InfiniSim/sim/drivers/Bma421.cpp

135 lines
3.5 KiB
C++

#include "drivers/Bma421.h"
#include <libraries/delay/nrf_delay.h>
#include <libraries/log/nrf_log.h>
#include "drivers/TwiMaster.h"
#include <drivers/Bma421_C/bma423.h>
using namespace Pinetime::Drivers;
namespace {
// int8_t user_i2c_read(uint8_t reg_addr, uint8_t* reg_data, uint32_t length, void* intf_ptr) {
// auto bma421 = static_cast<Bma421*>(intf_ptr);
// bma421->Read(reg_addr, reg_data, length);
// return 0;
// }
//
// int8_t user_i2c_write(uint8_t reg_addr, const uint8_t* reg_data, uint32_t length, void* intf_ptr) {
// auto bma421 = static_cast<Bma421*>(intf_ptr);
// bma421->Write(reg_addr, reg_data, length);
// return 0;
// }
//
// void user_delay(uint32_t period_us, void* intf_ptr) {
// nrf_delay_us(period_us);
// }
}
Bma421::Bma421(TwiMaster& twiMaster, uint8_t twiAddress) : twiMaster {twiMaster}, deviceAddress {twiAddress} {
// bma.intf = BMA4_I2C_INTF;
// bma.bus_read = user_i2c_read;
// bma.bus_write = user_i2c_write;
// bma.variant = BMA42X_VARIANT;
// bma.intf_ptr = this;
// bma.delay_us = user_delay;
// bma.read_write_len = 16;
}
void Bma421::Init() {
if (not isResetOk)
return; // Call SoftReset (and reset TWI device) first!
// auto ret = bma423_init(&bma);
// if (ret != BMA4_OK)
// return;
switch(bma.chip_id) {
case BMA423_CHIP_ID: deviceType = DeviceTypes::BMA421; break;
case BMA425_CHIP_ID: deviceType = DeviceTypes::BMA425; break;
default: deviceType = DeviceTypes::Unknown; break;
}
// ret = bma423_write_config_file(&bma);
// if (ret != BMA4_OK)
// return;
//
// ret = bma4_set_interrupt_mode(BMA4_LATCH_MODE, &bma);
// if (ret != BMA4_OK)
// return;
//
// ret = bma423_feature_enable(BMA423_STEP_CNTR, 1, &bma);
// if (ret != BMA4_OK)
// return;
//
// ret = bma423_step_detector_enable(0, &bma);
// if (ret != BMA4_OK)
// return;
//
// ret = bma4_set_accel_enable(1, &bma);
// if (ret != BMA4_OK)
// return;
//
// struct bma4_accel_config accel_conf;
// accel_conf.odr = BMA4_OUTPUT_DATA_RATE_100HZ;
// accel_conf.range = BMA4_ACCEL_RANGE_2G;
// accel_conf.bandwidth = BMA4_ACCEL_NORMAL_AVG4;
// accel_conf.perf_mode = BMA4_CIC_AVG_MODE;
// ret = bma4_set_accel_config(&accel_conf, &bma);
// if (ret != BMA4_OK)
// return;
//
isOk = true;
}
void Bma421::Reset() {
uint8_t data = 0xb6;
twiMaster.Write(deviceAddress, 0x7E, &data, 1);
}
void Bma421::Read(uint8_t registerAddress, uint8_t* buffer, size_t size) {
twiMaster.Read(deviceAddress, registerAddress, buffer, size);
}
void Bma421::Write(uint8_t registerAddress, const uint8_t* data, size_t size) {
twiMaster.Write(deviceAddress, registerAddress, data, size);
}
Bma421::Values Bma421::Process() {
if (not isOk)
return {};
// struct bma4_accel data;
// bma4_read_accel_xyz(&data, &bma);
//
// uint32_t steps = 0;
// bma423_step_counter_output(&steps, &bma);
//
// int32_t temperature = 0;
// bma4_get_temperature(&temperature, BMA4_DEG, &bma);
// temperature = temperature / 1000;
//
// uint8_t activity = 0;
// bma423_activity_output(&activity, &bma);
//
// // X and Y axis are swapped because of the way the sensor is mounted in the PineTime
// return {steps, data.y, data.x, data.z};
return {steps, 0, 0, 0};
}
bool Bma421::IsOk() const {
return isOk;
}
void Bma421::ResetStepCounter() {
// bma423_reset_step_counter(&bma);
steps = 0;
}
void Bma421::SoftReset() {
// auto ret = bma4_soft_reset(&bma);
// if (ret == BMA4_OK) {
// isResetOk = true;
// nrf_delay_ms(1);
// }
}
Bma421::DeviceTypes Bma421::DeviceType() const {
return deviceType;
}