|
|
|
@ -432,27 +432,13 @@ void JitShader::Compile_DPH(Instruction instr) {
|
|
|
|
|
|
|
|
|
|
void JitShader::Compile_EX2(Instruction instr) {
|
|
|
|
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
|
|
|
|
movss(xmm0, SRC1); // ABI_PARAM1
|
|
|
|
|
|
|
|
|
|
ABI_PushRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
|
|
|
|
|
CallFarFunction(*this, exp2f);
|
|
|
|
|
ABI_PopRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
|
|
|
|
|
|
|
|
|
|
shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); // ABI_RETURN
|
|
|
|
|
movaps(SRC1, xmm0);
|
|
|
|
|
call(exp2_subroutine);
|
|
|
|
|
Compile_DestEnable(instr, SRC1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void JitShader::Compile_LG2(Instruction instr) {
|
|
|
|
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
|
|
|
|
movss(xmm0, SRC1); // ABI_PARAM1
|
|
|
|
|
|
|
|
|
|
ABI_PushRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
|
|
|
|
|
CallFarFunction(*this, log2f);
|
|
|
|
|
ABI_PopRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
|
|
|
|
|
|
|
|
|
|
shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); // ABI_RETURN
|
|
|
|
|
movaps(SRC1, xmm0);
|
|
|
|
|
call(log2_subroutine);
|
|
|
|
|
Compile_DestEnable(instr, SRC1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -935,7 +921,179 @@ void JitShader::Compile(const std::array<u32, MAX_PROGRAM_CODE_LENGTH>* program_
|
|
|
|
|
LOG_DEBUG(HW_GPU, "Compiled shader size=%lu", getSize());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
JitShader::JitShader() : Xbyak::CodeGenerator(MAX_SHADER_SIZE) {}
|
|
|
|
|
JitShader::JitShader() : Xbyak::CodeGenerator(MAX_SHADER_SIZE) {
|
|
|
|
|
CompilePrelude();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void JitShader::CompilePrelude() {
|
|
|
|
|
log2_subroutine = CompilePrelude_Log2();
|
|
|
|
|
exp2_subroutine = CompilePrelude_Exp2();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Xbyak::Label JitShader::CompilePrelude_Log2() {
|
|
|
|
|
Xbyak::Label subroutine;
|
|
|
|
|
|
|
|
|
|
// SSE does not have a log instruction, thus we must approximate.
|
|
|
|
|
// We perform this approximation first performaing a range reduction into the range [1.0, 2.0).
|
|
|
|
|
// A minimax polynomial which was fit for the function log2(x) / (x - 1) is then evaluated.
|
|
|
|
|
// We multiply the result by (x - 1) then restore the result into the appropriate range.
|
|
|
|
|
|
|
|
|
|
// Coefficients for the minimax polynomial.
|
|
|
|
|
// f(x) computes approximately log2(x) / (x - 1).
|
|
|
|
|
// f(x) = c4 + x * (c3 + x * (c2 + x * (c1 + x * c0)).
|
|
|
|
|
align(64);
|
|
|
|
|
const void* c0 = getCurr();
|
|
|
|
|
dd(0x3d74552f);
|
|
|
|
|
const void* c1 = getCurr();
|
|
|
|
|
dd(0xbeee7397);
|
|
|
|
|
const void* c2 = getCurr();
|
|
|
|
|
dd(0x3fbd96dd);
|
|
|
|
|
const void* c3 = getCurr();
|
|
|
|
|
dd(0xc02153f6);
|
|
|
|
|
const void* c4 = getCurr();
|
|
|
|
|
dd(0x4038d96c);
|
|
|
|
|
|
|
|
|
|
align(16);
|
|
|
|
|
const void* negative_infinity_vector = getCurr();
|
|
|
|
|
dd(0xff800000);
|
|
|
|
|
dd(0xff800000);
|
|
|
|
|
dd(0xff800000);
|
|
|
|
|
dd(0xff800000);
|
|
|
|
|
const void* default_qnan_vector = getCurr();
|
|
|
|
|
dd(0x7fc00000);
|
|
|
|
|
dd(0x7fc00000);
|
|
|
|
|
dd(0x7fc00000);
|
|
|
|
|
dd(0x7fc00000);
|
|
|
|
|
|
|
|
|
|
Xbyak::Label input_is_nan, input_is_zero, input_out_of_range;
|
|
|
|
|
|
|
|
|
|
align(16);
|
|
|
|
|
L(input_out_of_range);
|
|
|
|
|
je(input_is_zero);
|
|
|
|
|
movaps(SRC1, xword[rip + default_qnan_vector]);
|
|
|
|
|
ret();
|
|
|
|
|
L(input_is_zero);
|
|
|
|
|
movaps(SRC1, xword[rip + negative_infinity_vector]);
|
|
|
|
|
ret();
|
|
|
|
|
|
|
|
|
|
align(16);
|
|
|
|
|
L(subroutine);
|
|
|
|
|
|
|
|
|
|
// Here we handle edge cases: input in {NaN, 0, -Inf, Negative}.
|
|
|
|
|
xorps(SCRATCH, SCRATCH);
|
|
|
|
|
ucomiss(SCRATCH, SRC1);
|
|
|
|
|
jp(input_is_nan);
|
|
|
|
|
jae(input_out_of_range);
|
|
|
|
|
|
|
|
|
|
// Split input
|
|
|
|
|
movd(eax, SRC1);
|
|
|
|
|
mov(edx, eax);
|
|
|
|
|
and_(eax, 0x7f800000);
|
|
|
|
|
and_(edx, 0x007fffff);
|
|
|
|
|
movss(SCRATCH, xword[rip + c0]); // Preload c0.
|
|
|
|
|
or_(edx, 0x3f800000);
|
|
|
|
|
movd(SRC1, edx);
|
|
|
|
|
// SRC1 now contains the mantissa of the input.
|
|
|
|
|
mulss(SCRATCH, SRC1);
|
|
|
|
|
shr(eax, 23);
|
|
|
|
|
sub(eax, 0x7f);
|
|
|
|
|
cvtsi2ss(SCRATCH2, eax);
|
|
|
|
|
// SCRATCH2 now contains the exponent of the input.
|
|
|
|
|
|
|
|
|
|
// Complete computation of polynomial
|
|
|
|
|
addss(SCRATCH, xword[rip + c1]);
|
|
|
|
|
mulss(SCRATCH, SRC1);
|
|
|
|
|
addss(SCRATCH, xword[rip + c2]);
|
|
|
|
|
mulss(SCRATCH, SRC1);
|
|
|
|
|
addss(SCRATCH, xword[rip + c3]);
|
|
|
|
|
mulss(SCRATCH, SRC1);
|
|
|
|
|
subss(SRC1, ONE);
|
|
|
|
|
addss(SCRATCH, xword[rip + c4]);
|
|
|
|
|
mulss(SCRATCH, SRC1);
|
|
|
|
|
addss(SCRATCH2, SCRATCH);
|
|
|
|
|
|
|
|
|
|
// Duplicate result across vector
|
|
|
|
|
xorps(SRC1, SRC1); // break dependency chain
|
|
|
|
|
movss(SRC1, SCRATCH2);
|
|
|
|
|
L(input_is_nan);
|
|
|
|
|
shufps(SRC1, SRC1, _MM_SHUFFLE(0, 0, 0, 0));
|
|
|
|
|
|
|
|
|
|
ret();
|
|
|
|
|
|
|
|
|
|
return subroutine;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Xbyak::Label JitShader::CompilePrelude_Exp2() {
|
|
|
|
|
Xbyak::Label subroutine;
|
|
|
|
|
|
|
|
|
|
// SSE does not have a exp instruction, thus we must approximate.
|
|
|
|
|
// We perform this approximation first performaing a range reduction into the range [-0.5, 0.5).
|
|
|
|
|
// A minimax polynomial which was fit for the function exp2(x) is then evaluated.
|
|
|
|
|
// We then restore the result into the appropriate range.
|
|
|
|
|
|
|
|
|
|
align(64);
|
|
|
|
|
const void* input_max = getCurr();
|
|
|
|
|
dd(0x43010000);
|
|
|
|
|
const void* input_min = getCurr();
|
|
|
|
|
dd(0xc2fdffff);
|
|
|
|
|
const void* c0 = getCurr();
|
|
|
|
|
dd(0x3c5dbe69);
|
|
|
|
|
const void* half = getCurr();
|
|
|
|
|
dd(0x3f000000);
|
|
|
|
|
const void* c1 = getCurr();
|
|
|
|
|
dd(0x3d5509f9);
|
|
|
|
|
const void* c2 = getCurr();
|
|
|
|
|
dd(0x3e773cc5);
|
|
|
|
|
const void* c3 = getCurr();
|
|
|
|
|
dd(0x3f3168b3);
|
|
|
|
|
const void* c4 = getCurr();
|
|
|
|
|
dd(0x3f800016);
|
|
|
|
|
|
|
|
|
|
Xbyak::Label ret_label;
|
|
|
|
|
|
|
|
|
|
align(16);
|
|
|
|
|
L(subroutine);
|
|
|
|
|
|
|
|
|
|
// Handle edge cases
|
|
|
|
|
ucomiss(SRC1, SRC1);
|
|
|
|
|
jp(ret_label);
|
|
|
|
|
// Clamp to maximum range since we shift the value directly into the exponent.
|
|
|
|
|
minss(SRC1, xword[rip + input_max]);
|
|
|
|
|
maxss(SRC1, xword[rip + input_min]);
|
|
|
|
|
|
|
|
|
|
// Decompose input
|
|
|
|
|
movss(SCRATCH, SRC1);
|
|
|
|
|
movss(SCRATCH2, xword[rip + c0]); // Preload c0.
|
|
|
|
|
subss(SCRATCH, xword[rip + half]);
|
|
|
|
|
cvtss2si(eax, SCRATCH);
|
|
|
|
|
cvtsi2ss(SCRATCH, eax);
|
|
|
|
|
// SCRATCH now contains input rounded to the nearest integer.
|
|
|
|
|
add(eax, 0x7f);
|
|
|
|
|
subss(SRC1, SCRATCH);
|
|
|
|
|
// SRC1 contains input - round(input), which is in [-0.5, 0.5).
|
|
|
|
|
mulss(SCRATCH2, SRC1);
|
|
|
|
|
shl(eax, 23);
|
|
|
|
|
movd(SCRATCH, eax);
|
|
|
|
|
// SCRATCH contains 2^(round(input)).
|
|
|
|
|
|
|
|
|
|
// Complete computation of polynomial.
|
|
|
|
|
addss(SCRATCH2, xword[rip + c1]);
|
|
|
|
|
mulss(SCRATCH2, SRC1);
|
|
|
|
|
addss(SCRATCH2, xword[rip + c2]);
|
|
|
|
|
mulss(SCRATCH2, SRC1);
|
|
|
|
|
addss(SCRATCH2, xword[rip + c3]);
|
|
|
|
|
mulss(SRC1, SCRATCH2);
|
|
|
|
|
addss(SRC1, xword[rip + c4]);
|
|
|
|
|
mulss(SRC1, SCRATCH);
|
|
|
|
|
|
|
|
|
|
// Duplicate result across vector
|
|
|
|
|
L(ret_label);
|
|
|
|
|
shufps(SRC1, SRC1, _MM_SHUFFLE(0, 0, 0, 0));
|
|
|
|
|
|
|
|
|
|
ret();
|
|
|
|
|
|
|
|
|
|
return subroutine;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Shader
|
|
|
|
|
|
|
|
|
|