided by 4 .

result = (a + b) I 4;

Without the parcnrheses, however, b would be divided by 4 and the result added to a.
Table 3-4 shows more expressions and their values.

Table 3-4 More Simple Expressions and Their Values

Expression

(5 + 2) • 4

10 I (5 - 3)

8 + 12 * (6 - 2)

(4 + 17) % 2 -

(6 - 3) • (2 + 7) I 3

Value

28

5

56

0

9

Converting Algebraic Expressions
to Programming Statements
In algebra, it is nor always necessary tO use an operator for multiplication. C++, how
ever, requires an oper:uor for any mathematical operation. Table 3-5 shows some a lgebraic
expressions that perform multiplication and the equivalent C++ expressions.

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent

68

(3)(12)

4xy

6 times B 6 . B

3 times 12 3 . 12

4 times x times y 4 . x . y

When converting some algebraic expressions to C++, you may have to insert parenrheses that
do not appear in the algebraic expression. For example, look at the following expression:

a + [J
;i: =-

c

To convert this tO a C++ statement, a + b will have ro be enclosed in parenrhcses:

x = (a + b) I c;

3.2 Mathematical Expressions 95

Table 3-6 shows more algebraic expressions and their C++ equivalents.

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y = x 2 * 3;

z = 3bc + 4

3x + 2

z = 3 • b • c + 4;

a= (3 • x+2) I (4 * a-1) a =
4a - 1

No Exponents Please!
Unlike many programming languages, C++ does not have an exponent operator. Raising
a number to a power requires the use of a library function. The C++ library isn't a place
where you check out books, but a collection of special ized functions. Think of a library
function as a "routine" that perfo rms a specific operation . One of the library functions
is ca lled pow, and its purpose is to raise a number to a power. Here is an example of
how it's used:

area = pow(4.0, 2.0) ;

This statement contains a call to the pow functio n. The numbers inside the parentheses are
arguments. Arguments are data being sent to the function . The pow function always raises
the fi rst a rgument to the power of the second argument. In this example, 4 is raised to the
power of 2. The result is returned from the function and used in the statement where the
function call appears. ln this case, the value 16 is rerurned from pow and assigned tO

the variable area. This is illustrated in Figure 3-3.

Figure 3-3 The pow function

area =

/[arguments

----- pow(4 .0, 2 .0) ;
16.0

return value

The statement area = pow(4. 0, 2. 0) is equivalent to the following a lgebraic statement:

area = 42

Here is another example of a statement using the pow function . It assigns 3 times 63 to x:

x = 3 • pow(6 .0 , 3 .0);

And the fo llowing statement displays the value of 5 raised tO the power of 4:

cout << pow(5 .0, 4.0);

It might be helpful to think of pow as a "black box" that you plug two numbers into, and
that then sends a third number our. The number that comes out has the value of the first
number ra ised to the power of the second number, as illustrated in Figure 3-4:

96 Chapter 3 Expressions and Interactivity

Figure 3-4 The pow function as a "black box"

Argument 1 x
pow function x Y

Argument 2 y

There are some guidelines that should be followed when the pow function is used. First,
the program must include the <cmath> header file. Second, the arguments that you pass ro
the pow function should be doubl es. Third, the variable used to score pow's return value
should be defi ned as a double. For example, in the following statement the variable area
should be a double:

area = pow(4 . 0, 2 . 0);

Program 3-5 solves a simple algebraic problem. It asks the user to enter the radius of a circle
and then calculates the area of the circle. The fo rmula is

Area = 7tr2
which is expressed in the program as

area = PI • pow (radius , 2.0) ;

Program 3-5

1 II This program calculates the area of a circle.
2 II The formula for the area of a circle is Pi times
3 11 the radius squared . Pi is 3 . 14159 .
4 #include <iostream>
5 #include <cmath> I I needed for pow function
6 using namespace std ;
7
8 int main()
9

10 const double PI = 3.14159;
11 double area , radius ;
12
13 cout << "This prog r am calculates the area of a circl e.\n";
14 cout << "What is the radius of the circl e? ";
15 ci n >> radius ;
16 area = PI • pow(radius , 2 . 0) ;
17 cout << "The area is • << area << endl;
18 return O;
19

Program Output with Example Input Shown in Bold

This program calcu l a t es the area of a circle .
What is the rad i us of the circle? lO IEnter)

The area is 314.159

3.2 Mathematical Expressions 97

NOTE: Program 3-5 is presented as a demonstration of the pow function. In reality,
there is no reason to use the pow function in such a simple operation. The math state
menc could just as easily be written as

area = PI • radius • radius;

The pow function is useful, however, in operations that involve larger exponents.

In the Spotlight:
Calculating an Average

Determining the average of a group of values is a simple calculation: You add all of the
values, then divide the sum by the number of values. Although this is a straightforward
calculation, it is easy to make a mistake when writing a program that calcu lates an average.
For example, let's assume that a, b, and c are doub 1 e variables. Each of the variables ho lds
a value, and we want ro calculate the average of those values. If we are careless, we mighr
write a statement such as the following ro perform the calculation:

average = a + b + c I 3.0;

Can you see the error in this statement? When it executes, the division will rake place first.
The value in c will be divided by 3. O, then the result will be added to the sum of a +
b. That is not the correct way ro calculate an average. To correct this error, we need to put
parentheses around a + b + c, as shown here:

average = (a + b + c) I 3.0;

Let's step through the process of writing a program that calculates an average. Suppose you
have taken three tests in your computer science class, and you want ro write a program that
will display the average of the rest scores. Here is the algorithm in pseudocode:

Get the first test score.
Get the second test score.
Get the third test score.
Calculate the average by adding the three test scores and dividing the sum by 3.
Display the average.

In the first three steps, we prompt the user to enter three rest scores. Let's say we store
those test scores in the double variables test1, test2, and test3. Then in the fourth
step, we calculate the average of the three rest scores. We will use the following state
ment to perform the calculation and store the result in the average variable, which is a
double:

average = (test1 + test2 + test3) I 3.0;

The last step is to display the average. Program 3-6 shows the program.

98 Chapter 3 Expressions and Interactivity

Program 3-6

1 II This program calculates the average
2 II of three test scores.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 int main()
8 {
9 double test1 , test2, test3; II To hold the scores

10 doub 1 e average; 11 To ho 1 d the average
11
12 II Get the three test scores.
13 cout << "Enter the first test score: ";
14 cin >> test1;
15 cout << "Enter the second test score: ";
16 cin » test2;
17 cout << "Enter the third test score: ";
18 cin >> test3;
19
20 II Cal culate the average of the scores.
21 average = (test1 + test 2 + test3) I 3.0;
22
23 II Display the average.
24 cout << "The average score is: " << average << endl;
25 return O;
26

Program Output with Example Input Shown in Bold
Enter the first test score : 90 !Enter)

Enter the second test score : 80 !Enter)

Enter the third test score : 100 (Enter)

The average score is 90

~ Checkpoint
3.7 Complete the table below by determining the value of each expression.

Expression
6 + 3 • 5

12 I 2 - 4
9 + 14 • 2 - 6
5 + 19 % 3 -
(6 + 2) • 3

14 I (11 - 4)

9 + 12 • (8 - 3)
(6+17)%2-1
(9 - 3) • (6 + 9) I 3

Value

3.2 Mathematical Expressions 99

3.8 Write C++ expressions for the following a lgebraic expressions:

y = 6x

a= 2b + 4c

y = xi

x + 2
g = ~

x2

Y = z2

3.9 Study the following program and complete the table.

#include <iostream>
#include <cmath>
using namespace std;

int main ()

double value1, value2, value3;

cout << "Enter a number: ";
cin >> value1;
value2 = 2 • pow(val ue1, 2 .0);
value3 = 3 + value2 I 2 - 1;
cout << value3 << end l;
return 0;

If the User Enters ...

2

5

4.3

6

The Program Will Display What Number
(Stored in val ue3)?

3.10 Complete the fo llowing program skeleton so it displays the volume of a
cylindrical fuel tank. The formula for the volume of a cylinder is

Volume = m2 /J
where

n is 3.14159,
r is the radius of the tank, and
h is the height of the tank.

#include <iostream>
#i nclude <cmath>
using namespace std;

100 Chapter 3 Expressions and Interactivity

int main()
{

double volume, radius, height;

cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout «"How tall is the tank?";
ci n » height;
cout << "What is the radius of the tank? ";
cin >> radius;

ff You must complete the program.

When You Mix Apples and Oranges:
Type Conversion

CONCEPT: When an operator's operands are of different data types, C++ will auto
matically convert them to the same data type. This can affect the results
of mathematical expressions.

If an int is multiplied by a fl oat, what data type will the result be? What if a doub 1 e is
divided by an unsigned int? Is there any way of predicting what will happen in these
instances? The answer is yes. C++ follows a ser of rules when performing marhemarical
operations on variables of different data types. It's helpful to understand these rules ro
prevent subtle errors from creeping into your programs.

Just like officers in the military, dara types are ranked. One data rype outranks another if it
can hold a larger number. For example, a float outranks an int. Table 3-7 lists the data
types in order of their rank, from highest to lowest.

Table 3-7 Data Type Ranking

long double

double

float

unsigned long long int

long long int
unsigned long int

1 ong int

unsigned int

int

One exception to the ranking in Table 3-7 is when an int and a 1 ong are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same type.
This automatic conversion is known as type coercion. When a value is converted co a higher
data type, it is said to be promoted. To demote a value means to convert it to a lower data
type. Let's look at the specific rules that govern the evaluation of mathematical expressions.

3.3 When You Mix Apples and Oranges: Type Conversion 101

Rule 1: chars, shorts, and unsigned shorts are automatically promoted ro int.

You will notice that char, short, and unsigned short do nor appear in Table 3-7.

That's because anytime they are used in a mathematical expression, they are automatically

promoted to an int. The only exception to this rule is when an unsigned short holds

a value larger than can be held by an int. T his can happen on systems where shorts are

the same size as i nts. In this case, the unsigned short is promoted to unsigned int.

Rule 2: When an operator works with rwo values of different data types, rhe lower-ranking
value is promoted to the type of the higher-ranking value.

In rhe following expression, assume that years is an int and i nterestRate is a fl oat:

years • interestRate

Before the multiplication rakes place, years will be promoted to a fl oat.

Rule 3: When the fi nal value of an expression is assigned to a variable, it will be converted
to the data type of that variable.

In the following scaremenr, assume that area is a long int, while length and width are

both i nts:

area = length • width;

Since length and width are both i nt s, they will not be converted to any other data type. The

result of the multiplication, however, will be converted to long so that it can be stored in area.

Watch out for situations where an expression results in a fractional value being assigned to

an integer variable. Herc is an example:

int X, y = 4;
fl oat z = 2. 7;
x = y • z;

In the expression y • z, y will be promoted to fl oat and 10.8 will result from the multi

plication. Since x is an integer, however, 10.8 will be truncated and 10 will be stored in x.

Integer Division
When you divide an integer by another integer in C++, the result is a lways an integer. If
there is a remainder, it wi ll be discarded. For example, in the following code, parts is

assigned the value 2.0:

double parts;
parts = 15 I 6;

Even though 15 divided by 6 is really 2.5, the .5 part of the result is discarded because we

are dividing an integer by an integer. It doesn't matter that parts is declared as a double
because the fractional part of the result is discarded before the assignment takes place. Jn

order for a division operation to return a floating-point value, at least one of the operands

must be of a floating-point data type. For example, the previous code could be written as:

double parts;
parts = 15.0 I 6;

In this code, the literal value 15.0 is interpreted as a floating-point number, so rhe division

operation will return a floating-point number. The value 2.5 will be assigned to parts.

102 Chapter 3 Expressions and Interactivity

Overflow and Underflow

CONCEPT: When a variable is assigned a value that is too large or too small in
range for that variable's data type, the variable overflows or underflows.

Trouble can arise when a variable is being assigned a value that is too large for its type.
Here is a statemenr where a, b, and c are all short integers:

a = b • c;

If b and care set to large enough values, the multiplication will produce a number too big
to be stored in a. To prepare for this, a should have been defined as an int, or a 1 ong int .

When a variable is assigned a number that is too large for its data type, it overflows.
Likewise, assigning a value that is too small for a variable causes ir ro underflow. Program
3-7 shows what happens when an integer overflows or underflows. (The output shown is
from a system with nvo-byte shorr integers.)

Program 3-7

1 II This program demonstrates integer overflow and underflow.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 II testVar is i nitial ized with the maximum value for a short.
8 short testVar = 32767 ;
9

10 II Display testVar.
11 cout << testVar << endl;
12
13 II Add 1 to testVar to make it overflow .
14 testVar = testVar + 1 ;
15 cout << testVar << endl;
16
17 II Subtract 1 from testVar to make it underf l ow .
18 testVar = testVar - 1;
19 cout << testVar << endl;
20 return 0;
21

Program Output

32767
-32768
32767

Typically, when an integer overflows, its contents wrap around to that data type's lowest
possible value. In Program 3-7, testVar wrapped around from 32,767 to -32,768 when
l was added to it. When 1 was subtracted from testVar, it underflowed , which caused its

3.5 Type Casting 103

contents ro wrap back around ro 32,767. No warning or error message is given, so be care

ful when working with numbers close co the maximum or minimum range of an integer. If
an overflow or underflow occurs, the program will use the incorrect number, and therefore

produce incorrect results.

When floating-point variables overflow or underflow, the results depend upon how the com

piler is configured. Your system may produce programs that do any of the following:

• Produce an incorrect result and continue running.
• Print an error message and immediately stop when either floating-point overflow or

underflow occurs.
• Print an error message and immediately stop when floating-point overflow occurs,

bur store a 0 in the variable when it underflows.
• Give you a choice of behaviors when overflow or underflow occurs.

You can find out how your system reacts by compiling and running Program 3-8.

Program 3-8

II This program can be used to see how your system handles
2 II floating-point overflow and underflow.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 float test;
9

10 test= 2.0e38 • 1000; II Should overflow test.
11 cout << test << endl ;
12 test= 2.0e-38 I 2.0e38; II Should underflow test.
13 cout <<test<< endl;
14 return O;
15

3·.~ Type Casting

~ CONCEPT: Type casting allows you to perform manual data type conversion.

A type cast expression lets you manually promote or demote a value. The general format

of a type cast expression is

static_cast<DataType>(Va1ue)

where Va 7 ue is a variable or literal value that you wish to convert, and Data Type is the

data type to wh ich you wish to convert Va 7 ue. Herc is an example of code that uses a type

cast expression:

double number = 3.7;
int val ;
val = static_cast<int>(number);

104 Chapter 3 Expressions and Interactivity

This code defines two variables: number, a doub l e, and val , an int. The type cast expres
sion in the third statement returns a copy of the val ue in number, converted to an int .
When a double is converted to an int, the fractional part is truncated, so this statement
stores 3 in val. The original value in number is not changed, however.

Type cast expressions are useful in situations where C++ will not perform the desired conver
sion automatically. Program 3-9 shows an example where a type cast expression is used to
prevent integer division from taking place. The statement that uses the type cast expression is

perMonth = static_cast<double>(books) I months;

Program 3-9

1 II This program uses a type cast to avoid integer division .
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7
8
9

10

int books;
int months;
double perMonth;

II Number of books to read
II Number of months spent reading
II Average number of books per month

11 cout << "How many books do you plan to read? ";
12 cin » books ;
13 cout cc "How many months wil l it take you to read them? ";
14 cin >> months;
15 perMonth = static_cast<double>(books) I months:
16 cout <c "That is • << perMonth << • books per month.\n";
17 return O;
18

Program Output with Example Input Shown In Bold

How many books do you p 1 an to read? 30 (Enter)

How many months wi 11 it take you to read them? 7 (Enter)

That is 4 . 28571 books per month.

CD

The variable books is an integer, bur its value is converted to a double before the division
takes place. Without the type cast expression in line 15, integer division would have been
performed, resulting in an incorrect answer.

WARNING! In Program 3-9, the fo llowing statement would still have resulted in
integer division:

perMonth = static_cast<double>(books I months):

The result of the expression books I months is 4. When 4 is converted to a double, it
is 4 .0. To prevent the integer division from taking place, one of the operands shou ld be
converted to a doubl e prior to the division operation. This forces C++ to automatically
convert the value of the other operand to a double.

Program 3-l 0 further demonstrates the type cast expression.

3.5 Type Casting 10 5

Program 3-10

1 II This program uses a type cast expression to print a character
2 II from a number .
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int number = 65;
9

10 II Display the value of the number variable.
11 cout <<number<< endl;
12
13 II Displ ay the value of number converted to
14 II the char data type.
15 cout << static_cast<char>(number) << endl;
16 return O;
17

Program Output

65
A

Let's take a closer look at this program. In line 8, the int variable number is initialized with

the value 65. In line I I, number is sent tO cout, causing 65 tO be displayed. In line 15, a

type cast expression is used to convert the va lue in number to the char data type. Recall

from Chapter 2 that characters are stored in memory as integer ASCII codes. The number

65 is rhc ASCII code for rhe letter 'A', so this statement causes the letter 'A' to be displayed.

0 NOTE: C++ provides several different type cast expressions. stati c_cast is the most

commonly used type cast expression, so we will primarily use it in this book.

~ Checkpoint
3.11 Assume the following variable definitions:

int a = 5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?
A) b I a
B) x • a
C) static_cast<double>(b I a)
D) static_cast<double>(b) I a
E) b I static_cast<double>(a)
F) static_cast<double>(b) I static_cast<double>(a)
G) b I static_cast<int>(x)
H) static_cast<int>(x) • static_cast<int>(z)
I) static_cast<int>(x • z)
J) static_cast<double>(static_cast<int>(x) • static_cast<int>(z))

106 Chapter 3 Expressions and Interactivity

~

3.12 Complete the following program skeleton so it asks the user to enter a character.
Store the character in the variable letter. Use a type cast expression with the
variable in a cout statement to display the character's ASCTI code on rhc screen.

#include <iostream>
using namespace std;
int main()
{

char letter ;

II Finish this program
II as specified above.
return O;

3.13 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

int integer1 , integer2 ;
double result;
i nteger1 = 19;
integer2 = 2;
result = i nteger1 I i nteger2;
cout <<result<< endl ;
result = static_cast<double>(integer1) I integer2;
cout <<result<< endl;
result = static_cast<double>(integer1 I integer2);
cout <<result<< endl ;
return O;

3:{ Multiple Assignment and Combined Assignment

CONCEPT: Multiple assignment means to assign the same value to several variables
with one statement.

C++ allows you to assign a va lue to multiple variables at once. If a program has several
variables, such as a, b, c, and d, and each variable needs to be assigned a value, such as 12,
the following statement may be constructed:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement. '~

"The ass ignment operaror works from right to left. 12 is first assigned ro d, then co c, then to b,
then ro a.

3.6 Multiple Assignment and Combined Assignment 10 7

Combined Assignment Operators
Quire ofren, programs h:lVe assignment sratements of the following form:

number= number+ 1;

The expression on the right side of rhe assignment operator gives rhe value of number plus

1. The result is rhen assigned to number, replacing the value that was previously stored

rhere. Effectively, this sratement adds 1 to number. In a similar fashion, the following state

ment subtracts 5 from number.

number = number - 5;

If you have never seen rhis type of sratemenr before, it might cause some initial confusion

because the same variable name appears on both sides of the assignment operator. Table 3-8

shows other examples of statemenrs written this way.

Table 3-8 (Assume x = 6)

Value of x

Statement What It Docs After the Statement

x = x + 4;

x = x 3;

x = x • 10;

x = x 2;

x = x % 4

Adds 4 to x
Subtracts 3 from x

Multiplies x by 10
Divides x by 2

Makes x the remainder of x I 4

10
3
60
3
2

These types of operations arc very common in programming. For convenience, C++ offers

a special set of operarors designed specifically for rhcse jobs. Table 3-9 shows rhe com

bi11ed assig11111e11t opemlors, also known as compou11d operators, and arithmetic assign

ment operators.

Table 3-9 Combined Assignment Operators

Operator Example Usage Equivalent to

+=

-=
·=
I=
%=

x +=
y - =
z ·=

a I=
c %=

5;
2· I

10;
b• I
3;

x = x + 5;
y = y - 2;
z = z • 10 ;

a = a I b;

c = c % 3;

As you can see, rhe combined assignment operators do not require the programmer to type

the variable name twice. Also, they give a clea r indication of whar is happening in the srate

menr. Program 3-11 uses combined assignment operators.

Program 3-11

1 // This program tracks the inventory of three widget stores

2 // that opened at the same time. Each store started with the

3 // same number of widgets in inventory. By subtracting the
(program continues)

108 Chapter 3 Expressions and Interactivity

Program 3-11 (continued)

4 II number of widgets each store has sold from its inventory,
5 II the current inventory can be calculated.
6 #include <iostream>
7 using namespace std;
8
9

10
11
12
13
14
15
16

int main()
{

int beglnv, II
sold, II
store1, II
store2, II
store3; II

Beginning inventory for all stores
Number of widgets sold
Store 1's inventory
Store 2's inventory
Store 3's inventory

17 II Get the beginning inventory for al l the stores.
18 cout « "One week ago, 3 new widget stores opened\ n";
19 cout << "at the same time with the same beginn i ng \n":
20 cout << "inventory. What was the beginning inventory? ";
21 ci n » beg Inv ;
22
23 II Set each store's inventory.
24 store1 = store2 = store3 = beglnv;
25
26 II Get the number of widgets sold at store 1.
27 cout << "How many widgets has store 1 sold? ";
28 cin >> sold ;
29 store1 -=sold; II Adjust store 1's inventory.
30
31 II Get t he number of widgets sold at store 2.
32 cout << "How many widgets has store 2 sold? ";
33 cin >> sold ;
34 store2 - = sold; // Adjust store 2's inventory.
35
36 II Get the number of widgets sold at store 3.
37 cout << "How many widgets has store 3 sol d? ":
38 cin >> sol d;
39 store3 -=sold; II Adjust store 3's inventory .
40
41 II Display each store's current inventory.
42 cout << "\nThe current inventory of each store :\ n" ;
43 cout <<"Store 1: "<< store1 << endl;
44 cout <<"Store 2: "<< store2 << endl;
45 cout << "Store 3: "<< store3 << end l;
46 return O;
47

Program Output w ith Example Input Shown in Bold
One week ago , 3 new widget stores opened
at the same time with the same beginning
inventory. What was t he beginning inventory? 100 [Enter!

3.6 Multiple Assignment and Combined Assignment

How many widgets has store sold? 25 (Enter)

How many widgets has store 2 sold? 15 (&rter)

How many widgets has store 3 sold? 4 5 (Enter)

The cur r ent invent ory of each store :

Store 1 : 75

Store 2 : 85
Store 3 : 55

More elaborate statements may be expressed with the combined assignment operators. Here

is an example:

result ·= a + 5 ;

In this srarcment, result is multiplied by the sum of a + 5. When constructing such state

ments, you must rea lize the precedence of the combined assignment operators is lower than

tbar of the regular math operators. The statement above is equivalent to

result = result • (a + 5);

which is different from

result = result • a + 5;

Table 3-10 shows other examples o f such statements and their assignment statement

equivalencies.

Table 3-10 Example Usage of the Combined Assignment Operators

Example Usage Equivalent to

x += b + 5; x = x + (b + 5);

y -= a . 2; y = y - (a .. 2);

z ·- 10 - c· z = z . (10 - c);
t

a I = b + c; a = a (b + c) ;

c %= d - 3; c = c % {d - 3) ;

~ Checkpoint
3.14 Write a multiple assignment statement that assigns 0 to the variables total ,

subtotal, tax, and shipping.

3.15 Write statements using combined assignment operators to perform the following:

A) Add 6 to x.
B) Subtract 4 from amount.

C) Multiply y by 4.
D) Divide total by 27.
E) Store in x the remainder of x divided by 7.

F) Add y • 5 ro x.
G) Subtract discount times 4 from total.

H) Multiply i ncrease by sa 1 es Rep times 5.
I) Divide profit by shares minus 1000.

109

110 Chapter 3 Expressions and Interactivity

~

3.16 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

int unus , duo , tres;

unus = duo = tres = 5 ;
unus += 4;
duo ·= 2;
tres -= 4;
unus /= 3;
duo += tres ;
cout << unus << endl :
cout << duo << endl ;
cout << tres << endl;
return O;

3.7 Formatting Output

~ CONCEPT: The cout object provides ways to format data as it is being displayed.
This affects the way data appears on the screen.

The sam<:: data can be printed or displayed in several different ways . For example, all of the
followi ng numbers have the same value, a lthough they look different:

720
720.0
720 .00000000
7.2e+2
+720 . 0

The wa y a va lue is printed is called its formatting. The cout object hns a standard way of
fo rmatting variables of each data type. Sometimes, however, you need more conrrol over
the way data is displayed. Consider Program 3-12, for example, which displays three rows
of numbers with a space between each one.

Program 3-12

1 // Thi s program displays three rows of numbers.
2 #include <i ostream>
3 using namespace std ;
4
5 int main()
6
7 int num1 = 2897 , num2 = 5 , num3 = 837 ,
8 num4 = 34 , num5 = 7 , num6 = 1623 ,
9 num7 = 390 , num8 = 3456 , num9 12 ;

3.7 Formatting Output 111

10
11 // Di splay the first row of numbers

12 cout << num1 << • • << num2 << • • << num3 << endl ;

13
14 // Di splay the second row of numbers

15 cout << num4 << • • << num5 << • • << num6 << endl ;

16
17 // Display the third row of numbers

18 cout << num7 << • "<< num8 <<" "<< num9 << endl;

19 return O;
20

Program Output

2897 5 837
34 7 1623
390 3456 12

Unfortunately, rhe numbers do not line up in columns . This is because some of the num

bers, such as 5 and 7, occupy one posirion on rhe screen, while others occupy rwo or three

positions. cout uses jusr rhe number of spaces needed ro prinr each number.

To remedy this, cout offers a way of specifying the minimum number o f spaces to use fo r

each number. A srream manipularor, setw, can be used to esrnblish print fields of a specified

width. Herc is a n example of how it is used:

value = 23 ;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the

va lue immedia tely following it. The fi eld width is the minimum number of character posi

tions, or spaces, on the screen ro print the value in. In the exa mple above, the number 23

will be d isplayed in a field of 5 spaces. Since 23 only occupies 2 positions on the screen,

3 blank spaces will be printed before it. To furthe r clarify how this works, look at the fol

lowing statements:

value = 23 ;
cout << "(" << setw(5) <<value<< ")";

This will cause the fo llowing output:

23)

Notice the number occupies the last two positions in the field. Since the number did not

use the entire field , cout fill ed the extra 3 positions with blank spaces. Because rhe number

appears on the right side o f the field with blank spaces " padding" it in front, it is sa id to

be right-justified.

Program 3-13 shows how the numbers in Program 3- 12 can be printed in columns that line

up perfectly by using setw.

112 Chapter 3 Expressions and Interactivity

Program 3-13

1 II This program displays three rows of numbers.
2 #include <iostream>
3 #include <iomanip> II Required for setw
4 using namespace std;
5
6 int main ()
7 {
8 int num1 = 2897, num2 = 5, num3 = 837,
9 num4 = 34, num5 = 7, num6 = 1623,

10 num7 = 390 , num8 = 3456 , num9 = 12 ;
11
12
13
14
15
16
17
18
19
20
21
22
23

I I Di splay the first row of numbers
cout << setw(6) << num1 << setw{6)

<< num2 << setw(6) << num3 << endl;

II Display the second row of numbers
cout << setw {6) << num4 << setw(6)

<< num5 << setw(6) << num6 << endl;

I I Display the third row of numbers
cout << setw(6) << num7 << setw(6)

<< num8 << setw(6) << num9 << endl ;
return O;

24 }

Program Output

2897 5 837
34 7 1623

390 3456 12

0
By priming each number in a field of 6 positions, they are displayed in perfect columns.

NOTE: A new header file, <i omani p>, is included in Program 3- L3. It must be used
in any program that uses setw.

Notice how a setw manipulator is used with each value, because setw only establishes a
field width fo r the va lue immediately following it. After that value is printed, cout goes
back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field , as in the
following sta tement:

value = 18397;
cout << setw(2) << value ;

In cases like this, cout will print the entire number. setw only specifics the minimum num
ber of positions in the print field. Any number la rger than the minimum will cause cout to
override the setw value.

3.7 Formatting Output 113

You may specify the field width of any type of dara. Program 3-14 shows setw being used

with an integer, a floating-point number, and a string object.

Program 3-14

1 II This program demonstrates the setw man i pu l ato r being
2 II used with values of various data types .
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 int main()
9 {

10 int intValue = 3928;
11 double doubleValue = 91 . 5;
12 string stringValue = "J ohn J. Smith";
13
14
15
16
17
18

cout << "(" << setw(S) << intValue << ")" << endl;
cout << "(" << setw (8) << doubleValue << ")" << endl ;
cout << "(" << setw(16) << stringValue << ")" << endl;
return O;

Program Output

(3928)
(91 . 5)
(John J. Smi th)

Vid eoNot•

Fo rmatting
Numbers with
sotprecision

Program 3-14 can be used t0 illustrate the following points:

• The field width of a floating-point number includes a position for the decimal point.

• The field width of a s tring object includes a ll characters in the string, incl uding

spaces.
• The values printed in the field are right-justified by default. This means they are aligned

with the right side of the print field, and any blanks chat must be used ro pad it are

inserted in front of the value.

The setpreci si on Manipulator

Floating-point values may be rounded ro a number of significant digits, or precision, which

is the tatal number of digits that appear before and after the decimal point. You can control

the number of significant digits with which floating-point values are displayed by using

the setprecision manipularor. Program 3- 15 shows the results of a division operation

displayed with different numbers of significn nt digits.

raul garcia

114 Chapter 3 Expressions and Interactivity

Program 3-15

1 II This program demonstrates how setprecision rounds a
2 I I floating-point value.
3 #include <iostream>
4 # i nclude <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 double quotient, number1 = 132 . 364 , number2 = 26.91;

10
quotient = number1 I number2;
cout << quotient << endl;
cout << setprecision(5) << quotient
cout << setprecision(4) << quotient
cout << setprecision(3) << quotient
cout << setprecision(2) << quotient
cout << setprecision(1) << quotient

11
12
13
14
15
16
17
18
19

return o· .

Program Output
4 .91877
4 .9188
4 .919
4.92
4 . 9
5

<< endl;
<< endl;
<< endl ;
<< endl ;
<< endl ;

The firsr va lue is dispb)'ed in line 12 wichour rhc setpreci si on manipulator. (By default, the
sysrem in rhe illustracion displays floating-poinr values with 6 significant digits.) T he subse
quent cout statements prim the same value, bur rounded to 5, 4 , 3, 2, and I significant digits.

If the value of a number is expressed in fewer digits of precision than specified by setpreci s ion,
the manipulator will have no effect. In the iollowing statements, the value of do 11 ars only has
four digits of precision, so the number printed b)' both cout statements is 24.5 1.

double dollars = 24.51;
cout << dollars << endl;
cout << setprec i sion(5) <<dol l ars<< endl ;

II Displays 24 . 51
II Displays 24 . 51

Table 3-11 shows how setprecision affccrs rhe way various values are displayed.

Table 3-11 The setpreci si on Manip ulator

Number Manipulator Value Displayed
28.92786 setprecision(3) 28.9
21 setprecision(5) 21

109.5 setprecision(4) 109.5
34.28596 setprecision(2) 34

raul garcia

3.7 Forrnatt.ing Output 115

Unlike field width, the precision serting remains in effect until it is changed ro some other

value. As with all formatting manipulators, you must include the header fi le <i omani p> to

use setpreci sion.

Program 3- 16 shows how the setw and setprecision manipulators may be combined ro
full y control the way floating-point numbers are displayed.

Program 3-16

1 II This program asks for sa l es amounts for 3 days. The total
2 II sales are calculated and displayed in a table.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std ;
6
7 int main()
8 {
9 double day1, day2, day3, total;

10
11 II Get the sales for each day.
12 cout << "Enter the sales for day 1: ";
13
14
15
16
17
18

cin
cout
cin
cout
cin

>>
<<

>>
<<

>>

day1 ;
"Enter the sales for

day2;
"Enter the sales for

day3;

19 II Calculate the total sales.
20 total = day1 + day2 + day3;
21
22 II Display the sales amounts.
23 cout << "\nSales Amounts\n";
24
25
26
27
28
29
30
31

cout <<
cout <<
cout <<
cout <<
cout <<
cout <<
return

" -------------\n";
setprecision(5) ;
"Day 1 : " << setw(8)
"Day 2: . << setw(8)
"Day 3: " << setw(8)
"Total : . << setw(8)

O;

day 2: ".
'

day 3: ". .

<< day1 <<
<< day2 <<
<< day3 <<
<< total <<

Program Output with Example Input Shown In Bold

Enter the sales for day 1 : 321.57 [Enterl

Enter the sales for day 2: 269.6 2 [Enter)

Enter the sales for day 3: 30 7.77 (Enter)

Sales Amounts

Day 1: 321.57
Day 2: 269.62
Day 3: 307 . 77
Total: 898.96

endl ;
endl ;
endl ;
endl ;

raul garcia

116 Chapter 3 Expressions and Interactivity

The f i xed Manipulator
The setpreci si on manipulator can sometimes surprise you in an undesirable way. When
rhe precision of a number is ser to a lower value, numbers rend ro be printed in scientific
notation. For example, here is rhe output of Program 3-16 wirh larger numbers being input:

Program 3-16

Program Output with Example Input Shown In Bold
Enter the sales for day 1 : 145678.99 (Enter)

Enter the sales for day 2 : 205614.85 (Enter!

Ent er the sales for day 3 : 198645.22 (Enter)

Sales Amounts

Day 1: 1 . 4568e+005
Day 2 : 2 .0561e+005
Day 3: 1 .9865e+005
Total : 5 .4994e+005

Another stream manipulator, fixed, forces cout co print the digits in fixed-point notation,
or decimal. Program 3-17 shows how the fixed manipulator is used.

Program 3-17

1 //This program asks for sales amounts for 3 days. The total
2 II sales are calculated and displayed in a table.
3 #include <iostream>
4 #i nclude <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 double day1, day2, day3, total ;

10
11 II Get the sales for each day .
12 cou t <<"Enter the sales for day 1 : " ;
13 cin >> day1;
14 cout << "Enter the sales for day 2: ";
15 ci n » day2;
16 cout cc "Enter t he sales for day 3: " ;
17 ci n » day3;
18
19 II Calculate the tota l sales.
20 total = day1 + day2 + day3 ;
21

raul garcia

raul garcia

3.7 Formatting Output 117

22 II Display the sales amounts.
23 cout << "\nSales Amounts\n";
24
25
26
27
28
29
30
31

cout <<
cout <<
cout <<
cout <<
cout <<
cout <<
return

11 - • • - • - - • - • ... • ... \n fl;
setprecision(2) << fixed;
"Day 1 : " << setw(8) << day1 << endl ;
"Day 2: " << setw(8) << day2 << e ndl ;
"Day 3: . << setw(8) << day3 << endl ;
"Total : " << setw(8) << total << endl;

O;

Program Output with Example Input Shown In Bold

Enter the sales for day 1 : 1321.87 (&iterl

Enter the sales for day 2: 1869.26(&iter}

Enter the sales for day 3: 1403.77 (filter)

Sales Amounts

Day 1:
Day 2:
Day 3:
Total :

1321 .87
1869.26
1403.77
4594 .90

T he sta tement in line 25 uses the fixed manipulator:

cout << setprecision(2) << fixed;

When the fixed man ipulator is used, all floating-point numbers that are subsequently

printed will be displayed in fixed-point notation, with the number of digits to the right of

the decimal point specified by the setpreci s ion manipulator.

When the fixed and setpreci si on manipulators are used rogerher, the value specified by

the setpreci si on manipulator will be the number of digits to appear after the decimal

point, nor the number of significant digits. For example, look at the following code:

double x = 123.4567;
cout << setprecision(2) <<fixed<< x << endl;

Because the fixed manipulator is used, the setpreci s ion manipulator will cause rhe

number ro be displayed with two digits after the decimal point. The value will be displayed
as 123.46.

The showpoi nt Manipulator

By default, floating-point numbers are not displayed with trailing zeros, and floating-point

numbers that do nor have a fractional part arc not displayed with a decimal point. For

example, look at the following code:

double x = 123.4, y = 456.0;
cout << setprecision(6) << x << endl;
cout << y << endl;

118 Chapter 3 Expressions and Interactivity

The cout scatcmcnrs will produce the following output:

123.4
456

Although six significant dig its arc specified for both numbers, neither number is displayed
with trailing zeros. If we want the numbers padded wirh trailing zeros, we must use the
showpoi nt manipulator as shown in the followi ng code:

double x = 123.4, y = 456.0;
cout << setprecision (6) << showpoi nt << x << endl;
cout << y << endl;

These cout st:nemcnrs will produce the following output:

123.400
456.000

NOTE: With most compilers, trailing zeros arc displayed when rhe setpreci sion
and fixed manipulnrors are used together.

The left and r i ght Manipulators
Normally output is right-justified. For example, look at the fo llowing code:

double x = 146 . 789 , y = 24.2 , z = 1 . 783;
cout << setw(10) << x << endl;
cout << setw(10) << y << endl;
cout << setw(10) << z << endl;

Each of the variables, x, y, and z, is displayed in a print field of 10 spaces. The ourpur of
the cout statements is

146.789
24.2

1 .783

Notice each va lue is right-justified, or aligned to rhe right of its print field. You can cause
the values to be left-justified by using the left manipulator, as shown in the following code.

double x = 146 . 789 , y = 24.2 , z = 1 . 783;
cout << left << setw(10) << x << endl:
cout << setw(10) << y << endl;
cout << setw(10) << z << endl ;

The output of these cout statements is

146.789
24.2
1. 783

In this case, the numbers arc a ligned ro the left of their print fields. The left manipulator
remains in effect until you use the right manipulator, which causes a ll subsequent output
to be right-just ified.

raul garcia

raul garcia

3.7 Formatting Output 119

Table 3-12 summarizes the manipulators we have discussed.

Table 3-12 Stream Manipulators

Stream Manipulat0r Description

setw(n)

fixed

showpoint

Establishes a print field of /1 spaces.

Displays floating-point numbers in fixed-point notation.

Causes a decimal point and trailing zeros to be displayed,
even if there is no fractional part.

setpreci sion (n)

left

Sets the precision of floating-point numbers.

Causes subsequent output to be left-justified.

Causes subsequent output to be right-justified. right

~ Checkpoint
3.17 Write cout statements with stream manipulators that perform the fo llowing:

A) Display the number 34.789 in a field of nine spaces with two decimal places

of precision.
B) Displny rhe number 7.0 in a field of five spaces with three decimal places of

precision.
T he decimal point and any trai ling zeros should be displayed.

C) Display the number 5.789e+l2 in fi xed-point notation.
D) Display the number 67 left-justified in a fie ld of seven spaces.

3.18 The following program will not compile because the lines have been mixed up:

#include <iomanip>
}
cout <<person<< endl;
string person= "Wolfgang Smith";
int main()
cout << person << endl ;
{
#include <iostream>
return 0;
cout << left;
using namespace std;
cout << setw(20);
cout << right;

When the lines are properly arranged, the program should display the following:

Wolfgang Smith
Wolfgang Smith

Rearrnnge the li nes in the correct o rder. Test the program by enteri ng it on the

computer, compili ng it, and running it.

raul garcia

raul garcia

raul garcia

raul garcia

raul garcia

120 Chapter 3 Expressions and Interactivity

3 .19 The fo llowing program skeleton asks for an angle in degrees and converrs it to
radians. The formarring of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std ;

int main()
{

const double PI = 3.14159;
double degrees . radians;

cout << "Enter an angle in degrees and I will convert it\ n" ;
cout << "to radians for you: ";
ci n » degrees;
radians = degrees • PI I 180;
II Display the value in radians lef t- justif i ed, in fixed
II point notation, with 4 places of precision , in a field
II 5 spaces wide, making sure the decimal point is always
II displayed.
return O;

Working with Characters and string Objects

CONC EPT: Special functions exist for working with characters and s tring objects.

Although it is possible to use ci n with the » operator to input strings, it can cause prob
lems of which you need to be aware. When ci n reads input, it passes over and ignores
any leading whitespace characters {spaces, tabs, or line breaks). Once it comes to the first
non blank character and starrs reading, it stops reading when it gets to the next whitespace
character. Program 3-18 illustrates this problem.

Program 3-18

1 II This program illustrates a problem that can occur if
2 II cin is used to read character da ta into a st r ing object .
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7
8
9

10
11

int
{

main()

string name;
string city;

12 cout << "Please enter your name : ";
13 cin >> name;
14 cout << "Enter the city you live in: "·
15 cin >> city;
16

3.8 Working with Characters and string Objects 121

17 cout << "Hello, • << name << endl;
18 cout << "You live in " << city cc endl;
19 return O;
20

Program Output with Example Input Shown In Bold
Pl ease enter your name: Kate Smith (Enter)

Enter the c ity you live in : Hello , Kate
You live in Smith

Notice rhe user was never given rhe opportunity to enter the city. In the first input state
ment, when ci n came to rhe space between Kate and Smith, it stopped reading, storing just
Kate as the value of name. In the second input statement, ci n used the leftover characters
it fo und in the keyboard buffer and stored Smith as the value of city.

To work around this problem, you can use a C++ function named get 1 i ne. The get 1 i ne
function reads an entire line, including leading and embedded spaces, and stores it in a
string object. The getl i ne function looks like the following, where ci n is the input stream
we arc reading from and i nputl i ne is the name of the string object receiving the input:

getline(cin, inputline);

Program 3- 19 illustrates using the get l i ne function.

Progra m 3-19

1 II This program demonstrates using the getline function
2 II to read character data into a string object.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7
8
9

10
11

int
{

main()

string name;
string city;

12 cout << "Please enter your name: ";
13 getline(cin, name);
14 cout << "Enter the city you live in: "·
15 getline(cin, city);
16
17 cout cc "Hello, " << name << endl;
18 cout << "You live in " << city << endl;
19 return O;
20

Program Output with Example Input Shown in Bold
Pl ease enter your name : Kate Smith (Enter)

Ent er the city you live in : Raleigh (Enter)

Hello , Kate Smith
You live in Ralei gh

122 Chapter 3 Expressions and Interactivity

Inputting a Character
Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections are denoted by the
letters A, B, C, and so fo rth. The user chooses an item from the menu by typing a character.
The simplest way to read a single character is with ci n and the >> operator, as illustrated
in Program 3-20.

Program 3-20

1 // This program reads a single character into a char vari able.
2 #include <iostream>
3 using namespace std ;
4
5 int ma i n ()
6
7 char ch;
8
9 cout << "Type a character and press Enter: ";

10 cin >> ch ;
11 cout <<"You entered"<< ch<< endl;
12 ret urn O;
13

Program Output with Example Input Shown in Bold

Type a character and press Enter: A [Enter)

You entered A

Using ci n . get
As with string input, however, there are times when using ci n >> to read a character does
not do what you want. For example, because it passes over all leading whitespace, it is
impossible to input just a blank o r [Enter! with ci n » . The program will not continue past
the ci n statement until some character other than the space bar, tab key, or [Enter! key has
been pressed. {Once such a character is entered, the [Enter) key must still be pressed before
the program can continue to the next statement.) Thus, programs that ask the user to
"Press the Enter key to continue. " cannot use the >> operator to read only the
pressing of the (Enter) key.

In those situ ations, the ci n object has a built-in function named get that is helpful. Because
the get function is built into the ci n object, we say that it is a member function of ci n. The
get member function reads a single character, including any whitespace character. If the
program needs to store the character being read, the get member function can be called in
either of the following ways. In both examples, assume ch is the name of a char variable
into which the character is being read.

cin.get (ch} ;
ch = ci n. get() ;

3.8 Working with Characters and string Objects 123

If the program is using the ci n. get funcrion simply to pause the screen until the (Enter) key
is pressed and docs not need to store the character, the function can also be called like this:

cin.get();

Program 3-21 illustrates all three •.vays to use the ci n. get function .

Program 3-21

1 ff This program demonstrates three ways
2 ff to use cin .get() to pause a program.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch ;
9

10 cout << "This program has paused. Press Enter to continue.";
11 cin.get(ch);
12 cout << "It has paused a second time. Please press Enter again.";
13 ch = cin.get();
14 cout << "It has paused a third time . Please press Enter again.";
15 ci n . get() ;
16 cout << "Thank you!";
17 return O;
18

Program Output with Example Input Shown in Bold
This program has paused . Press Enter to continue . (Enter)
It has paused a second time . Please press Enter again . (Enterl
It has paused a third time . Please press Enter again . (Enter)
Thank you!

Mixing ci n >> and ci n . get
Mixing ci n >>with ci n. get can cause an annoying and hard-re-find problem. For exam
ple, look at Program 3-22.

Program 3-22

1 fl This program demonstrates a problem that occurs
2 If when you mix cin >>with cin.get().
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch;
9 int number;

10

fl Define a character variable
fl Define an integer variable

(program continues)

124 Chapter 3 Expressions and Interactivi ty

Program 3-22 (continued)

11 cout << "Enter a number: ".
I

12 cin >> number; II Read an integer
13 cout << "Ente r a character: ".

I

14 ch = ci n. get() ; II Read a character
15 cout << "Thank You! \n";
16 return O;
17

Program Output with Example Input Shown in Bold

Enter a number : 100 (Enter]

Enter a character: Thank You!

When this program runs, line 12 lets the user enter a number, but it appears as rhough
the statement in line 14 is skipped. This happens because ci n » and ci n. get use slightly
different techniques for reading data.

In the exa mple run of the program, when line 12 execured, the user entered 100 and
pressed the !Enter] key. Pressing the (Enter] key causes a newline character ('\n') to be
stored in the keyboard buffer, as shown in Figure 3-5. The cin »statement in line 12
begins reading the data that the user entered, and stops reading when it comes to rhe
newline character. This is shown in Figure 3-6. The newline character is nor read, bur
remains in the keyboard buffer.

Figure 3-5 Contents of the keyboard buffer

Keyboard buffer

ci n begins _j
reading here.

Figure 3-6 ci n stops reading at the newline character

Keyboard buffer

ci n stops reading here. _j
but does not read the \ n

character.

When the ci n. get function in line 14 executes, it begins reading rhe keyboard buffer where
the previous input operation stopped. That means ci n. get reads the newline character,
without giving the user a chance to enter any more input. You can remedy this situation by
using rhe ci n . ignore function, described in the following section.

3.8 Working with Characters and string Objects 125

Using ci n . ignore
To solve the problem previously described, you can use another of the ci n object's member
functions named ignore. The ci n. ignore function cells the ci n object to skip one or more
characters in the keyboard buffer. Here is its general form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If used, n is an integer and c is a char
acter. They tell ci n to skip n number of characters, or until rhe character c is encountered.
For example, the following statement causes ci n to skip the next 20 characters or until a
newline is encountered, whichever comes first:

ci n. ignore (20, ' \ n') ;

If no arguments are used, ci n will skip only the very next character. Here's an example:

c i n. ignore() ;

Program 3-23, which is a modified version of Program 3-22, demonstrates the function.
Notice a call to ci n. ignore has been inserted in line 13, right after the ci n »statement.

Program 3-23

1 // This program successfully uses both
2 II cin >>and cin.get() for keyboard input.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch;
9 int number;

10
11 cout << "Enter a number: " ;
12 cin >> number;
13 cin.ignore(); II Skip the newline character
14 cout << "Enter a character: ";
15 ch = ci n. get() :
16 cout << "Thank You!\n";
17 return O;
18

Program Output with Example Input Shown In Bold
Enter a number : 100 (Enter!

Enter a character : Z (Enter)

Thank You!

126 Chapter 3 Expressions and Interactivity

3.9

string Member Functions and Operators

C++ string objects :ilso have a num ber of member functions. For example, if you want

to know the length of the string that is stored in a string object, you c:in ca ll the object's

length member function. Here is an example of how to use it:

s tring state = "Texas ":
int size= state.length();

T he first statement creates a string object named state and initializes it with the string

"Texas". The second statemem defines an int var iable named size and initializes it with

the length of the string in the state object. After this code executes, the size variable will

hold the value 5.

Certain oper:uors also work with string objects. One of them is the + operator. You

have already encountered the + operaror ro add two numeric quantities. Because strings

cannot be added, when this operator is used with string operands it concatenates them,

or joins them together. Assume we have the following defin itions and init ializations in a

program:

string greeting1 = "Hello ";
string greeting2;
string name1 = "World";
string name2 = "Peopl e ";

The following statements illustrate how string concatenation works:

greeting2 = greet1 ng1 + name1; II g r eet ing2 now hol d~ "He llo Wor l d"
greeting1 = greeti ng1 + name2; II greet ing1 now holds "Hel lo People"

Notice the string stored in greet i ng1 has a blank as its last character. If the blank were

not there, greeting2 would have been assigned the string "HelloWorld".

The last staremenr in rhe previous example could also have been written using the +=

combined assignment operator, ro achieve the same result:

greeting1 += name2;

You will learn about other useful string member functions and operators in Chapter 10.

More Mathematical Library Functions

~CONCEPT: The C++ runtime library provides several functions for performing complex

mathematical operations.

Earlier in this chapter, you learned to use the pow function to raise a number to a power. The
C++ li brary has numerous other functions that perform specialized mathematical opera

tions. These functions are useful in scientific and special-purpose programs. Table 3-13

shows severa l of these, each of \.vhich requi res rhc <cmath> header fil e.

3.9 More Mathematical Library Functions

Table 3-13 <cmath> Library Functions

Function Example Description

abs

cos

exp

fmod

1 og

log10

round

sin

sqrt

tan

y = abs(x); Returns the absolute value of the argument. The argument and
the return value are integers.

y = cos(x); Returns the cosine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

y = exp(x); Computes the exponential function of the argument, which is x.
The return type and the argument are doubles.

y = fmod(x, z) ; Retu rns, as a double, the remainder of the first a rgumenr
divided by the second argument. Works like rhe modulus opera-
tor, bur the arguments are doubles. (The modulus operator only
works with integers.) Take care not tO pass zero as the second
argument. Doing so would cause division by zero.

y = 1 og (x) ; Returns the natural logarithm of the argument. The return type
and the argument are doubles.

y = l og10 (x) ; Returns the base-10 logarithm of the argument. The return rype
and the argument are doubles.

y = round(x) The argument, x, can be a doub 1 e, a fl oat, or a 1 ong double.
Returns the value of x rounded to the nearest whole number. For
example, if x is 2.8, the function returns 3.0, or iJ xis 2.1., the function
returns 2.0. The return type is the same as the type of the argument.

y = sin(x); Returns the sine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

y = sqrt(x); Returns the square root of the argument. The return type and
argument are doubles.

y = tan(x); Returns the tangent of the argument. The argumenr should be
an angle expressed in radians. The return type and the argument
arc doub 1 es.

Each of these functions is as simple to use as the pow function. The following program
segment demonstrates the sqrt function, which returns the square root of a number:

cout << "Enter a number: ";
cin >> num;
s = sqrt(num);
cout <<"The square root of"<< num <<" is "<< s << endl;

Here is rhe output of the program segment, with 25 as the number entered by the user:

Enter a number: 25
The square root of 25 is 5

Program 3-24 shows the sqrt function being used to find the hypotenuse of a right triangle.
The program uses the following formula, taken from the Pythagorean theorem:

c = va2 + b2

In the formu la, c is the length of the hypotenuse, and a and b are the lengths of the other
sides of the triangle.

127

128 Chapter 3 Expressions and Interactivity

Program 3-24

1 // This program asks for the lengths of the two sides of a
2 JI right triangle. The length of the hypotenuse is then
3 II calculated and displayed.
4 #include <iostream>
5 #include <iomanip> II For setprecision
6 #include <cmath> II For the sqrt and pow functions
7 using namespace std;
8
9 int main()

10 {
11 double a, b, c;
12
13
14
15
16
17
18
19
20
21

cout << "Enter the length of side a:
cin >> a;
cout << "Enter the length of side b:
cin >> b ;
c :: sqrt(pow(a, 2.0) + pow(b , 2. 0));
cout << "The length of the hypotenuse
cout << setprecision(2) << c « endl;
return O;

".
'

" .
'

is " .

Program Output with Example Input Shown In Bold

Enter the 1 ength of side a: 5.0 (Enter)

Enter the 1 ength of side b: 12.0 (Enter)

The length of the hypotenuse is 13

The following statement, taken from Program 3-24, calculates the square root of the sum

of the squares of the triangle's two sides:

c = sqrt(pow(a, 2.0) + pow (b, 2.0));

Notice the following mathematical expression is used as the sqrt function 's argument:

pow(a, 2.0) + pow(b, 2.0)

This expression calls the pow function twice: once to calculate the square of a, and again to

calculate the square of b. These two squares arc then added together, and the sum is sent
to the sqrt function.

Random Numbers
Random numbers are useful for lots of different programming tasks. The fol lowing are just

a few examples:

• Random numbers are commonly used in games. For example, computer games that

let the player roll dice use random numbers ro represent the values of the dice.

3.9 More Mathematical Library Functions 129

• Programs chat show cards being drawn from a shuffled deck use random numbers co
represent the face values of the cards.

• Random numbers are useful in simulation programs. In some simulations, the com
puter must randomly decide how a person, animal, insect, or other living being will
behave. Formulas can be constructed in which a random number is used to determine
various actions and events chat rake place in the program.

• Random numbers are useful in statistical programs chat must randomly select data for
analysis.

• Random numbers are commonly used in computer security to encrypt sensitive data.

The C++ library has a function, rand (), chat you can use to generate random numbers.
(The rand () function requires the <cstdl i b> header file.) The number returned from the
function is an int . Here is an example of its usage:

y = rand();

After chis statement executes, che variable y will contain a random number. In actuality,
the numbers produced by rand ()are pseudorandom. The function uses an a lgorithm chat
produces the same sequence of numbers each time the program is repeated on the same
system. For example, suppose the following statements are executed:

cout <<rand() << endl;
cout << rand() << endl;
cout « rand () « endl ;

The three numbers displayed \.viii appear to be random, but each time the program runs,
the same tluee values will be generated. In order to randomize the results of rand (), the
s rand() function must be used. s rand () accepts an unsigned int argument, which acts
as a seed va lue for the algorithm. By specifying different seed values, rand () will generate
different sequences of random numbers.

A common practice for getting unique seed values is co call the ti me function, which is part
of the standard Ii bra ry. T he ti me function returns the number of seconds that have elapsed
since midnight, January L, 1970. The ti me functio n requires the <ct i me> header file, and
you pass 0 as an a rgument co the function. Program 3-25 demonstrates this. The program
should generate three different random numbers each time it is executed.

Program 3-25

1
2
3
4
5
6
7
8
9

10
11
12
13
14

II This program demonstrates random numbers.
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main()
{

II For rand and srand
II For the time function

II Get the system time.
unsigned seed = time(O);

II Seed the random number generator .
srand(seed);

(program continues)

130 Chapter 3 Expressions and Interactivity

Program 3-25 (continued)

15 II Display three random numbers.
16 cout << rand() << endl ;
17 cout << rand () << endl ;
18 cout « rand () << endl ;
19 return O;
20

Program Output

23861
20884
21941

If you wish ro limir rhe range of rhe random number, use the following formula:

y =(rand()% (maxValue - minVaJue + 1)) + minVaJue;

In rhe formula, mi nVa 7 ue is rhe lowest number in rhe range, and maxVa 7 ue is the highest
number in the range. For example, the following code assigns a random number in the
range of I through 100 to the variable y:

const int MIN_VALUE = 1;
const int MAX_VALUE = 100;
y = (rand() % (MAX_VALUE - MIN_VALUE + 1)) + MIN_VALUE;

As another example, the following code assigns a random number in the range of ·100
through 200 to the variable y:

const int MIN_VALUE = 100;
const int MAX_VALUE = 200;
y = (rand() % (MAX_VALUE - MIN_VALUE + 1)) + MIN_VALUE;

The following /11 the Spotlight section demonstrates how to use random numbers to simu
late rolling dice.

In the Spotlight:
Using Random Numbers
Dr. Kimura teaches an inrroductory statistics class a11d bas asked you to write a program
that he can use in class to simula te the rolling of dice. The program should randomly
generate two numbers in the range of 1 through 6 and display them. Program 3-26 shows
the program, with three exa mples of program output.

Program 3-26

1 II This program simulates rolling dice.
2 #include <iostream>
3 #include <cstdlib> II For rand and srand
4 #include <ctime> II For the time function
5 using namespace std;

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

; nt main()
{

II Constants

3.9 More Mathematical Library Functions 131

const int MIN_VALUE = 1;
const int MAX_VALUE = 6;

II Minimum die value
II Maximum die value

II Variables
int die1 ; II To hold the value of die #1
int die2 ; II To hold the value of die #2

II Get the system time.
unsigned seed= time(O);

II Seed the random number generator.
srand(seed);

cout << "Rolling the dice_\n";
die1 = (rand() % (MAX_VALUE - MIN_VALUE + 1)) + MIN_VALUE;
die2 = (rand() % (MAX_VALUE - MIN_VALUE + 1)) + MIN_VALUE;
cout << die1 << endl;
cout << die2 << endl;
return O;

Program Output

Roll ing the dice . . .
5
2

Program Output
Rolling the dice ...
4
6

Program Output
Roll ing the dice . ..
3
1

~ Checkpoint
3.20 \Xfrire a shorr descriprion of each of the following functions:

cos log sin
exp 1og10 sqrt
fmod pow tan

3.21 Assume the variables angl e1 and angl e2 hold angles stored in radians. Write
a staremenr rhar adds the sine of angl e1 to the cosine of ang l e2 and stores rhe
result in rhc variable x.

132 Chapter 3 Expressions and Interactivity

3.22 To find the cube root (the third root) of a number, raise it ro the power of 1h . To
find the fourth root of a number, raise it to the power of IA. Write a statement
that will find the fifth roor of the variable x and store the result in the variable y.

3.23 The cosecant of the angle a is

1
sm a

Write a statement that calculates the cosecant of the angle stored in the variable
a, and stores it in the variable y.

Hand tracing is a debugging process where you pretend that you are rhe computer execut
ing a program. You step through each of the program's statements one by one. As you look
at a statement, you record the contents that each variable will have after the statement exe
cutes. This process is often helpful in finding mathematical mistakes and other logic errors .

To hand trace a program, you consrruct a charr with a column for each variable. The rows
in the chart correspond ro rhe lines in rhe program. For example, Program 3-27 is shown
with a hand trace chart. The program uses the following four variables: num1, num2, num3,
and avg . Notice the hand trace charr has a column for each variable, and a row for each
line of code in function main.

Program 3-27

1 II This program asks for three numbers, then
2 II displays the average of the numbers .
3 #include <iostream>
4 using namespace std;

5 int main()

6

7 double num1, num2, num3, avg;

8 cout <<"Enter the first number: ";

9 cin >> num1;

10 cout <<" Enter the second number: ";

11 cin >> num2;

12 cout <<"Enter the third number : ";

13 cin >> num3;

14 avg = num1 + num2 + num3 I 3;

15 cout << "The average is • << avg << endl;

16 return O;

17

num1 num2 num3 avg

f--~~..-~~-t--~~--+-~----1

3.10 Focus on Debugging: Hand Tracing a Program 133

This program, which asks the user to enter three numbers and then displays the average
of the numbers, has a bug. It docs not display the co rrect average. The output of a sample
session with the program fo llows.

Program Output with Example Input Shown in Bold
Enter the first number : 10 (Enter)

Enter the second number: 20 (Enter)

Enter the third number : 30 (Ente r)

The average is 40

The correct average of 10, 20, and 30 is 20, not 40. To find the error, we will hand trace
the program. To hand trace this program, you step through each statemenr, observing rhe
operation that is taking place, then record the contents of the variables after the s tatement
executes. After the hand t race is complete, the chart will appea r as fo llows. We have written
question marks in the chart where we do not know the contents of a va riable.

Program 3-27 (with hand trace chart filled)

1 // This program asks fo r t hree numbers , t hen
2 // displays the aver age of t he numbers.
3 #include <iost ream>
4 using namespace s t d ;

5 int main()

6

7 double num1 , num2 , num3 , avg ;

8 cout << "Enter t he f irs t number: " ;

9 cin >> num1 ;

10 cout << "Enter the second number: " ;

11 cin >> num2;

12 cout << "Enter the third number: ";

13 cin >> num3;

14 avg = num1 + num2 + num3 I 3;

15 cout << "The average is " << avg « endl;

16 return O;

17

num1 num2 num3 avg

? ? ? ?

? ? ? ?

10 ? ? ?

10 ? ? ?

10 20 ? ?

10 20 ? ?

10 20 30 ?

10 20 30 40

10 20 30 40

Do you see the error? By examining the statement that performs the math operation in line
14, we find a mistake. The division operation takes place before the addition operations,
so we must rewrite that statement as

avg = (num1 + num2 + num3) I 3 ;

134 Chapter 3 Expressions and Interactivity

-.111111111

Hand tracing is a simple process that focuses your attention on each statement in a pro
gram. Often this helps you locate errors that are not obvious.

3.11 Focus on Problem Solving: A Case Study
~ General Crates, Inc. builds custom-designed wooden crates. With materials and labor, it

costs GCI $0.23 per cubic foot to build a crate. In tum, they charge their customers $0.50
per cubic foot for rhe crate. You have been asked to write a program char calculates the
volume (in cubic feet), cost, customer price, and profit of any crate GCI builds.

Variables
Table 3-14 shows the named constants and variables needed.

Table 3-14 Named Constants and Variables

Constant or Variable Description

COST_PER_CUBIC_FOOT A named constant, declared as a double and initialized with the
value 0.23. This represents the cost to buiJd a crate, per cubic foot.

CHARGE_PER_CUBIC_FOOT A named constant, declared as a double and initialized with the value
0.5. This represents the amount charged for a crate, per cubic foot.

length A double variable to hold the length of the crate, which is input by
the user.

width A double variable to hold the width of the crate, ·which is input by
the user.

height A double variable to hold the height of the crate, which is input by
the user.

volume A double variable to hold the volume of the crate. The value
stored in this variable is calculated.

cost A double variable to hold the cost of building the crate. The value
scored in this variable is calculated.

charge A double variable to hold the amount charged tO the customer for
the crate. The value stored in this variable is calculated.

profit A double variable to hold the profit GCI makes from the crate.
The value scored in chis variable is calculated.

Program Design
The program must perform the following general steps:

1. Ask rhe user co emer rhe dimensions of the crate (the crate's length, width, and height).
2. Calcu late the crate's volume, the cost of building the crate, the customer's charge, and

the profit made.
3. Display the data calcula ted in Step 2.

A general hierarchy chart fo r this program is shown in Figure 3-7.

3. 11 Focus on Problem Solving: A Case Study 135

Figure 3-7 Hierarchy chart for the prog ram

Calculate Crate Volume,
Cost, Price, and Profit.

1
l] l

Get Crate
Calculate Volume,

Display Calculated Cost, Customer
Dimensions. Charge, and Profit. Data.

The "Ger Crate Dimensions" step is shown in greater detail in Figure 3-8.

Figure 3-8 Hierarchy chart fo r the "Get Crate Dimensions" step

Get Crate Dimensions.

J
l] l

Get Length. Get Width. Get Height.

The "Calculate Volume, Cost, Customer Charge, and Profit" step is shown in greater detail
in Figure 3-9.

Figure 3-9 Hierarchy chart for the "Calculate Volume, Cost, Customer Charge, and Profit" step

Calculate Volume, Cost,
Customer Charge, and
Profit.

T
l T T l

Calculate the Calculate the Calculate the Calculate the
Crate's Volume. Crate's Cost. Customer Charge. Profit Made.

The " Display Calculated Data" step is shown in greater derail in Figure 3-10.

Figure 3-10 Hierarchy chart for the "Display Calculated Data" step

Display Calculated Data.

I
l I J l

Display the Display the Display the Display the
Crate's Volume. Crate's Cost. Customer Charge. Profit Made.

136 Chapter 3 Expressions and Interactivity

Pseudocode for the program is as fo llows:

Ask the user to input the crate's length.
Ask the user to input the crate's width.
Ask the user to input the crate's height.
Calculate the crate's volume .
Calculate the cost of building the crate.
Calculate the customer's charge for the crate.
Calculate the profit made from the crate.
Display the crate's volume .
Display the cost of building the crate.
Display the customer's charge for the crate.
Display the profit made from the crate.

Calculations
The following formulas will be used to calculate the crate's volume, cost, charge, and profit:

volume = length X width x height

cost = volume X 0.23

charge = volume X 0.5

profit = charge - cost

The Program
The last step is to expand the pseudocode into the final program, which is shown in
Program 3-28.

Program 3-28

1 II This program is used by General Crates, Inc. to calculate
2 II the volume, cost , customer charge, and profit of a crate
3 II of any size. It calculates this data from user input , which
4 II consists of the dimensions of the crate.
5 #include <iostream>
6 #include <iomanip>
7 using namespace std;
8
9 int main()

10 {
11 II Constants for cost and amount charged
12 canst double COST_PER_CUBIC_FOOT = 0.23;
13 canst double CHARGE_PER_CUBIC_FOOT = 0.5;
14
15
16
17
18
19
20

II Variables
double length,

width,
height ,
vol ume,
cost ,

II The crate's length
II The crate's width
II The crate's height
II The volume of the crate
II The cost to build the crate

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

3.11 Focus on Problem Solving: A Case Study 137

charge ,
profit;

II The customer charge for the crate
II The profit made on the crate

II Set the desired output formatting for numbers.
cout << setprecision(2) << fixed << showpoint;

II Prompt the user for the crate's length, width, and height.
cout << "Enter the dimensions of the crate (in feet):\n";
cout << "Length: ";
ci n » 1 ength ;
cout << "Width: ";
ci n » width ;
cout <<"Height: " ;
ci n » height;

II Calculate the crate' s volume, the cost to produce it,
II the charge to the customer, and the profit.
volume = length • width • height;
cost = volume • COST_PER_CUBIC_FOOT ;
charge = volume • CHARGE_PER_CUBIC_FOOT ;
profit = charge - cost;

II Display the calculated data.
cout <<"The volume of the crate is ";
cout <<volume<< "cubic feet.\n";
cout <<"Cost to build: $"<<cost << endl;
cout <<"Charge to customer: $"<<charge<< endl;
cout << "Profit : $" << profit << endl;
return O;

Program Output with Example Input Shown In Bold

Enter the dimensions of the crate (in feet) :
Length: 10 (Enter)

Width: 8 (Enter)

Height: 4 (Enter)

The volume of the crate is 320.00 cubic feet.
Cost to build: $73 .60
Charge to customer : $160 .00
Profit: $86. 40

Program Output with Different Example Input Shown In Bold

Enter the dimensions of the crate (in feet):
Length: 12.5 (Enter)

Width: 10.5 fEnter)

Height: 8 (Enter)

The volume of the crate is 1050.00 cubic feet .
Cost to build: $241 .50
Charge to customer: $525.00
Profit: $283 .50

138 Chapter 3 Expressions and Interactivity

Review Questions and Exercises
Short Answer

1. Assume the following variables are defined:

int age;
double pay;
char section;

Write a single ci n statement that will read input into each of these variables.

2. Assume a string object has been defined as follows:

string description;

A} Write a ci n statement that reads in a one-word string.

B) Write a statement that reads in a string that can contain multiple words separated
by blanks.

3. What header files must be tncluded in the following program?

int main()
{

double amount= 89.7;
cout << showpoint << fixed;
cout << setw(8) <<amount<< endl;
return O;

4. Complete the following table by determining the value of each expression.

Expression Value
28 I 4 - 2
6 + 12 • 2 - 8
4 + 8 • 2
6+17%3-2
2 + 22 • (9 - 7)
(8 + 7) • 2
(16 + 7) % 2 - 1
12 I (10 - 6)
(19 - 3) * (2 + 2) I 4

5. Write C++ expressions for the following algebraic expression ;:

a= 12x

z = Sx + 14y + 6k

)' = x4

h + J2
g = 4k

a 3

c = b2k4

Review Questions and Exercises 139

6. Assume a program has the following variable definitions:

int units;
float mass;
double weight;

and the following statement:

weight = mass • units;

Which automatic data type conversion will take place?

A) mass is demoted to an int, uni ts remains an int, and the result of mass • uni ts

is an int.

B) uni ts is promoted to a fl oat, mass remains a fl oat, and che result of mass •

uni ts is a fl oat.

C) uni ts is promoted to a fl oat, mass remains a fl oat, and the result of mass *

units is a double.

7. Assume a program has the following variable definitions:

int a, b = 2;
float c = 4. 2;

and rhe following statement:

a = b • c;

What value will be stored in a?

A) 8.4
B) 8

C) 0
0) None of the above

8. Assume qty and sal esReps are both integers. Use a type cast expression to rewrite

the following statement so it will no longer perform integer division.

unitsEach = qty I salesReps;

9. Rewrite the following variable definition so that the variable is a named constant.

int rate;

10. Complete the following table by providing statements with combined assignment

operators for the right-hand column. The statements should be equivalent to the state

ments in the left-hand column.

Statements with
Assignment Operator

x = x + 5;

total = total + subtotal :

dist = dist I rep;
ppl = ppl * period ;

inv = inv - shrinkage;
num = num % 2;

Statements with
Combined Assignment Operator

140 Chapter 3 Expressions and Interactivity

11. Write a multiple assignment statement that can be used instead of the following group
of assignmenr statements:

east = 1 ;
west = 1 ;
north = 1 ;
south = 1 ;

12. Write a cout statement so the variable di vSal es is displayed in a field of 8 spaces, in
fixed-point notation, with a precision of 2 decimal places. The decimal point should
always be displayed.

13. Write a cout statement so the variable total Age is displayed in a field of 12 spaces,
in fixed-point notation, with a precision of 4 decimal places.

l 4. Write a cout statement so the variable population is displayt·d in a field of 12 spaces,
left-justified, with a precision of 8 decimal places. The decimal point should always be
displayed.

Fill-in-the-Blank

15. The ____ library function returns the cosine of an angl•!.

16. The library function returns the sine of an angle.

17. The library function returns the tangent of an ang,le.

18. The library function rewrns the exponential function of a number.

19. The library function returns the remainder oi a floating-point division.

20. The library funcrion returns rhe natural logarithm of a number.

21. The library funcrion returns the base-10 logarithm of a number.

22. The library function returns the value of a number raised to a power.

23. The library function returns the square root of a number.

24. The file must be included in a program chat uses the mathematical functions.

Algorithm Workbench

25. A retail score grants its customers a maximum amount of 1:rcdit. Each customer's
available credit is his or her maximum amount of credit miniJS the amount of credit
used. Write a pseudocode algorithm for a program that asks for a customer's maxi
mum amount of credit and amount of credit used. The program should then display
the customer's available credit.

After you write the pseudocode algorithm, convert it to a complete C++ program.

26. Write a pseudocode algorithm for a program that calculates the total of a retail sale.
The program should ask for the amount of the sale and the i:a les tax rate. The sales
tax rate should be entered as a floating-point number. For example, if the sales tax
race is 6 percent, the user should enter 0.06. The program shculd display tbe amount
of sales tax and the tota l of the sa le.

After you write the pseuclocode algorithm, convert it to a COil1.plete C++ program.

Review Questions and Exercises 141

27. Wrire a pseudocode algorithm for a program that asks the user to enter a golfer's score

for three games of golf, and then displays the average of the three scores.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Find the Errors

Each o f the following programs has some errors. Locate as many as you can.

28. using namespace std ;
int main ()

double number1 , number2 , sum ;

Cout << "Enter a number : " ;
Cin « number1 ;
Cout << "Enter another number: ";
Cin << number2;
number1 + number2 = sum ;
Cout "The sum of the two numbers is " << sum
return O;

29. #include <iostream>
using namespace std ;

int main()

int number1 , number2 ;
float quotient;
cout « "Enter two numbers and I wi 11 di vi de \ n";
cout << "the first by the second for you .\ n";
cin >> number1 , number2;
quotient= float<static_cast>(number1) I number2 ;
cout << quotient
return O;

30. #include <iostream> ;
using namespace std ;

int main()

}

const int number1, number2, product;

cout <<"Enter two numbers and I will mu l tiply \ n" ;
cout << "them for you .\n";
cin >> number1 >> number2 ;
product = number1 * number2;
cout << product
return O;

142 Chapter 3 Expressions and Interactivity

31. #include <iostream>;
using namespace std ;

main
{

int number1, number2;

cout << "Enter two numbers and I will multiply\n"
cout <<"them by 50 for you. \ n"
cin >> number1 >> number2;
number1 =· 50 ;
number2 =· 50 ;
cout << number1 << " " << number2 ;
return 0 ;

32. #include <iostream>;
using namespace std;

main

double number, half ;

cout << "Enter a number and I will divide it \n"
cout <<"in half for you .\ n"
cin >> number1 ;
half =/ 2 ;
cout << fixedpoint << showpoint << half << endl ;
return O;

33. #include <i ostream> ;
using namespace std ;

int main()

}

char name , go ;

cout << "Enter your name: " ;
getline >> name ;
cout <<"Hi •<<name<< endl ;
return O;

Predict the Output

What will each of the following programs display? (Some should be hand traced and
require a calcu lator.}
34. (Assume the user enters 38700. Use a calculator.)

#include <iostream>
using namespace std ;

~

int main()
{

double salary, monthly;
cout <<"What is your annual sal ary? ";
cin >> salary;
monthly = static_cast<int>(salary) I 12 ;

Review Questions and Exercises 143

cout <<"Your monthly wages are"<< monthly<< endl;

return O;

35. #include <iostream>
using namespace std ;
int main ()
{

long x, y , z;

x = y = z = 4 ;
x += 2 ;
y -= 1 ;
z ·= 3 ;
cout cc x cc" "cc y cc" "cc z cc endl ;
return 0;

36. (Assume the user enters George Washington.)

#incl ude <iostream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

string userlnput;
cout << "What is your name? ";
getline(cin , userlnput) ;
cout cc "Hello " cc userlnput << endl;
return O;

37. (Assume the user enters 36720152. Use a calculator.)

#include <iostream>
#include <iomanip>
using namespace std ;

int main()
{

long seconds ;
double minutes, hours , days , months, year s;

cout << "Enter the number of seconds that have \ n";
cout << "elapsed since some time in the past and\n";
cout <<" I will tell you how many minutes , hours,\n";
cout <<"days , months, and years have passed: ";
cin >> seconds ;

144 Chapter 3 Expressions and Interactivity

VldeoNot•

Solving t he
St adium
Seating
Problem

minutes = seconds I 60 ;
hours = minutes I 60;
days = hours I 24;
years = days I 365;
months = years • 12 ;
cout << setprecision(4) <<fixed << showpoint << right;
cout << "Minutes: • << setw(6) << minutes << endl;
cout << "Hours : " << setw(6) << hours << endl ;
cout << "Days: " << setw(6) <<days<< endl ;
cout << "Months: " << setw(6) << months << endl;
cout << "Years : " << setw(6) << years << endl ;
return O;

Programming Challenges
1. Miles per Gallon

Write a program that ca lculates a car's gas mileage. The program should ask the user
to enter the number of gallons of gas the car can hold, and the nwnber of miles it
can be driven on a full rank. lt should then display the number of miles that may be
driven per gallon of gas.

2. Stadium Searing

There a re three seating categories at a stadium. For a softball i~ame, Class A sears cost
$15, Class B sears cost $12, and Class C seats cost $9. Write a program chat asks how
many tickers for each class of sears were sold, rhen displays the- amount of income gen
erated from ticket sales. Format your dollar amount in fixed-point nocarion, with two
decimal places of precision, and be sure the decimal point is a"ways displayed.

3. Test Average

Write a program that asks for five rest scores. The program should calculate the aver
age rest score and display it. T he number displayed should be formaned in fixed-point
notation, with one decimal point of precision.

4. Average R ainfall

Write a program that calculates the average rainfall for three: months. The program
should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fe ll each month. The program si1ould display a message
similar to the following:

The average rainfall for June, July, and August is 6.72 inches.

5. Male and Female Percentages

Write a program that asks the user for the nwnber of males and the number of fema les
registered in a class. The program should display the percentage of males and females
in the class.

Hint: Suppose there are 8 males a11d 12 females in a class. There are 20 stude11ts in the
class. The percentage of males ca11 be calculated as 8 + 20 = 0.4, or 40 percent. The
percentage of females can be calculated as 12 + 20 = 0.6, or 60 percent.

Programming Challenges 145

6. Ingredient Adjuster

A cookie recipe calls for the following ingredients:

• l.5 cups of sugar
• J cup of butter
• 2. 75 cups of flour

The recipe produces 48 cookies with this amount of the ingredients. Write a program

that asks the user how many cookies he or she wants to make, then displays the number

of cups of each ingredient needed for the specified number of cookies.

7. Box Office

A movie cheater only keeps a percentage of the revenue earned from ticket sales. The

remainder goes co the movie distributor. Write a program that calculates a theater's

gross and net box office profit for a night. The program should ask for the name of the

movie, and how many adult and child tickets were sold. (The price of an adult ticket is

$10.00 and a child's ticket is $6.00.) It should display a report similar to:

Movie Name:

Adult Tickers Sold:

Child Tickets Sold:

Gross Box Office Profit:

Net Box Office Profit:

Amount Paid co Distributor:

"Wheels of Fury"

382

127

$ 4,582.00

$ 916.40

$ 3,665.60

0 NOTE : Assume the theater keeps 20 percent of the gross box office profit.

8. How Many Widgets?

The Yukon Widger Company manufactures widgets that weigh 12.5 pounds each.

Write a program that calculates how many widgets are stacked on a pallet, based on

the total weight of the pallet. The program should ask the user how much the pallet

weighs by itseU and with the widgets stacked on it. It should then calculate and display

the number of widgers stacked on the pallet .

9. H ow Many Calorics?

A bag of cookies holds 30 cookies. The calorie information on the bag claims there are

10 "servings" in the bag and that a serving equals 300 calorics. Write a program that

asks the user co input how many cookies he or she actually are, then reports how many

total calories were consumed.

10. How Much Insurance?

Many financial experts advise chat property owners should insure their homes or build

ings for at least 80 percent of the amount it would cost to replace the structure. Write

a program that asks the user to enter the replacement cost of a building, then displays

the minimum amount of insurance he or she should buy for the property.

11. Automobile Costs

Write a program that asks the user to enter the monthly costs for the following expenses

incurred from operating his or her automobile: loan payment, insurance, gas, oil, tires,

14 6 Chapter 3 Expressions and Interactivity

and maintenance. The program should then display the total monthly cost of these
expenses, and the total annual cost of these expenses.

12. Celsius to Fahrenheit

Write a program tbat converts Celsius temperatures to Fahrt·nheit temperatures. The
formula is

F = ~C + 32
5

Pis the Fahrenheit temperature, and C is the Celsius temperaliure.

13. Currency

Write a program that will convert U.S. dollar amounts to Japanese yen and to euros,
storing the conversion factors in the constants YEN_PER_DOLLAR and EUROS_PER_
DOLLAR. To get the most up-to-dare exchange rates, search the Internet using the term
"currency exchange rare" . If you cannot fi nd the most recent exchange rates, use the
following:

l Dollar = 98.93 Yen
1 Dollar = 0.74 Euros

Format your currency amounts in fixed-point notation, with two decimal places of
precision, and be sure the decima l poim is always displayed.

14. Monthly Sales T ax

A retail company must fi le a monthly sales tax report listing the· sales for the month and
the amount of sales tax collected. Write a program that asks for the month, the year,
and the total amount collected at the cash register (i.e. sales plus sales tax). Assume the
state sales tax is 4 percent, and the county sales tax is 2 percent.

If the total amounr collected is known and the rotal sales tax is 6 percent, the arnounr
of product sales may be calculated as:

T
s = 1.06

S is the product sales and T is the total income (product sales plus sales tax).
The program should display a report similar to:

Month : Oct ober

Total Collected:
Sales:
County Sales Tax:
Stat e Sal es Tax:
Total Sales Tax:

15. Property T ax

$ 26572 .89
$ 25068 .76
$ 501. 38
$ 1002.75
$ 1504' 13

A county collects property taxes on the assessment value of property, which is 60 per
cent of the property's actual value. If an acre of land is valued at $10,000, its assessment
value is $6,000. The property tax is then 75¢ for each $100 of the assessment value.
The tax for the acre assessed at $6,000 will be $45. Write a program that asks for the
actual value of a piece of property, then displays the assessment value and property rax.

Programming Challenges 147

16. Senior Citizen Proper ty Tax

Madison County provides a $5,000 homeowner exemption for its senior citizens. For

example, if a senior's house is valued at $158,000, its assessed value would be $94,800,

as explained above. However, he would only pay tax on $89,800. At last year's tax

rate of $2.64 for each $100 of assessed value, che property tax would be $2,370.72. In

addition co the tax break, senior citizens are allowed co pay their property rax in four

equal payments. The quarterly payment due on this property would be $592.68. Write

a program chat asks the user co input the actual value of a piece of property and the

current tax race for each $100 of assessed value. The program should then calculate

and report how much annual property rax a senior homeowner will be charged for this

property, and what rhe quarterly tax bill will be.

17. Math Tutor

Write a program that can be used as a mat.h tutor for a young student. The program

should display two random numbers to be added, such as

247
+129

The program should rhen pause while the student works on the problem. When the

student is ready to check the answer, he or she can press a key and the program will

display the correct solution:

247
+129

376

18. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a

savings account after one year may be calculated as

A P
. .

1
(Rate r

mount = r1 nc1 pa x 1 + --)
T

Principal is the balance in the savings account, Rate is the interest rate, and T is

the number of times the interest is compounded during a year (T is 4 if the interest is

compounded quarterly) .

Write a program char asks for the principal, the interest rare, and the number of times

the interest is compounded. It should display a report similar ro:

I nterest Rate:
Times Compounded :
Pri nci pal :
Interest:
Amount in Savings:

19. Monthly Paym ents

4 .25%
12

$ 1000 .00
$ 43.34
$ 1043.34

The monthly payment on a loan may be calculated by the fo llowing formula:

Rate x (1 + Rate}H
Payment = x L

((1+Rate}H - 1}

148 Chapter 3 Expressions and Interactivity

Rate is the monthly interest rare, which is the annual interest rare divided by 12.
(12 percent annual inrerest would be 1 percent monthly interest.) N is rhe number of
payments, and L is the amount of the loan. Write a program that asks for these values
then displays a report similar to:

Loan Amount: $ 10000.00
Monthly I nterest Rate: 1%
Number of Payments: 36
Monthly Payment: $ 332 .14
Amount Paid Back: $ 11957.15
Interest Paid: $ 1957.15

20. Pizza Pi

Joe's Pizza Palace needs a program to calculate the number of slices a pizza of any size
can be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.
B) Calculate the number of slices that may be taken from a pizza of rhar size.
A) Display a message telling rhe number of slices.

To calculate the number of slices that may be taken from the pizza, you must know
the following facts:

• Each slice should have an area of 14 .l 25 inches.
• To calculate the number of slices, simply divide the area of the pizza by 14.125.
• The area of the pizza is calculated with chis formula:

Area= rtr2

NOTE: 1t is the Greek letter pi. 3.14159 can be used as its value. The variable r is the
radius of the pizza. Divide the diameter by 2 to get the radius.

Make sure the output of the program displays the number of slices in fixed-point nota
tion, rounded to one decimal place of precision. Use a named constant for pi.

21. How Many Pizzas?

Modify the program you wrote in Programming Challenge 20 {Pizza Pi) so it reports
the number of pizzas you need to buy for a party if each person attending is expected
to eat an average of four slices. The program should ask the user for the number of
people who will be at the party, and for the diameter of the pizzas to be ordered. It
should then calculate and display the number of pizzas to purchase.

22. Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program
should then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and
tan library functions to determine these values.) The output should be displayed in
fixed-point notation, rounded to fou r decimal places of precision.

23. Stock T ransaction Program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details of
the purchase:

• The number of shares that Joe purchased was 1,000.
• When Joe purchased the stock, he paid $45.50 per share.

Programming Challenges 149

• Joe paid his stockbroker a commission that amoumed to 2 percent of the amount

he paid for the stock.

Two weeks later, Joe sold the stock. Herc are the derails of the sale:

• The number of shares that Joe sold was 1,000.
• He sold the stock for $56.90 per share.
• He paid his stockbroker another commission that amounted to 2 percent of the

amount he received for the stock.

Write a program that displays the following information:

• The amount of money Joe paid for the stock.
• The amount of commission Joe paid his broker when he bought the stock.

• The amount that Joe sold the stock for.
• The amount of commission Joe paid his broker when be sold the stock.
• Display the amount of profit that Joe made after selling bis stock and paying the

cwo commissions to his broker. (If the amount of profit that your program displays
is a negative number, then Joe lost money on the transaction.)

24. Planting Grapevines

A vineyard owner is planting several new rows of grapevines, and needs to know how
many grapevines to plant in each row. She has determined that after measuring the

length of a future row, she can use the following formula to calculate the number of
vines that will fit in the row, along with rhe trellis end-post assemblies char will need
to be constructed at each end of the row:

R-2E
V=-s-
The terms in the formula are:

Vis the number of grapevines that will fit in rhe row.
R is the length of the row, in feet.
E is the amount of space, in feer, used by an end-post assembly.
Sis the space between vines, in feet.

Write a program that makes the calcularion for the vineyard owner. The program

should ask the user to input the following:

• The length of the row, in feet
• The amount of space used by an end-post assembly, in feet
• The amount of space between che vines, in feet

Once the input data has been entered, the program should calculate and display the
number of grapevines that will fir in the row.

25. Word Game

Write a program that plays a word game with the user. The program should ask the

user to enter the following:

• H is or her name
• His or her age
• The name of a city
• The name of a college
• A profession

150 Chapter 3 Expressions and Interactivity

• A type of animal
• A per's name

After the user has enrered these items, the program should display the following story,
inserting the user's input inro the appropriate locations:

There once was a person named NAl1E who l i ved i n CITY. At the age of AGE,
NAl1E went to college at COLLEGE. NA/1E graduated and went to work as a
PROFESSION. Then, NA/1E adopted a(n) ANINAL named PETNA/1E. They both lived
happily ever after!

4.1

TOPICS

4.1 Relational Operators

4.2 The if Statement

4.3 Expanding the if Statement

4.4 The if/else Statement

4.5 Nested if Statements

4.6 The if I e 1 se if Statement

4.7 Flags

4.8 Logical Operators
4.9 Checking Numeric Ronges

with Logical Operators

Relational Operators

4.10 Menus
4.11 Focus on Software Engineering:

Validating User Input

4.12 Comparing Characters and Strings

4.13 The Conditional Operator

4.14 The switch Statement

4.15 More about Blocks and Variable

Scope

~CONCEPT: Relational operators allow you to compare numeric and char values and

determine whether one is greater than, less than, equal to, or not equal

to another.

So far, the programs you have written fo llow chis simple scheme:

• Gather input from the user.
• Perform one or more calculations.
• Display chc results on the screen.

Computers arc good at performing calculations, bur they are also quire adept at comparing

values ro determine whether one is greater than, less than, or equal ro rhc orhcr. These types

of operations arc vnluable for tasks such as examin ing sa les figures, determining profit and

loss, checking a number to ensure it is within an ::tccepcable range, and va lidati ng the input

given by a user.

Numeric darn is compared in C++ by using relational operators. Ench rcl:nional opera

ror determines whether a specific relationship exists between rwo values. For example,

151

152 Chapter 4 Making Decisions

the greater-than opera tor (>) determines if a va lue is greater than another. The equaliry
operaror (==) determines if rwo values are equa l. Table 4-1 lists a ll of C++'s relarional
operators.

Table 4-1 Relational Operators

Relationa l Opera tors Meaning

>

<

>=

<=

!=

Greater than

Less than

Greater than or equal to

Less than or equal ro

Equal to

Not equal ro

All of the relationa l operators are binary, which means they use two operands. Here is an
example of an expression using the greater-than operaror:

x > y

T his expression is called a relational expression. It is used to determine whet her xis greater
than y. The following expression determines whether x is less than y :

x < y

Table 4-2 shows examples of several relationa l expressions that compare the va riables x
and y.

Table 4-2 Relational Expressions

Expression What the Expression Means

x > y

x < y

x >=

x <=

x --
x !=

y

y

y

y

Is x greater rhan y?

Is x less than y?

Is x greate r than or equal to y?

ls x less t han or equa l to y?

Is x equal to y?

Is x not equal to y?

NOTE: All the relational operators have lefr-ro-right associativity. Reca ll that asso
ciativiry is the o rder in which an oper:iror works with its operands.

The Value of a Relationship
So, how are relational expressions used in a program? Remember, all expressions have a
value. Relational expressions a re a lso known as Boolean expressions, which means their
value can only be true or false. If x is greater than y, the expression x > y will be true,
while the expression y == x will be false.

	Part 1
	Table of Contents
	Part 2
	Part 3
	Part 4
	part 5
	part 6
	part 7
	part 8
	part 9
	part 10
	part 11

