InfiniSim/sim/timers.h

151 lines
5.6 KiB
C++

/*
* FreeRTOS Kernel V10.0.0
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software. If you wish to use our Amazon
* FreeRTOS name, please do so in a fair use way that does not cause confusion.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
#pragma once
#include "portmacro_cmsis.h" // TickType_t
#include <SDL2/SDL.h>
#include <chrono>
#include <cstdint>
#include <string>
class TimerHandle_t;
/*
* Defines the prototype to which timer callback functions must conform.
*/
typedef void (*TimerCallbackFunction_t)( TimerHandle_t xTimer );
struct TimerHandle_t {
bool running = false;
bool auto_reload = false;
SDL_TimerID timer_id = 0;
TickType_t xTimerPeriodInTicks;
std::string timer_name;
void * pvTimerID;
TimerCallbackFunction_t pxCallbackFunction;
};
constexpr uint32_t pdMS_TO_TICKS(uint32_t ticks) {
return ticks;
}
/**
* void *pvTimerGetTimerID( TimerHandle_t xTimer );
*
* Returns the ID assigned to the timer.
*
* IDs are assigned to timers using the pvTimerID parameter of the call to
* xTimerCreated() that was used to create the timer, and by calling the
* vTimerSetTimerID() API function.
*
* If the same callback function is assigned to multiple timers then the timer
* ID can be used as time specific (timer local) storage.
*
* @param xTimer The timer being queried.
*
* @return The ID assigned to the timer being queried.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*/
void *pvTimerGetTimerID(const TimerHandle_t &xTimer ); // return pvTimerID from xTimerCreate
/**
* void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
*
* Sets the ID assigned to the timer.
*
* IDs are assigned to timers using the pvTimerID parameter of the call to
* xTimerCreated() that was used to create the timer.
*
* If the same callback function is assigned to multiple timers then the timer
* ID can be used as time specific (timer local) storage.
*
* @param xTimer The timer being updated.
*
* @param pvNewID The ID to assign to the timer.
*
* Example usage:
*
* See the xTimerCreate() API function example usage scenario.
*/
void vTimerSetTimerID(TimerHandle_t &xTimer, void *pvNewID);
TimerHandle_t xTimerCreate(const char * const pcTimerName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload, // false=one-shot, true=recurring
void * const pvTimerID, // pointer passed to callback
TimerCallbackFunction_t pxCallbackFunction);
/**
* @param xTicksToWait Specifies the time, in ticks, that the calling task should
* be held in the Blocked state to wait for the stop command to be successfully
* sent to the timer command queue, should the queue already be full when
* xTimerStop() was called. xTicksToWait is ignored if xTimerStop() is called
* before the scheduler is started.
*/
bool xTimerStart(TimerHandle_t &xTimer, TickType_t xTicksToWait);
/*
* xTimerChangePeriod() changes the period of a timer that was previously
* created using the xTimerCreate() API function.
*
* xTimerChangePeriod() can be called to change the period of an active or
* dormant state timer.
*
* The configUSE_TIMERS configuration constant must be set to 1 for
* xTimerChangePeriod() to be available.
*/
bool xTimerChangePeriod(TimerHandle_t &xTimer, TickType_t xNewPeriod, TickType_t xTicksToWait);
/**
* xTimerReset() re-starts a timer that was previously created using the
* xTimerCreate() API function. If the timer had already been started and was
* already in the active state, then xTimerReset() will cause the timer to
* re-evaluate its expiry time so that it is relative to when xTimerReset() was
* called. If the timer was in the dormant state then xTimerReset() has
* equivalent functionality to the xTimerStart() API function.
*
* Resetting a timer ensures the timer is in the active state. If the timer
* is not stopped, deleted, or reset in the mean time, the callback function
* associated with the timer will get called 'n' ticks after xTimerReset() was
* called, where 'n' is the timers defined period.
*
* It is valid to call xTimerReset() before the scheduler has been started, but
* when this is done the timer will not actually start until the scheduler is
* started, and the timers expiry time will be relative to when the scheduler is
* started, not relative to when xTimerReset() was called.
*/
bool xTimerReset(TimerHandle_t &xTimer, TickType_t xTicksToWait);
bool xTimerStop(TimerHandle_t &xTimer, TickType_t xTicksToWait);