
ADSV 2420, Advanced Programming I

 REMEMBER TO CLEAN AND BUILD before you run any class. JavaFX uses the last
created JAR. Any changes to your code will not be reflected on the screen unless you clean
and build.

1. Use Netbeans and Create a new project named FX1:
File > New Project > JavaFX > JavaFX Application.
You will get the code given below.

 Explanation of code: The class FX1 is derived from class Application and we override method
start . The method start takes as a parameter primaryStage which is of type Stage.

1. We create a Button (line 15) and we add to the button a listener (lines 17-25) using an anonymous
class (new EventHandler). We will see anonymous classes a little later.

2. We create a StackPane and we add the Button to the children of the StackPane. (lines28-28)
3. We create a Scene and we add the StackPane to the Scene. (line 30)
4. We add the Scene to the Stage (line 33)
5. We show the Stage (line 34)

Go through every line of code, and understand it. Run the program.

Understanding of JavaFX Architecture
1. The Stage HAS-A a Scene
2. The Scene HAS-A Parent that IS-A Node.
3. Pane could have (HAS-A) many Node(s) such as Shape(s) ImageView(s)
4. Control (Button, TextField) IS-A Parent. Parent IS-A Node
5. FlowPane, GridPane etc, IS-A Pane. Pane IS-A Parent. Parent IS-A Node.

2. Add a new class to your package and name it ShowCirlce .
 Run it to display a red circle with blue perimeter of radius 20, centered at x=150 and y = 80.

3. Add a new class to your package and name it ShowRectangle as you did with ShowCircle.
 Use Rectangle r = new Rectangle(30,30, 88, 44); to create a rectangle at x=30, y=30, width =88,

height = 44.Make its perimeter (stroke) black, and its body (fill) red.

4. The following code uses the binding property that enables a target object Circle displayed on
screen to be bound to a source object Circle in memory. If the value in the object Circle in
memory changes, then the target property of Circle displayed on screen is also changed
automatically. The target object is simply called a binding object or a binding property. In lines 21
and 22 we bind the center of the circle (x, y) to half of the width and hight of the containing Pane,
so the circle is always centered. Size(increase/decrease) the Window (Pane) and you will see
that circle increases/ decreases and remains centered.

5. Add a new class ShowRectangleProportional. Bind its width and height properties to the width and
height of the pane respectively as show below:

 r.widthProperty().bind(pane.widthProperty().divide(2));
 r.heightProperty().bind(pane.heightProperty().divide(2));

The default (x,y) coordinates are (0,0) for its left top corner. Make the rectangle display at (50, 50). The
rectangle is green with blue perimeter. Use setX, setY to display the rectangle at (50, 50).

6. One direction Binding. The code below binds d1 to d2. If d2 changes, then d1 changes. Create the
class and run the program.

7. Bidirectional binding. The code below binds d1 to d2 and d2 to d1. If d1 changes, then d2 changes
and if d2 changes then d1 changes. Create the class and run the program.

8. (10 points) Create a class Checkerboard that displays a checkerboard in which each square is of
type Rectangle with a fill color yellow or blue. Your checkerboard should start at (0,0). The size
of the screen should be initially 800x800. Bind the width and height of each square to 1/10 of the
screen width and height (800/10 = 80), which makes the size of the square width=80, height=80.
Hint: Use an 8x8 2D array of type Rectangle and set the properties (binding-width, binding-height,
x, y) of each rectangle inside your nested for loops.

