228

Section 2 More SQL skills as you need them

Perspective

Subqueries are a powerful tool that you can use to solve difficult problems.
Before you use a subquery, however, remember that a subquery can often be
restated more clearly by using a join. If so, you'll typically want to use a join
instead of a subquery.

If you find yourself coding the same subqueries in multiple places, you
should consider creating a view for that subquery as described in chapter 12.
This will help you develop queries more quickly since you can use the view
instead of coding the subquery again. In addition, since views typically execute
more quickly than subqueries, this may improve the performance of your
queries.

Terms
subquery comment
introduce a subquery pseudocode
nested subquery common table expression (CTE)
correlated subquery recursive query
uncorrelated subquery recursive CTE
inline view
Exercises

1. Write a SELECT statement that returns the same result set as this SELECT
statement, but don’t use a join. Instead, use a subquery in a WHERE clause
that uses the IN keyword.

SELECT DISTINCT vendor name
FROM vendors JOIN invoices
ON vendors.vendor id = invoices.vendor_id
ORDER BY vendor_ name
2. Write a SELECT statement that answers this question: Which invoices have
a payment total that’s greater than the average payment total for all invoices
with a payment total greater than 07

Return the invoice_number and invoice_total columns for each invoice. This
should return 20 rows.

Sort the results by the invoice_total column in descending order.

3. Write a SELECT statement that returns two columns from the
General_Ledger_Accounts table: account_number and account_description.

Return one row for each account number that has never been assigned to any
line item in the Invoice_Line_Items table. To do that, use a subquery intro-
duced with the NOT EXISTS operator. This should return 54 rows.

Sort the results by the account_number column.



Chapter 7 How to code subqueries

Write a SELECT statement that returns four columns: vendor_name, invoice_id,
invoice_sequence, and line_item_amount.

Return a row for each line item of each invoice that has more than one line
item in the Invoice_Line_Items table. Hint: Use a subquery that tests for
invoice_sequence > 1. This should return 6 rows.

Sort the results by the vendor_name, invoice_id, and invoice_sequence
columns.

Write a SELECT statement that returns two columns: vendor_id and the
largest unpaid invoice for each vendor. To do this, you can group the result set
by the vendor_id column. This should return 7 rows.

Write a second SELECT statement that uses the first SELECT statement in its
FROM clause. The main query should return a single value that represents the
sum of the largest unpaid invoices for each vendor.

Write a SELECT statement that returns the name, city, and state of each
vendor that’s located in a unique city and state. In other words, don’t include
vendors that have a city and state in common with another vendor. This
should return 38 rows.

Sort the results by the vendor_state and vendor_city columns.

Use a correlated subquery to return one row per vendor, representing the
vendor’s oldest invoice (the one with the earliest date). Each row should
include these four columns: vendor_name, invoice_number, invoice_date, and
invoice_total. This should return 34 rows.

Sort the results by the vendor_name column.

Rewrite exercise 7 so it gets the same result but uses an inline view instead of
a correlated subquery.

Rewrite exercise 5 so it uses a common table expression (CTE) instead of an
inline view.

229






