
8-Bit CPU

1. Architecture

• The CPU has an 8-bit data bus and an 8-bit address bus, so it can only support 256 bytes of
memory to hold both instructions and data.

• Internally, there are four 8-bit registers, R0 to R3, plus an Instruction Register, the Program
Counter, and an 8-bit register which holds immediate values.

• The ALU is the same one that we designed last week. It performs the four operations AND, OR,
ADD and SUB on two 8-bit values, and supports signed ADDs and SUBs.

• The CPU is a load/store architecture: data has to be brought into registers for manipulation, as
the ALU only reads from and writes back to the registers.

• The ALU operations have two operands: one register is a source register, and the second
register is both source and destination register, i.e. destination register = destination register OP
source register.

• All the jump operations perform absolute jumps; there are no PC-relative branches. There are
conditional jumps based on the zeroness or negativity of the destination register, as well as a
"jump always" instruction.

• The following diagram shows the datapaths in the CPU:

The dbus and sbus labels indicate the lines coming out from the register file which hold the value of the
destination and source registers.

• Note the data loop involving the registers and the ALU, whose output can only go back into a
register.

• The dataout bus is only connected to the dbus line, so the only value which can be written to
memory is the destination register.

• Also note that there are only 3 multiplexors:

• the address bus multiplexor can get a memory address from the PC, the immediate register (for
direct addressing), or from the source or destination registers (for register indirect addressing).

• the PC multiplexor either lets the PC increment, or jump to the value in the immediate register.
• the multiplexor in front of the registers determines where a register write comes from: the ALU,

the immediate register, another register or the data bus.

2. Instruction Set

• Half of the instructions in the instruction set fit into one byte:

op1 op2 Rd Rs

2 2 2 2

• These instructions are identified by a 0 in the most-significant bit in the instruction, i.e. op1 =
0X.

• The 4 bits of opcode are split into op1 and op2: more details soon.
• Rd is the destination register, and Rs is the source register.
• The other half of the instruction set are two-byte instructions. The first byte has the same format

as above, and it is followed by an 8-bit constant or immediate value:

op1 op2 Rd Rs immediate

2 2 2 2 8

• These two-byte instructions are identified by a 1 in the most-significant bit in the instruction,
i.e. op1 = 1X.

• With 4 operation bits, there are 16 instructions:

op1 op2 Mnemonic Purpose

00 00 AND Rd, Rs Rd = Rd AND Rs

00 01 OR Rd, Rs Rd = Rd OR Rs

00 10 ADD Rd, Rs Rd = Rd + Rs

00 11 SUB Rd, Rs Rd = Rd - Rs

01 00 LW Rd, (Rs) Rd = Mem[Rs]

01 01 SW Rd, (Rs) Mem[Rs] = Rd

01 10 MOV Rd, Rs Rd = Rs

01 11 NOP Do nothing

10 00 JEQ Rd, immed PC = immed if Rd == 0

10 01 JNE Rd, immed PC = immed if Rd != 0

10 10 JGT Rd, immed PC = immed if Rd > 0

10 11 JLT Rd, immed PC = immed if Rd < 0

11 00 LW Rd, immed Rd = Mem[immed]

11 01 SW Rd, immed Mem[immed] = Rd

11 10 LI Rd, immed Rd = immed

11 11 JMP immed PC = immed

• Note the regularity of the ALU operations and the jump operations: we can feed the op2 bits
directly into the ALU, and use op2 to control the branch decision.

• The rest of the instruction set is less regular, which will require special decoding for certain of
the 16 instructions.

3. Instruction Phases

• The CPU internally has three phases for the execution of each instruction.
• On phase 0, the instruction is fetched from memory and stored in the Instruction Register.
• On phase 1, if the fetched instruction is a two-byte instruction, the second byte is fetched from

memory and stored in the Immediate Register. For one-byte instructions, nothing occurs in
phase 1.

• On phase 2, everything else is done as required, which can include:
• an ALU operation, reading from two registers.
• a jump decision which updates the PC.
• a register write.
• a read from a memory location.
• a write to a memory location.

• After phase 2, the CPU starts the next instruction in phase 0.
• The control logic will be simple for the phase 0 work, not difficult for the phase 1 work, but

complicated for the phase 2 work.

4 CPU Control Lines

Below is the main CPU diagram again, this time with the control lines shown.

There are several 1-bit control lines:
• pcsel, increment PC or load the jump value from the Immediate Register.
• pcload, load the PC with a new value, or don't load a new value.
• irload, load the Instruction Register with a new instruction.
• imload, load the Immediate Register with a new value.

• readwrite, read from memory, or write to memory.
• dwrite, write a value back to a register, or don't write a value.

There are also several 2-bit control lines:
• addrsel, select an address from the PC, the Immediate Register, the source register or the

destination register.
• regsel, select a value to write to a register from the Immediate Register, another register,

the data bus or from the ALU.
• dregsel and sregsel, select two registers whose values are sent to the ALU.
• aluop, which are the op2 bits that control the operation of the ALU.

• The values for all of these control lines are generated by the Decode Logic, which gets as input
the value from the Instruction Register, and the zero & negative lines of the destination register.

An Example Program to Run in the CPU

• It's time to see an example program written for this CPU.
• In memory starting at location 0x80 is a list of 8-bit numbers; the last number in the list is 0.
• We want a program to sum the numbers, store the result into memory location 0x40, and loop

indefinitely after that.
• We have 4 registers to use. They are allocated as follows:

• R0 holds the pointer to the next number to add.
• R1 holds the running sum.
• R2 holds the next number to add to the running sum.
• R3 is used as a temporary register.

The assembly code for the program.

 LI R1,0x00 # Set running sum to zero
 LI R0,0x80 # Start at beginning of list
 loop: LW R2, (R0) # Get the next number
 JEQ R2, end # Exit loop if number == 0
 ADD R1, R2 # Add number to running sum
 LI R3, 0x01 # Put 1 into R3, so we can do
 ADD R0, R3 # R0++
 JMP loop # Loop back
 end: SW R1, 0x40 # Store result at address 0x40
 inf: JMP inf # Infinite loop

Converting to machine code, here are the hex values to put into memory starting at
location 0:

LI R1,0x00 e4 00

LI R0,0x80 e0 80

LW R2, (R0) 48

JEQ R2, end 88 0d

ADD R1, R2 26

LI R3, 0x01 ec 01

ADD R0, R3 23

JMP loop ff 04

SW R1, 0x40 d4 40

JMP inf ff 0f

• With the CPU loaded up into Logisim, and the memory loaded with the above data values, we
can start the program running.

• Watch the phases of operation. Watch the IR get loaded with an instruction.
• Watch the Immediate Register get loaded with a value.
• On the LW instruction, watch as the sbus value is selected to be placed on the address bus, and

the datain value is written to the destination register.
• On ALU instructions, watch the sbus and dbus values, the aluop, and the result which is written

back into the destination register.

• On the JEQ instruction, watch the value of N and Z into the Decode Logic, and the resulting
pcsel and pcload values.

Create the Logic

1. Create a new Logism circuit. Open the given logism file logism.circ so you have the folloing in
your screen:

2. Create the following 11x21 chip from it:

3. Create a new Circuit, call it testLogic.circ, and load (type) into the IR register the instruction
26, which is ADD R1 and R2. Enable the ticks.

4. Take a screen capture with the phase showing 10 Upload the testLOGICphase03.jpeg.

	1. Architecture
	2. Instruction Set
	3. Instruction Phases
	An Example Program to Run in the CPU

