South Louisiana Community College ASDV 1220, Programming Fundamentals Lab 12

Work with same partner unless your instructor reassigns you. ALTERNATE the roles of Coder, Navigator in each problem.

Learning Objectives

After completion of this lab, you should be able to

- 1. Understand keywords continue, break
- 2. Understand nested for loops
- 2. Understand nested while loops

Create project Lab12

Create a class **ForNested1**, write the code as shown below that prints the indexes of the outer and inner loop. Consider the two nested loops a table generator where the outer loop generates a row number **i** starting at 0 and the inner loop generates the columns **j** of the row **i**, again starting at 0.

```
package lab12;
1
2
3
     public class ForNested1
 4
5
          public static void main(String[] args)
6
7
              for ( int i = 0; i < 3; ++i)
8
                  System.out.print("(i, j) = ");
9
10
                  for ( int j = 0; j < 4; ++j)
                      System.out.print( "(" + i + ", " + j + ") ");
11
12
                  System.out.println();
13
14
          }
15
     }
```

Problem 2

Create a class **WhileNested2**, write code as shown below. Again it prints the indexes of the outer and the inner loop. The only difference between this problem and Problem 1 is that in this problem the outer for-loop was replaced by a while-loop.

Line 6: Condition

Line 7: Initialization of condition

Line 15: Update of the condition

```
1
     package lab12;
2
3
     public class WhileNested1
4
     {
 5
          public static void main(String[] args)
6
   —
          {
7
          int i = 0;
8
          while (i < 3)
9
              System.out.print("(i, j) = ");
10
11
              for ( int j = 0; j < 4; ++j)</pre>
                  System.out.print( "(" + i + ", " + j + ") ");
12
              System.out.println();
13
14
15
              ++i;
16
              }
17
          }
     }
18
```

Create a class **WhileNested3**, write code to replace the for-loop of Problem 2 with a while-loop. In other words, generate the indexes i,j as in Problem1 and Problem 2 but this time use 2 nested while-loops.

Problem 4

Create a class **NestedForPatternA**. Use nested for-loops that display the following pattern:

1					
1	2				
1	2	3			
1	2	3	4		
1	2	3	4	5	
1	2	3	4	5	6

Problem 5

Create a class **NestedForPatternB**. Use nested for-loops that display the following pattern:

1	2	3	4	5	6
1	2	3	4	5	
1	2	3	4		
1	2	3			
1	2				
1					

Create a class **NestedWhilePatternC**. Use nested while-loops that display the following pattern:

					1	
				2	1	
			3	2	1	
		4	3	2	1	
	5	4	3	2	1	
6	5	4	3	2	1	

Problem 7

Create a class **NestedWhilePatternD**. Use nested while-loops that display the following pattern:

1	2	3	4	5	6
	1	2	3	4	5
		1	2	3	4
			1	2	3
				1	2
					1

Problem 8

Create a class NestedForPyramid. Write nested for-loops that print the following output:

	•	ر <i>ب</i>	L											
							1							
						1	2	1						
					1	2	4	2	1					
				1	2	4	8	4	2	1				
			1	2	4	8	16	8	4	2	1			
		1	2	4	8	16	32	16	8	4	2	1		
	1	2	4	8	16	32	64	32	16	8	4	2	1	
1	2	4	8	16	32	64	128	64	32	16	8	4	2	1

Problem 9

Create a class NestedWhilePyramid. Write nested while-loops hat print the same output as problem 8.

4 Of 7 – SLCC, ASDV 1220, Lab12

Create a class **TestBreak1** as shown below that uses a while loop to execute 20 times and *breaks* when the variable sum is greater or equal to 100.

Create a class **TestContinue1** as shown below that uses a while loop to execute 20 times and *continues* when the variable number is 10 or 11. The program has an infinite loop. Fix it.

Create a class **Palindrome1** as shown below. The class uses a while loop to determine whether a word (string) entered by the user is a palindrome. For example, "mom", "dad" are palindromes. Set a breakpoint at line 24 and use the debugger to understand how the loop works for strings "mom" and "aba".

```
package lab9;
 1
 2
   □ import java.util.Scanner;
       public class Palindrome1
 3
 4
       ł
 5
 6
           public static void main(String[] args)
 7
   Ð
           {
 8
               // Create a Scanner
 9
               Scanner input = new Scanner(System.in);
10
11
               // Prompt the user to enter a string
12
               System.out.print("Enter a string: ");
               String s = input.nextLine();
13
14
15
               // The index of the first character in the string
               int low = 0;
16
17
18
               // The index of the last character in the string
19
               int high = s.length() - 1;
20
21
               boolean isPalindrome = true;
               while (low < high)</pre>
22
23
                 {
                    if (s.charAt(low) != s.charAt(high))
24
25
                      {
                        isPalindrome = false;
26
27
                        break;
                     }
28
29
30
                    low++;
31
                    high--;
32
                 }
33
34
               if (isPalindrome)
35
                 {
                    System.out.println(s + " is a palindrome");
36
                 }
37
38
               else
39
                 {
                    System.out.println(s + " is not a palindrome");
40
41
                 }
42
           }
43
       }
```

