InfiniSim/sim/drivers/SpiMaster.cpp

297 lines
8.5 KiB
C++

#include "drivers/SpiMaster.h"
//#include <hal/nrf_gpio.h>
//#include <hal/nrf_spim.h>
#include <nrfx_log.h>
#include <algorithm>
using namespace Pinetime::Drivers;
SpiMaster::SpiMaster(const SpiMaster::SpiModule spi, const SpiMaster::Parameters& params) : spi {spi}, params {params} {
}
bool SpiMaster::Init() {
// if(mutex == nullptr) {
// mutex = xSemaphoreCreateBinary();
// ASSERT(mutex != nullptr);
// }
//
// /* Configure GPIO pins used for pselsck, pselmosi, pselmiso and pselss for SPI0 */
// nrf_gpio_pin_set(params.pinSCK);
// nrf_gpio_cfg_output(params.pinSCK);
// nrf_gpio_pin_clear(params.pinMOSI);
// nrf_gpio_cfg_output(params.pinMOSI);
// nrf_gpio_cfg_input(params.pinMISO, NRF_GPIO_PIN_NOPULL);
// // nrf_gpio_cfg_output(params.pinCSN);
// // pinCsn = params.pinCSN;
//
// switch (spi) {
// case SpiModule::SPI0:
// spiBaseAddress = NRF_SPIM0;
// break;
// case SpiModule::SPI1:
// spiBaseAddress = NRF_SPIM1;
// break;
// default:
// return false;
// }
//
// /* Configure pins, frequency and mode */
// spiBaseAddress->PSELSCK = params.pinSCK;
// spiBaseAddress->PSELMOSI = params.pinMOSI;
// spiBaseAddress->PSELMISO = params.pinMISO;
//
// uint32_t frequency;
// switch (params.Frequency) {
// case Frequencies::Freq8Mhz:
// frequency = 0x80000000;
// break;
// default:
// return false;
// }
// spiBaseAddress->FREQUENCY = frequency;
//
// uint32_t regConfig = 0;
// switch (params.bitOrder) {
// case BitOrder::Msb_Lsb:
// break;
// case BitOrder::Lsb_Msb:
// regConfig = 1;
// break;
// default:
// return false;
// }
// switch (params.mode) {
// case Modes::Mode0:
// break;
// case Modes::Mode1:
// regConfig |= (0x01 << 1);
// break;
// case Modes::Mode2:
// regConfig |= (0x02 << 1);
// break;
// case Modes::Mode3:
// regConfig |= (0x03 << 1);
// break;
// default:
// return false;
// }
//
// spiBaseAddress->CONFIG = regConfig;
// spiBaseAddress->EVENTS_ENDRX = 0;
// spiBaseAddress->EVENTS_ENDTX = 0;
// spiBaseAddress->EVENTS_END = 0;
//
// spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 6);
// spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 1);
// spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 19);
//
// spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
//
// NRFX_IRQ_PRIORITY_SET(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn, 2);
// NRFX_IRQ_ENABLE(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn);
//
// xSemaphoreGive(mutex);
return true;
}
//void SpiMaster::SetupWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) {
// // Create an event when SCK toggles.
// NRF_GPIOTE->CONFIG[gpiote_channel] = (GPIOTE_CONFIG_MODE_Event << GPIOTE_CONFIG_MODE_Pos) | (spim->PSEL.SCK << GPIOTE_CONFIG_PSEL_Pos) |
// (GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
//
// // Stop the spim instance when SCK toggles.
// NRF_PPI->CH[ppi_channel].EEP = (uint32_t) &NRF_GPIOTE->EVENTS_IN[gpiote_channel];
// NRF_PPI->CH[ppi_channel].TEP = (uint32_t) &spim->TASKS_STOP;
// NRF_PPI->CHENSET = 1U << ppi_channel;
// spiBaseAddress->EVENTS_END = 0;
//
// // Disable IRQ
// spim->INTENCLR = (1 << 6);
// spim->INTENCLR = (1 << 1);
// spim->INTENCLR = (1 << 19);
//}
//void SpiMaster::DisableWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) {
// NRF_GPIOTE->CONFIG[gpiote_channel] = 0;
// NRF_PPI->CH[ppi_channel].EEP = 0;
// NRF_PPI->CH[ppi_channel].TEP = 0;
// NRF_PPI->CHENSET = ppi_channel;
// spiBaseAddress->EVENTS_END = 0;
// spim->INTENSET = (1 << 6);
// spim->INTENSET = (1 << 1);
// spim->INTENSET = (1 << 19);
//}
void SpiMaster::OnEndEvent() {
if (currentBufferAddr == 0) {
return;
}
// auto s = currentBufferSize;
// if (s > 0) {
// auto currentSize = std::min((size_t) 255, s);
// PrepareTx(currentBufferAddr, currentSize);
// currentBufferAddr += currentSize;
// currentBufferSize -= currentSize;
//
// spiBaseAddress->TASKS_START = 1;
// } else {
// BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// if (taskToNotify != nullptr) {
// vTaskNotifyGiveFromISR(taskToNotify, &xHigherPriorityTaskWoken);
// portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
// }
//
// nrf_gpio_pin_set(this->pinCsn);
// currentBufferAddr = 0;
// BaseType_t xHigherPriorityTaskWoken2 = pdFALSE;
// xSemaphoreGiveFromISR(mutex, &xHigherPriorityTaskWoken2);
// portYIELD_FROM_ISR(xHigherPriorityTaskWoken | xHigherPriorityTaskWoken2);
// }
}
void SpiMaster::OnStartedEvent() {
}
//void SpiMaster::PrepareTx(const volatile uint32_t bufferAddress, const volatile size_t size) {
// spiBaseAddress->TXD.PTR = bufferAddress;
// spiBaseAddress->TXD.MAXCNT = size;
// spiBaseAddress->TXD.LIST = 0;
// spiBaseAddress->RXD.PTR = 0;
// spiBaseAddress->RXD.MAXCNT = 0;
// spiBaseAddress->RXD.LIST = 0;
// spiBaseAddress->EVENTS_END = 0;
//}
//void SpiMaster::PrepareRx(const volatile uint32_t cmdAddress,
// const volatile size_t cmdSize,
// const volatile uint32_t bufferAddress,
// const volatile size_t size) {
// spiBaseAddress->TXD.PTR = 0;
// spiBaseAddress->TXD.MAXCNT = 0;
// spiBaseAddress->TXD.LIST = 0;
// spiBaseAddress->RXD.PTR = bufferAddress;
// spiBaseAddress->RXD.MAXCNT = size;
// spiBaseAddress->RXD.LIST = 0;
// spiBaseAddress->EVENTS_END = 0;
//}
bool SpiMaster::Write(uint8_t pinCsn, const uint8_t* data, size_t size) {
// if (data == nullptr)
// return false;
// auto ok = xSemaphoreTake(mutex, portMAX_DELAY);
// ASSERT(ok == true);
// taskToNotify = xTaskGetCurrentTaskHandle();
//
// this->pinCsn = pinCsn;
//
// if (size == 1) {
// SetupWorkaroundForFtpan58(spiBaseAddress, 0, 0);
// } else {
// DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
// }
//
// nrf_gpio_pin_clear(this->pinCsn);
//
// currentBufferAddr = (uint32_t) data;
// currentBufferSize = size;
//
// auto currentSize = std::min((size_t) 255, (size_t) currentBufferSize);
// PrepareTx(currentBufferAddr, currentSize);
// currentBufferSize -= currentSize;
// currentBufferAddr += currentSize;
// spiBaseAddress->TASKS_START = 1;
//
// if (size == 1) {
// while (spiBaseAddress->EVENTS_END == 0)
// ;
// nrf_gpio_pin_set(this->pinCsn);
// currentBufferAddr = 0;
// xSemaphoreGive(mutex);
// }
return true;
}
bool SpiMaster::Read(uint8_t pinCsn, uint8_t* cmd, size_t cmdSize, uint8_t* data, size_t dataSize) {
// xSemaphoreTake(mutex, portMAX_DELAY);
//
// taskToNotify = nullptr;
//
// this->pinCsn = pinCsn;
// DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
// spiBaseAddress->INTENCLR = (1 << 6);
// spiBaseAddress->INTENCLR = (1 << 1);
// spiBaseAddress->INTENCLR = (1 << 19);
//
// nrf_gpio_pin_clear(this->pinCsn);
//
// currentBufferAddr = 0;
// currentBufferSize = 0;
//
// PrepareTx((uint32_t) cmd, cmdSize);
// spiBaseAddress->TASKS_START = 1;
// while (spiBaseAddress->EVENTS_END == 0)
// ;
//
// PrepareRx((uint32_t) cmd, cmdSize, (uint32_t) data, dataSize);
// spiBaseAddress->TASKS_START = 1;
//
// while (spiBaseAddress->EVENTS_END == 0)
// ;
// nrf_gpio_pin_set(this->pinCsn);
//
// xSemaphoreGive(mutex);
return true;
}
void SpiMaster::Sleep() {
// while (spiBaseAddress->ENABLE != 0) {
// spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
// }
// nrf_gpio_cfg_default(params.pinSCK);
// nrf_gpio_cfg_default(params.pinMOSI);
// nrf_gpio_cfg_default(params.pinMISO);
NRF_LOG_INFO("[SPIMASTER] sleep");
}
void SpiMaster::Wakeup() {
Init();
NRF_LOG_INFO("[SPIMASTER] Wakeup");
}
bool SpiMaster::WriteCmdAndBuffer(uint8_t pinCsn, const uint8_t* cmd, size_t cmdSize, const uint8_t* data, size_t dataSize) {
// xSemaphoreTake(mutex, portMAX_DELAY);
//
// taskToNotify = nullptr;
//
// this->pinCsn = pinCsn;
// DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
// spiBaseAddress->INTENCLR = (1 << 6);
// spiBaseAddress->INTENCLR = (1 << 1);
// spiBaseAddress->INTENCLR = (1 << 19);
//
// nrf_gpio_pin_clear(this->pinCsn);
//
// currentBufferAddr = 0;
// currentBufferSize = 0;
//
// PrepareTx((uint32_t) cmd, cmdSize);
// spiBaseAddress->TASKS_START = 1;
// while (spiBaseAddress->EVENTS_END == 0)
// ;
//
// PrepareTx((uint32_t) data, dataSize);
// spiBaseAddress->TASKS_START = 1;
//
// while (spiBaseAddress->EVENTS_END == 0)
// ;
// nrf_gpio_pin_set(this->pinCsn);
//
// xSemaphoreGive(mutex);
return true;
}