Example of Computing a Minimal Cover

Let R = R(A, B, C, D, E, G, H) F = {1. CD \rightarrow AB, 2. C \rightarrow D, 3. D \rightarrow EH, 4. AE \rightarrow C, 5. A \rightarrow C, 6. B \rightarrow D}.

The process of computing a minimal cover of F is as follows:

(1) Break down the right hand side of each fd's. After performing step (1) in the algorithm, we get $F' = \{$ 1. CD \rightarrow A, 2. CD \rightarrow B,

3. $C \rightarrow D$, 4. $D \rightarrow E$, 5. $D \rightarrow H$, 6. $AE \rightarrow C$, 7. $A \rightarrow C$, 8. $B \rightarrow D$ }.

(2) Eliminate redundancy in the left hand side by eliminating redundant attributes: The fd 1.CD → A is replaced by C → A. This is because C → D a (F') + , hence C → CD a (F') + ; from C → CD a (F') + and CD → A a F', by transitivity, we hav e C → A a (F') + and hence CD → A should be replaced by C → A.

Similarly for fd 2. : $CD \rightarrow B$ is replaced by $C \rightarrow B$,

Similarly for fd 6. : AE \rightarrow C is replaced by A \rightarrow C.

 $\mathbf{F'} = \{\mathbf{1}. \mathbf{C} \rightarrow \mathbf{A}, \ \mathbf{2}. \mathbf{C} \rightarrow \mathbf{B}, \mathbf{3}. \ \mathbf{C} \rightarrow \mathbf{D}, \mathbf{4}. \ \mathbf{D} \rightarrow \mathbf{E}, \mathbf{5}. \ \mathbf{D} \rightarrow \mathbf{H}, \mathbf{6}. \ \mathbf{A} \rightarrow \mathbf{C}, \mathbf{7}. \ \mathbf{B} \rightarrow \mathbf{D}\}$ after step (2).

(3) Remove redundant fd's. The fd C \rightarrow D is eliminated because it can be derived from C \rightarrow B and B \rightarrow D and hence it is redundant.

The F' now becomes $\{1. C \rightarrow A, 2. C \rightarrow B, 3. D \rightarrow E, 4. D \rightarrow H, 5. A \rightarrow C, 6. B \rightarrow D\}$, which is the only minimal cover of F.