Merge pull request #4480 from wwylele/memory-global-2

Memory: eliminate global state
master
bunnei 2018-12-06 19:17:28 +07:00 committed by GitHub
commit edbdbf0ba1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
57 changed files with 670 additions and 491 deletions

@ -24,7 +24,7 @@ static constexpr u64 audio_frame_ticks = 1310252ull; ///< Units: ARM11 cycles
struct DspHle::Impl final {
public:
explicit Impl(DspHle& parent);
explicit Impl(DspHle& parent, Memory::MemorySystem& memory);
~Impl();
DspState GetDspState() const;
@ -69,9 +69,13 @@ private:
std::weak_ptr<DSP_DSP> dsp_dsp;
};
DspHle::Impl::Impl(DspHle& parent_) : parent(parent_) {
DspHle::Impl::Impl(DspHle& parent_, Memory::MemorySystem& memory) : parent(parent_) {
dsp_memory.raw_memory.fill(0);
for (auto& source : sources) {
source.SetMemory(memory);
}
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
tick_event =
timing.RegisterEvent("AudioCore::DspHle::tick_event", [this](u64, s64 cycles_late) {
@ -335,7 +339,7 @@ void DspHle::Impl::AudioTickCallback(s64 cycles_late) {
timing.ScheduleEvent(audio_frame_ticks - cycles_late, tick_event);
}
DspHle::DspHle() : impl(std::make_unique<Impl>(*this)) {}
DspHle::DspHle(Memory::MemorySystem& memory) : impl(std::make_unique<Impl>(*this, memory)) {}
DspHle::~DspHle() = default;
DspState DspHle::GetDspState() const {

@ -13,11 +13,15 @@
#include "core/hle/service/dsp/dsp_dsp.h"
#include "core/memory.h"
namespace Memory {
class MemorySystem;
}
namespace AudioCore {
class DspHle final : public DspInterface {
public:
DspHle();
explicit DspHle(Memory::MemorySystem& memory);
~DspHle();
DspState GetDspState() const override;

@ -45,6 +45,10 @@ void Source::Reset() {
state = {};
}
void Source::SetMemory(Memory::MemorySystem& memory) {
memory_system = &memory;
}
void Source::ParseConfig(SourceConfiguration::Configuration& config,
const s16_le (&adpcm_coeffs)[16]) {
if (!config.dirty_raw) {
@ -286,7 +290,7 @@ bool Source::DequeueBuffer() {
// This physical address masking occurs due to how the DSP DMA hardware is configured by the
// firmware.
const u8* const memory = Memory::GetPhysicalPointer(buf.physical_address & 0xFFFFFFFC);
const u8* const memory = memory_system->GetPhysicalPointer(buf.physical_address & 0xFFFFFFFC);
if (memory) {
const unsigned num_channels = buf.mono_or_stereo == MonoOrStereo::Stereo ? 2 : 1;
switch (buf.format) {

@ -14,6 +14,10 @@
#include "audio_core/interpolate.h"
#include "common/common_types.h"
namespace Memory {
class MemorySystem;
}
namespace AudioCore {
namespace HLE {
@ -35,6 +39,9 @@ public:
/// Resets internal state.
void Reset();
/// Sets the memory system to read data from
void SetMemory(Memory::MemorySystem& memory);
/**
* This is called once every audio frame. This performs per-source processing every frame.
* @param config The new configuration we've got for this Source from the application.
@ -56,6 +63,7 @@ public:
private:
const std::size_t source_id;
Memory::MemorySystem* memory_system;
StereoFrame16 current_frame;
using Format = SourceConfiguration::Configuration::Format;

@ -17,6 +17,7 @@
#include "citra_qt/util/spinbox.h"
#include "citra_qt/util/util.h"
#include "common/vector_math.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/pica_state.h"
@ -166,7 +167,8 @@ void GPUCommandListWidget::SetCommandInfo(const QModelIndex& index) {
const auto format = texture.format;
const auto info = Pica::Texture::TextureInfo::FromPicaRegister(config, format);
const u8* src = Memory::GetPhysicalPointer(config.GetPhysicalAddress());
const u8* src =
Core::System::GetInstance().Memory().GetPhysicalPointer(config.GetPhysicalAddress());
new_info_widget = new TextureInfoWidget(src, info);
}
if (command_info_widget) {

@ -14,6 +14,7 @@
#include "citra_qt/debugger/graphics/graphics_surface.h"
#include "citra_qt/util/spinbox.h"
#include "common/color.h"
#include "core/core.h"
#include "core/hw/gpu.h"
#include "core/memory.h"
#include "video_core/pica_state.h"
@ -283,7 +284,7 @@ void GraphicsSurfaceWidget::Pick(int x, int y) {
return;
}
u8* buffer = Memory::GetPhysicalPointer(surface_address);
u8* buffer = Core::System::GetInstance().Memory().GetPhysicalPointer(surface_address);
if (buffer == nullptr) {
surface_info_label->setText(tr("(unable to access pixel data)"));
surface_info_label->setAlignment(Qt::AlignCenter);
@ -549,7 +550,7 @@ void GraphicsSurfaceWidget::OnUpdate() {
// TODO: Implement a good way to visualize alpha components!
QImage decoded_image(surface_width, surface_height, QImage::Format_ARGB32);
u8* buffer = Memory::GetPhysicalPointer(surface_address);
u8* buffer = Core::System::GetInstance().Memory().GetPhysicalPointer(surface_address);
if (buffer == nullptr) {
surface_picture_label->hide();
@ -679,7 +680,7 @@ void GraphicsSurfaceWidget::SaveSurface() {
if (pixmap)
pixmap->save(&file, "PNG");
} else if (selectedFilter == bin_filter) {
const u8* buffer = Memory::GetPhysicalPointer(surface_address);
const u8* buffer = Core::System::GetInstance().Memory().GetPhysicalPointer(surface_address);
ASSERT_MSG(buffer != nullptr, "Memory not accessible");
QFile file(filename);

@ -72,33 +72,34 @@ private:
class DynarmicUserCallbacks final : public Dynarmic::A32::UserCallbacks {
public:
explicit DynarmicUserCallbacks(ARM_Dynarmic& parent)
: parent(parent), timing(parent.system.CoreTiming()), svc_context(parent.system) {}
: parent(parent), timing(parent.system.CoreTiming()), svc_context(parent.system),
memory(parent.system.Memory()) {}
~DynarmicUserCallbacks() = default;
std::uint8_t MemoryRead8(VAddr vaddr) override {
return Memory::Read8(vaddr);
return memory.Read8(vaddr);
}
std::uint16_t MemoryRead16(VAddr vaddr) override {
return Memory::Read16(vaddr);
return memory.Read16(vaddr);
}
std::uint32_t MemoryRead32(VAddr vaddr) override {
return Memory::Read32(vaddr);
return memory.Read32(vaddr);
}
std::uint64_t MemoryRead64(VAddr vaddr) override {
return Memory::Read64(vaddr);
return memory.Read64(vaddr);
}
void MemoryWrite8(VAddr vaddr, std::uint8_t value) override {
Memory::Write8(vaddr, value);
memory.Write8(vaddr, value);
}
void MemoryWrite16(VAddr vaddr, std::uint16_t value) override {
Memory::Write16(vaddr, value);
memory.Write16(vaddr, value);
}
void MemoryWrite32(VAddr vaddr, std::uint32_t value) override {
Memory::Write32(vaddr, value);
memory.Write32(vaddr, value);
}
void MemoryWrite64(VAddr vaddr, std::uint64_t value) override {
Memory::Write64(vaddr, value);
memory.Write64(vaddr, value);
}
void InterpreterFallback(VAddr pc, std::size_t num_instructions) override {
@ -136,7 +137,7 @@ public:
parent.jit->HaltExecution();
parent.SetPC(pc);
Kernel::Thread* thread =
Core::System::GetInstance().Kernel().GetThreadManager().GetCurrentThread();
parent.system.Kernel().GetThreadManager().GetCurrentThread();
parent.SaveContext(thread->context);
GDBStub::Break();
GDBStub::SendTrap(thread, 5);
@ -159,11 +160,12 @@ public:
ARM_Dynarmic& parent;
Core::Timing& timing;
Kernel::SVCContext svc_context;
Memory::MemorySystem& memory;
};
ARM_Dynarmic::ARM_Dynarmic(Core::System& system, PrivilegeMode initial_mode)
: system(system), cb(std::make_unique<DynarmicUserCallbacks>(*this)) {
interpreter_state = std::make_shared<ARMul_State>(initial_mode);
interpreter_state = std::make_shared<ARMul_State>(system, initial_mode);
PageTableChanged();
}
@ -172,7 +174,7 @@ ARM_Dynarmic::~ARM_Dynarmic() = default;
MICROPROFILE_DEFINE(ARM_Jit, "ARM JIT", "ARM JIT", MP_RGB(255, 64, 64));
void ARM_Dynarmic::Run() {
ASSERT(Memory::GetCurrentPageTable() == current_page_table);
ASSERT(system.Memory().GetCurrentPageTable() == current_page_table);
MICROPROFILE_SCOPE(ARM_Jit);
jit->Run();
@ -279,7 +281,7 @@ void ARM_Dynarmic::InvalidateCacheRange(u32 start_address, std::size_t length) {
}
void ARM_Dynarmic::PageTableChanged() {
current_page_table = Memory::GetCurrentPageTable();
current_page_table = system.Memory().GetCurrentPageTable();
auto iter = jits.find(current_page_table);
if (iter != jits.end()) {

@ -68,14 +68,14 @@ private:
u32 fpexc;
};
ARM_DynCom::ARM_DynCom(PrivilegeMode initial_mode) {
state = std::make_unique<ARMul_State>(initial_mode);
ARM_DynCom::ARM_DynCom(Core::System& system, PrivilegeMode initial_mode) : system(system) {
state = std::make_unique<ARMul_State>(system, initial_mode);
}
ARM_DynCom::~ARM_DynCom() {}
void ARM_DynCom::Run() {
ExecuteInstructions(std::max<s64>(Core::System::GetInstance().CoreTiming().GetDowncount(), 0));
ExecuteInstructions(std::max<s64>(system.CoreTiming().GetDowncount(), 0));
}
void ARM_DynCom::Step() {
@ -146,7 +146,7 @@ void ARM_DynCom::SetCP15Register(CP15Register reg, u32 value) {
void ARM_DynCom::ExecuteInstructions(u64 num_instructions) {
state->NumInstrsToExecute = num_instructions;
unsigned ticks_executed = InterpreterMainLoop(state.get());
Core::System::GetInstance().CoreTiming().AddTicks(ticks_executed);
system.CoreTiming().AddTicks(ticks_executed);
state->ServeBreak();
}

@ -10,9 +10,13 @@
#include "core/arm/skyeye_common/arm_regformat.h"
#include "core/arm/skyeye_common/armstate.h"
namespace Core {
struct System;
}
class ARM_DynCom final : public ARM_Interface {
public:
explicit ARM_DynCom(PrivilegeMode initial_mode);
explicit ARM_DynCom(Core::System& system, PrivilegeMode initial_mode);
~ARM_DynCom();
void Run() override;
@ -44,5 +48,6 @@ public:
private:
void ExecuteInstructions(u64 num_instructions);
Core::System& system;
std::unique_ptr<ARMul_State> state;
};

@ -811,7 +811,7 @@ MICROPROFILE_DEFINE(DynCom_Decode, "DynCom", "Decode", MP_RGB(255, 64, 64));
static unsigned int InterpreterTranslateInstruction(const ARMul_State* cpu, const u32 phys_addr,
ARM_INST_PTR& inst_base) {
u32 inst_size = 4;
u32 inst = Memory::Read32(phys_addr & 0xFFFFFFFC);
u32 inst = cpu->system.Memory().Read32(phys_addr & 0xFFFFFFFC);
// If we are in Thumb mode, we'll translate one Thumb instruction to the corresponding ARM
// instruction
@ -3860,11 +3860,11 @@ SUB_INST : {
SWI_INST : {
if (inst_base->cond == ConditionCode::AL || CondPassed(cpu, inst_base->cond)) {
swi_inst* const inst_cream = (swi_inst*)inst_base->component;
Core::System::GetInstance().CoreTiming().AddTicks(num_instrs);
cpu->system.CoreTiming().AddTicks(num_instrs);
cpu->NumInstrsToExecute =
num_instrs >= cpu->NumInstrsToExecute ? 0 : cpu->NumInstrsToExecute - num_instrs;
num_instrs = 0;
Kernel::SVCContext{Core::System::GetInstance()}.CallSVC(inst_cream->num & 0xFFFF);
Kernel::SVCContext{cpu->system}.CallSVC(inst_cream->num & 0xFFFF);
// The kernel would call ERET to get here, which clears exclusive memory state.
cpu->UnsetExclusiveMemoryAddress();
}

@ -10,7 +10,7 @@
#include "core/core.h"
#include "core/memory.h"
ARMul_State::ARMul_State(PrivilegeMode initial_mode) {
ARMul_State::ARMul_State(Core::System& system, PrivilegeMode initial_mode) : system(system) {
Reset();
ChangePrivilegeMode(initial_mode);
}
@ -191,13 +191,13 @@ static void CheckMemoryBreakpoint(u32 address, GDBStub::BreakpointType type) {
u8 ARMul_State::ReadMemory8(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
return Memory::Read8(address);
return system.Memory().Read8(address);
}
u16 ARMul_State::ReadMemory16(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u16 data = Memory::Read16(address);
u16 data = system.Memory().Read16(address);
if (InBigEndianMode())
data = Common::swap16(data);
@ -208,7 +208,7 @@ u16 ARMul_State::ReadMemory16(u32 address) const {
u32 ARMul_State::ReadMemory32(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u32 data = Memory::Read32(address);
u32 data = system.Memory().Read32(address);
if (InBigEndianMode())
data = Common::swap32(data);
@ -219,7 +219,7 @@ u32 ARMul_State::ReadMemory32(u32 address) const {
u64 ARMul_State::ReadMemory64(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u64 data = Memory::Read64(address);
u64 data = system.Memory().Read64(address);
if (InBigEndianMode())
data = Common::swap64(data);
@ -230,7 +230,7 @@ u64 ARMul_State::ReadMemory64(u32 address) const {
void ARMul_State::WriteMemory8(u32 address, u8 data) {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Write);
Memory::Write8(address, data);
system.Memory().Write8(address, data);
}
void ARMul_State::WriteMemory16(u32 address, u16 data) {
@ -239,7 +239,7 @@ void ARMul_State::WriteMemory16(u32 address, u16 data) {
if (InBigEndianMode())
data = Common::swap16(data);
Memory::Write16(address, data);
system.Memory().Write16(address, data);
}
void ARMul_State::WriteMemory32(u32 address, u32 data) {
@ -248,7 +248,7 @@ void ARMul_State::WriteMemory32(u32 address, u32 data) {
if (InBigEndianMode())
data = Common::swap32(data);
Memory::Write32(address, data);
system.Memory().Write32(address, data);
}
void ARMul_State::WriteMemory64(u32 address, u64 data) {
@ -257,7 +257,7 @@ void ARMul_State::WriteMemory64(u32 address, u64 data) {
if (InBigEndianMode())
data = Common::swap64(data);
Memory::Write64(address, data);
system.Memory().Write64(address, data);
}
// Reads from the CP15 registers. Used with implementation of the MRC instruction.
@ -603,9 +603,8 @@ void ARMul_State::ServeBreak() {
if (last_bkpt_hit) {
Reg[15] = last_bkpt.address;
}
Kernel::Thread* thread =
Core::System::GetInstance().Kernel().GetThreadManager().GetCurrentThread();
Core::CPU().SaveContext(thread->context);
Kernel::Thread* thread = system.Kernel().GetThreadManager().GetCurrentThread();
system.CPU().SaveContext(thread->context);
if (last_bkpt_hit || GDBStub::GetCpuStepFlag()) {
last_bkpt_hit = false;
GDBStub::Break();

@ -23,6 +23,10 @@
#include "core/arm/skyeye_common/arm_regformat.h"
#include "core/gdbstub/gdbstub.h"
namespace Core {
class System;
}
// Signal levels
enum { LOW = 0, HIGH = 1, LOWHIGH = 1, HIGHLOW = 2 };
@ -139,7 +143,7 @@ enum {
struct ARMul_State final {
public:
explicit ARMul_State(PrivilegeMode initial_mode);
explicit ARMul_State(Core::System& system, PrivilegeMode initial_mode);
void ChangePrivilegeMode(u32 new_mode);
void Reset();
@ -197,6 +201,8 @@ public:
void ServeBreak();
Core::System& system;
std::array<u32, 16> Reg{}; // The current register file
std::array<u32, 2> Reg_usr{};
std::array<u32, 2> Reg_svc{}; // R13_SVC R14_SVC

@ -49,9 +49,10 @@ static inline std::enable_if_t<std::is_integral_v<T>> CompOp(const GatewayCheat:
}
}
static inline void LoadOffsetOp(const GatewayCheat::CheatLine& line, State& state) {
static inline void LoadOffsetOp(Memory::MemorySystem& memory, const GatewayCheat::CheatLine& line,
State& state) {
u32 addr = line.address + state.offset;
state.offset = Memory::Read32(addr);
state.offset = memory.Read32(addr);
}
static inline void LoopOp(const GatewayCheat::CheatLine& line, State& state) {
@ -154,7 +155,7 @@ static inline void PatchOp(const GatewayCheat::CheatLine& line, State& state, Co
state.current_line_nr++;
}
first = !first;
Memory::Write32(addr, tmp);
system.Memory().Write32(addr, tmp);
addr += 4;
num_bytes -= 4;
}
@ -162,7 +163,7 @@ static inline void PatchOp(const GatewayCheat::CheatLine& line, State& state, Co
u32 tmp = (first ? cheat_lines[state.current_line_nr].first
: cheat_lines[state.current_line_nr].value) >>
bit_offset;
Memory::Write8(addr, tmp);
system.Memory().Write8(addr, tmp);
addr += 1;
num_bytes -= 1;
bit_offset += 8;
@ -205,6 +206,14 @@ GatewayCheat::~GatewayCheat() = default;
void GatewayCheat::Execute(Core::System& system) {
State state;
Memory::MemorySystem& memory = system.Memory();
auto Read8 = [&memory](VAddr addr) { return memory.Read8(addr); };
auto Read16 = [&memory](VAddr addr) { return memory.Read16(addr); };
auto Read32 = [&memory](VAddr addr) { return memory.Read32(addr); };
auto Write8 = [&memory](VAddr addr, u8 value) { memory.Write8(addr, value); };
auto Write16 = [&memory](VAddr addr, u16 value) { memory.Write16(addr, value); };
auto Write32 = [&memory](VAddr addr, u32 value) { memory.Write32(addr, value); };
for (state.current_line_nr = 0; state.current_line_nr < cheat_lines.size();
state.current_line_nr++) {
auto line = cheat_lines[state.current_line_nr];
@ -247,63 +256,61 @@ void GatewayCheat::Execute(Core::System& system) {
break;
case CheatType::Write32:
// 0XXXXXXX YYYYYYYY - word[XXXXXXX+offset] = YYYYYYYY
WriteOp<u32>(line, state, &Memory::Write32, system);
WriteOp<u32>(line, state, Write32, system);
break;
case CheatType::Write16:
// 1XXXXXXX 0000YYYY - half[XXXXXXX+offset] = YYYY
WriteOp<u16>(line, state, &Memory::Write16, system);
WriteOp<u16>(line, state, Write16, system);
break;
case CheatType::Write8:
// 2XXXXXXX 000000YY - byte[XXXXXXX+offset] = YY
WriteOp<u8>(line, state, &Memory::Write8, system);
WriteOp<u8>(line, state, Write8, system);
break;
case CheatType::GreaterThan32:
// 3XXXXXXX YYYYYYYY - Execute next block IF YYYYYYYY > word[XXXXXXX] ;unsigned
CompOp<u32>(line, state, &Memory::Read32,
[&line](u32 val) -> bool { return line.value > val; });
CompOp<u32>(line, state, Read32, [&line](u32 val) -> bool { return line.value > val; });
break;
case CheatType::LessThan32:
// 4XXXXXXX YYYYYYYY - Execute next block IF YYYYYYYY < word[XXXXXXX] ;unsigned
CompOp<u32>(line, state, &Memory::Read32,
[&line](u32 val) -> bool { return line.value < val; });
CompOp<u32>(line, state, Read32, [&line](u32 val) -> bool { return line.value < val; });
break;
case CheatType::EqualTo32:
// 5XXXXXXX YYYYYYYY - Execute next block IF YYYYYYYY == word[XXXXXXX] ;unsigned
CompOp<u32>(line, state, &Memory::Read32,
CompOp<u32>(line, state, Read32,
[&line](u32 val) -> bool { return line.value == val; });
break;
case CheatType::NotEqualTo32:
// 6XXXXXXX YYYYYYYY - Execute next block IF YYYYYYYY != word[XXXXXXX] ;unsigned
CompOp<u32>(line, state, &Memory::Read32,
CompOp<u32>(line, state, Read32,
[&line](u32 val) -> bool { return line.value != val; });
break;
case CheatType::GreaterThan16WithMask:
// 7XXXXXXX ZZZZYYYY - Execute next block IF YYYY > ((not ZZZZ) AND half[XXXXXXX])
CompOp<u16>(line, state, &Memory::Read16, [&line](u16 val) -> bool {
CompOp<u16>(line, state, Read16, [&line](u16 val) -> bool {
return static_cast<u16>(line.value) > (static_cast<u16>(~line.value >> 16) & val);
});
break;
case CheatType::LessThan16WithMask:
// 8XXXXXXX ZZZZYYYY - Execute next block IF YYYY < ((not ZZZZ) AND half[XXXXXXX])
CompOp<u16>(line, state, &Memory::Read16, [&line](u16 val) -> bool {
CompOp<u16>(line, state, Read16, [&line](u16 val) -> bool {
return static_cast<u16>(line.value) < (static_cast<u16>(~line.value >> 16) & val);
});
break;
case CheatType::EqualTo16WithMask:
// 9XXXXXXX ZZZZYYYY - Execute next block IF YYYY = ((not ZZZZ) AND half[XXXXXXX])
CompOp<u16>(line, state, &Memory::Read16, [&line](u16 val) -> bool {
CompOp<u16>(line, state, Read16, [&line](u16 val) -> bool {
return static_cast<u16>(line.value) == (static_cast<u16>(~line.value >> 16) & val);
});
break;
case CheatType::NotEqualTo16WithMask:
// AXXXXXXX ZZZZYYYY - Execute next block IF YYYY <> ((not ZZZZ) AND half[XXXXXXX])
CompOp<u16>(line, state, &Memory::Read16, [&line](u16 val) -> bool {
CompOp<u16>(line, state, Read16, [&line](u16 val) -> bool {
return static_cast<u16>(line.value) != (static_cast<u16>(~line.value >> 16) & val);
});
break;
case CheatType::LoadOffset:
// BXXXXXXX 00000000 - offset = word[XXXXXXX+offset]
LoadOffsetOp(line, state);
LoadOffsetOp(system.Memory(), line, state);
break;
case CheatType::Loop: {
// C0000000 YYYYYYYY - LOOP next block YYYYYYYY times
@ -343,32 +350,32 @@ void GatewayCheat::Execute(Core::System& system) {
}
case CheatType::IncrementiveWrite32: {
// D6000000 XXXXXXXX (32bit) [XXXXXXXX+offset] = reg ; offset += 4
IncrementiveWriteOp<u32>(line, state, &Memory::Write32, system);
IncrementiveWriteOp<u32>(line, state, Write32, system);
break;
}
case CheatType::IncrementiveWrite16: {
// D7000000 XXXXXXXX (16bit) [XXXXXXXX+offset] = reg & 0xffff ; offset += 2
IncrementiveWriteOp<u16>(line, state, &Memory::Write16, system);
IncrementiveWriteOp<u16>(line, state, Write16, system);
break;
}
case CheatType::IncrementiveWrite8: {
// D8000000 XXXXXXXX (16bit) [XXXXXXXX+offset] = reg & 0xff ; offset++
IncrementiveWriteOp<u8>(line, state, &Memory::Write8, system);
IncrementiveWriteOp<u8>(line, state, Write8, system);
break;
}
case CheatType::Load32: {
// D9000000 XXXXXXXX reg = [XXXXXXXX+offset]
LoadOp<u32>(line, state, &Memory::Read32);
LoadOp<u32>(line, state, Read32);
break;
}
case CheatType::Load16: {
// DA000000 XXXXXXXX reg = [XXXXXXXX+offset] & 0xFFFF
LoadOp<u16>(line, state, &Memory::Read16);
LoadOp<u16>(line, state, Read16);
break;
}
case CheatType::Load8: {
// DB000000 XXXXXXXX reg = [XXXXXXXX+offset] & 0xFF
LoadOp<u8>(line, state, &Memory::Read8);
LoadOp<u8>(line, state, Read8);
break;
}
case CheatType::AddOffset: {

@ -143,7 +143,7 @@ System::ResultStatus System::Load(EmuWindow& emu_window, const std::string& file
return ResultStatus::ErrorLoader;
}
}
Memory::SetCurrentPageTable(&kernel->GetCurrentProcess()->vm_manager.page_table);
memory->SetCurrentPageTable(&kernel->GetCurrentProcess()->vm_manager.page_table);
cheat_engine = std::make_unique<Cheats::CheatEngine>(*this);
status = ResultStatus::Success;
m_emu_window = &emu_window;
@ -172,22 +172,24 @@ void System::Reschedule() {
System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) {
LOG_DEBUG(HW_Memory, "initialized OK");
memory = std::make_unique<Memory::MemorySystem>();
timing = std::make_unique<Timing>();
kernel = std::make_unique<Kernel::KernelSystem>(system_mode);
kernel = std::make_unique<Kernel::KernelSystem>(*memory, system_mode);
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
cpu_core = std::make_unique<ARM_Dynarmic>(*this, USER32MODE);
#else
cpu_core = std::make_unique<ARM_DynCom>(USER32MODE);
cpu_core = std::make_unique<ARM_DynCom>(*this, USER32MODE);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
cpu_core = std::make_unique<ARM_DynCom>(USER32MODE);
cpu_core = std::make_unique<ARM_DynCom>(*this, USER32MODE);
}
dsp_core = std::make_unique<AudioCore::DspHle>();
dsp_core = std::make_unique<AudioCore::DspHle>(*memory);
dsp_core->SetSink(Settings::values.sink_id, Settings::values.audio_device_id);
dsp_core->EnableStretching(Settings::values.enable_audio_stretching);
@ -200,11 +202,11 @@ System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) {
service_manager = std::make_shared<Service::SM::ServiceManager>(*this);
archive_manager = std::make_unique<Service::FS::ArchiveManager>(*this);
HW::Init();
HW::Init(*memory);
Service::Init(*this);
GDBStub::Init();
ResultStatus result = VideoCore::Init(emu_window);
ResultStatus result = VideoCore::Init(emu_window, *memory);
if (result != ResultStatus::Success) {
return result;
}
@ -250,6 +252,14 @@ const Timing& System::CoreTiming() const {
return *timing;
}
Memory::MemorySystem& System::Memory() {
return *memory;
}
const Memory::MemorySystem& System::Memory() const {
return *memory;
}
Cheats::CheatEngine& System::CheatEngine() {
return *cheat_engine;
}

@ -16,6 +16,10 @@
class EmuWindow;
class ARM_Interface;
namespace Memory {
class MemorySystem;
}
namespace AudioCore {
class DspInterface;
}
@ -188,6 +192,12 @@ public:
/// Gets a const reference to the timing system
const Timing& CoreTiming() const;
/// Gets a reference to the memory system
Memory::MemorySystem& Memory();
/// Gets a const reference to the memory system
const Memory::MemorySystem& Memory() const;
/// Gets a reference to the cheat engine
Cheats::CheatEngine& CheatEngine();
@ -269,6 +279,9 @@ public: // HACK: this is temporary exposed for tests,
std::unique_ptr<Kernel::KernelSystem> kernel;
std::unique_ptr<Timing> timing;
/// Memory system
std::unique_ptr<Memory::MemorySystem> memory;
private:
static System s_instance;

@ -409,8 +409,9 @@ static void RemoveBreakpoint(BreakpointType type, VAddr addr) {
LOG_DEBUG(Debug_GDBStub, "gdb: removed a breakpoint: {:08x} bytes at {:08x} of type {}",
bp->second.len, bp->second.addr, static_cast<int>(type));
Memory::WriteBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), bp->second.addr,
bp->second.inst.data(), bp->second.inst.size());
Core::System::GetInstance().Memory().WriteBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), bp->second.addr,
bp->second.inst.data(), bp->second.inst.size());
Core::CPU().ClearInstructionCache();
p.erase(addr);
}
@ -837,8 +838,8 @@ static void ReadMemory() {
}
std::vector<u8> data(len);
Memory::ReadBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, data.data(),
len);
Core::System::GetInstance().Memory().ReadBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, data.data(), len);
MemToGdbHex(reply, data.data(), len);
reply[len * 2] = '\0';
@ -863,8 +864,8 @@ static void WriteMemory() {
std::vector<u8> data(len);
GdbHexToMem(data.data(), len_pos + 1, len);
Memory::WriteBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, data.data(),
len);
Core::System::GetInstance().Memory().WriteBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, data.data(), len);
Core::CPU().ClearInstructionCache();
SendReply("OK");
}
@ -917,11 +918,13 @@ static bool CommitBreakpoint(BreakpointType type, VAddr addr, u32 len) {
breakpoint.active = true;
breakpoint.addr = addr;
breakpoint.len = len;
Memory::ReadBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr,
breakpoint.inst.data(), breakpoint.inst.size());
Core::System::GetInstance().Memory().ReadBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, breakpoint.inst.data(),
breakpoint.inst.size());
static constexpr std::array<u8, 4> btrap{0x70, 0x00, 0x20, 0xe1};
Memory::WriteBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr,
btrap.data(), btrap.size());
Core::System::GetInstance().Memory().WriteBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), addr, btrap.data(),
btrap.size());
Core::CPU().ClearInstructionCache();
p.insert({addr, breakpoint});

@ -65,7 +65,7 @@ SharedPtr<Thread> AddressArbiter::ResumeHighestPriorityThread(VAddr address) {
return thread;
}
AddressArbiter::AddressArbiter(KernelSystem& kernel) : Object(kernel) {}
AddressArbiter::AddressArbiter(KernelSystem& kernel) : Object(kernel), kernel(kernel) {}
AddressArbiter::~AddressArbiter() {}
SharedPtr<AddressArbiter> KernelSystem::CreateAddressArbiter(std::string name) {
@ -103,31 +103,31 @@ ResultCode AddressArbiter::ArbitrateAddress(SharedPtr<Thread> thread, Arbitratio
// Wait current thread (acquire the arbiter)...
case ArbitrationType::WaitIfLessThan:
if ((s32)Memory::Read32(address) < value) {
if ((s32)kernel.memory.Read32(address) < value) {
WaitThread(std::move(thread), address);
}
break;
case ArbitrationType::WaitIfLessThanWithTimeout:
if ((s32)Memory::Read32(address) < value) {
if ((s32)kernel.memory.Read32(address) < value) {
thread->wakeup_callback = timeout_callback;
thread->WakeAfterDelay(nanoseconds);
WaitThread(std::move(thread), address);
}
break;
case ArbitrationType::DecrementAndWaitIfLessThan: {
s32 memory_value = Memory::Read32(address);
s32 memory_value = kernel.memory.Read32(address);
if (memory_value < value) {
// Only change the memory value if the thread should wait
Memory::Write32(address, (s32)memory_value - 1);
kernel.memory.Write32(address, (s32)memory_value - 1);
WaitThread(std::move(thread), address);
}
break;
}
case ArbitrationType::DecrementAndWaitIfLessThanWithTimeout: {
s32 memory_value = Memory::Read32(address);
s32 memory_value = kernel.memory.Read32(address);
if (memory_value < value) {
// Only change the memory value if the thread should wait
Memory::Write32(address, (s32)memory_value - 1);
kernel.memory.Write32(address, (s32)memory_value - 1);
thread->wakeup_callback = timeout_callback;
thread->WakeAfterDelay(nanoseconds);
WaitThread(std::move(thread), address);

@ -52,6 +52,8 @@ private:
explicit AddressArbiter(KernelSystem& kernel);
~AddressArbiter() override;
KernelSystem& kernel;
/// Puts the thread to wait on the specified arbitration address under this address arbiter.
void WaitThread(SharedPtr<Thread> thread, VAddr wait_address);

@ -48,12 +48,13 @@ SharedPtr<Event> HLERequestContext::SleepClientThread(SharedPtr<Thread> thread,
// the translation might need to read from it in order to retrieve the StaticBuffer
// target addresses.
std::array<u32_le, IPC::COMMAND_BUFFER_LENGTH + 2 * IPC::MAX_STATIC_BUFFERS> cmd_buff;
Memory::ReadBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
Memory::MemorySystem& memory = Core::System::GetInstance().Memory();
memory.ReadBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
context.WriteToOutgoingCommandBuffer(cmd_buff.data(), *process);
// Copy the translated command buffer back into the thread's command buffer area.
Memory::WriteBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
memory.WriteBlock(*process, thread->GetCommandBufferAddress(), cmd_buff.data(),
cmd_buff.size() * sizeof(u32));
};
auto event = Core::System::GetInstance().Kernel().CreateEvent(Kernel::ResetType::OneShot,
@ -142,7 +143,8 @@ ResultCode HLERequestContext::PopulateFromIncomingCommandBuffer(const u32_le* sr
// Copy the input buffer into our own vector and store it.
std::vector<u8> data(buffer_info.size);
Memory::ReadBlock(src_process, source_address, data.data(), data.size());
Core::System::GetInstance().Memory().ReadBlock(src_process, source_address, data.data(),
data.size());
AddStaticBuffer(buffer_info.buffer_id, std::move(data));
cmd_buf[i++] = source_address;
@ -209,7 +211,8 @@ ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(u32_le* dst_cmdbuf,
ASSERT_MSG(target_descriptor.size >= data.size(), "Static buffer data is too big");
Memory::WriteBlock(dst_process, target_address, data.data(), data.size());
Core::System::GetInstance().Memory().WriteBlock(dst_process, target_address,
data.data(), data.size());
dst_cmdbuf[i++] = target_address;
break;
@ -242,13 +245,15 @@ MappedBuffer::MappedBuffer(const Process& process, u32 descriptor, VAddr address
void MappedBuffer::Read(void* dest_buffer, std::size_t offset, std::size_t size) {
ASSERT(perms & IPC::R);
ASSERT(offset + size <= this->size);
Memory::ReadBlock(*process, address + static_cast<VAddr>(offset), dest_buffer, size);
Core::System::GetInstance().Memory().ReadBlock(*process, address + static_cast<VAddr>(offset),
dest_buffer, size);
}
void MappedBuffer::Write(const void* src_buffer, std::size_t offset, std::size_t size) {
ASSERT(perms & IPC::W);
ASSERT(offset + size <= this->size);
Memory::WriteBlock(*process, address + static_cast<VAddr>(offset), src_buffer, size);
Core::System::GetInstance().Memory().WriteBlock(*process, address + static_cast<VAddr>(offset),
src_buffer, size);
}
} // namespace Kernel

@ -4,6 +4,7 @@
#include <algorithm>
#include "common/alignment.h"
#include "core/core.h"
#include "core/hle/ipc.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/ipc.h"
@ -19,13 +20,13 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
VAddr src_address, VAddr dst_address,
std::vector<MappedBufferContext>& mapped_buffer_context,
bool reply) {
Memory::MemorySystem& memory = Core::System::GetInstance().Memory();
auto& src_process = src_thread->owner_process;
auto& dst_process = dst_thread->owner_process;
IPC::Header header;
// TODO(Subv): Replace by Memory::Read32 when possible.
Memory::ReadBlock(*src_process, src_address, &header.raw, sizeof(header.raw));
memory.ReadBlock(*src_process, src_address, &header.raw, sizeof(header.raw));
std::size_t untranslated_size = 1u + header.normal_params_size;
std::size_t command_size = untranslated_size + header.translate_params_size;
@ -34,7 +35,7 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
ASSERT(command_size <= IPC::COMMAND_BUFFER_LENGTH);
std::array<u32, IPC::COMMAND_BUFFER_LENGTH> cmd_buf;
Memory::ReadBlock(*src_process, src_address, cmd_buf.data(), command_size * sizeof(u32));
memory.ReadBlock(*src_process, src_address, cmd_buf.data(), command_size * sizeof(u32));
std::size_t i = untranslated_size;
while (i < command_size) {
@ -90,7 +91,7 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
VAddr static_buffer_src_address = cmd_buf[i];
std::vector<u8> data(bufferInfo.size);
Memory::ReadBlock(*src_process, static_buffer_src_address, data.data(), data.size());
memory.ReadBlock(*src_process, static_buffer_src_address, data.data(), data.size());
// Grab the address that the target thread set up to receive the response static buffer
// and write our data there. The static buffers area is located right after the command
@ -106,15 +107,15 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
u32 static_buffer_offset = IPC::COMMAND_BUFFER_LENGTH * sizeof(u32) +
sizeof(StaticBuffer) * bufferInfo.buffer_id;
Memory::ReadBlock(*dst_process, dst_address + static_buffer_offset, &target_buffer,
sizeof(target_buffer));
memory.ReadBlock(*dst_process, dst_address + static_buffer_offset, &target_buffer,
sizeof(target_buffer));
// Note: The real kernel doesn't seem to have any error recovery mechanisms for this
// case.
ASSERT_MSG(target_buffer.descriptor.size >= data.size(),
"Static buffer data is too big");
Memory::WriteBlock(*dst_process, target_buffer.address, data.data(), data.size());
memory.WriteBlock(*dst_process, target_buffer.address, data.data(), data.size());
cmd_buf[i++] = target_buffer.address;
break;
@ -153,8 +154,8 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
if (permissions != IPC::MappedBufferPermissions::R) {
// Copy the modified buffer back into the target process
Memory::CopyBlock(*src_process, *dst_process, found->target_address,
found->source_address, size);
memory.CopyBlock(*src_process, *dst_process, found->target_address,
found->source_address, size);
}
VAddr prev_reserve = page_start - Memory::PAGE_SIZE;
@ -187,7 +188,7 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
Memory::PAGE_SIZE, Kernel::MemoryState::Reserved);
auto buffer = std::make_unique<u8[]>(num_pages * Memory::PAGE_SIZE);
Memory::ReadBlock(*src_process, source_address, buffer.get() + page_offset, size);
memory.ReadBlock(*src_process, source_address, buffer.get() + page_offset, size);
// Map the page(s) into the target process' address space.
target_address =
@ -215,7 +216,7 @@ ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread
}
}
Memory::WriteBlock(*dst_process, dst_address, cmd_buf.data(), command_size * sizeof(u32));
memory.WriteBlock(*dst_process, dst_address, cmd_buf.data(), command_size * sizeof(u32));
return RESULT_SUCCESS;
}

@ -16,11 +16,11 @@
namespace Kernel {
/// Initialize the kernel
KernelSystem::KernelSystem(u32 system_mode) {
KernelSystem::KernelSystem(Memory::MemorySystem& memory, u32 system_mode) : memory(memory) {
MemoryInit(system_mode);
resource_limits = std::make_unique<ResourceLimitList>(*this);
thread_manager = std::make_unique<ThreadManager>();
thread_manager = std::make_unique<ThreadManager>(*this);
timer_manager = std::make_unique<TimerManager>();
}

@ -23,6 +23,10 @@ namespace SharedPage {
class Handler;
}
namespace Memory {
class MemorySystem;
}
namespace Kernel {
class AddressArbiter;
@ -42,6 +46,7 @@ class SharedMemory;
class ThreadManager;
class TimerManager;
class VMManager;
struct AddressMapping;
enum class ResetType {
OneShot,
@ -73,7 +78,7 @@ using SharedPtr = boost::intrusive_ptr<T>;
class KernelSystem {
public:
explicit KernelSystem(u32 system_mode);
explicit KernelSystem(Memory::MemorySystem& memory, u32 system_mode);
~KernelSystem();
/**
@ -212,6 +217,8 @@ public:
MemoryRegionInfo* GetMemoryRegion(MemoryRegion region);
void HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping);
std::array<MemoryRegionInfo, 3> memory_regions;
/// Adds a port to the named port table
@ -220,6 +227,8 @@ public:
/// Map of named ports managed by the kernel, which can be retrieved using the ConnectToPort
std::unordered_map<std::string, SharedPtr<ClientPort>> named_ports;
Memory::MemorySystem& memory;
private:
void MemoryInit(u32 mem_type);

@ -83,7 +83,7 @@ MemoryRegionInfo* KernelSystem::GetMemoryRegion(MemoryRegion region) {
}
}
void HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping) {
void KernelSystem::HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping) {
using namespace Memory;
struct MemoryArea {
@ -128,7 +128,7 @@ void HandleSpecialMapping(VMManager& address_space, const AddressMapping& mappin
return;
}
u8* target_pointer = Memory::GetPhysicalPointer(area->paddr_base + offset_into_region);
u8* target_pointer = memory.GetPhysicalPointer(area->paddr_base + offset_into_region);
// TODO(yuriks): This flag seems to have some other effect, but it's unknown what
MemoryState memory_state = mapping.unk_flag ? MemoryState::Static : MemoryState::IO;

@ -62,6 +62,4 @@ struct MemoryRegionInfo {
void Free(u32 offset, u32 size);
};
void HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping);
} // namespace Kernel

@ -120,8 +120,8 @@ void Process::Run(s32 main_thread_priority, u32 stack_size) {
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
HeapAllocate(segment.addr, segment.size, permissions, memory_state, true);
Memory::WriteBlock(*this, segment.addr, codeset->memory->data() + segment.offset,
segment.size);
kernel.memory.WriteBlock(*this, segment.addr, codeset->memory->data() + segment.offset,
segment.size);
};
// Map CodeSet segments
@ -136,7 +136,7 @@ void Process::Run(s32 main_thread_priority, u32 stack_size) {
// Map special address mappings
kernel.MapSharedPages(vm_manager);
for (const auto& mapping : address_mappings) {
HandleSpecialMapping(vm_manager, mapping);
kernel.HandleSpecialMapping(vm_manager, mapping);
}
status = ProcessStatus::Running;
@ -188,10 +188,11 @@ ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission per
u32 interval_size = interval.upper() - interval.lower();
LOG_DEBUG(Kernel, "Allocated FCRAM region lower={:08X}, upper={:08X}", interval.lower(),
interval.upper());
std::fill(Memory::fcram.begin() + interval.lower(),
Memory::fcram.begin() + interval.upper(), 0);
auto vma = vm_manager.MapBackingMemory(
interval_target, Memory::fcram.data() + interval.lower(), interval_size, memory_state);
std::fill(kernel.memory.GetFCRAMPointer(interval.lower()),
kernel.memory.GetFCRAMPointer(interval.upper()), 0);
auto vma = vm_manager.MapBackingMemory(interval_target,
kernel.memory.GetFCRAMPointer(interval.lower()),
interval_size, memory_state);
ASSERT(vma.Succeeded());
vm_manager.Reprotect(vma.Unwrap(), perms);
interval_target += interval_size;
@ -218,7 +219,7 @@ ResultCode Process::HeapFree(VAddr target, u32 size) {
// Free heaps block by block
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(target, size));
for (const auto [backing_memory, block_size] : backing_blocks) {
memory_region->Free(Memory::GetFCRAMOffset(backing_memory), block_size);
memory_region->Free(kernel.memory.GetFCRAMOffset(backing_memory), block_size);
}
ResultCode result = vm_manager.UnmapRange(target, size);
@ -262,7 +263,7 @@ ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission p
}
}
u8* backing_memory = Memory::fcram.data() + physical_offset;
u8* backing_memory = kernel.memory.GetFCRAMPointer(physical_offset);
std::fill(backing_memory, backing_memory + size, 0);
auto vma = vm_manager.MapBackingMemory(target, backing_memory, size, MemoryState::Continuous);

@ -43,8 +43,8 @@ ResultVal<SharedPtr<SharedMemory>> KernelSystem::CreateSharedMemory(
ASSERT_MSG(offset, "Not enough space in region to allocate shared memory!");
std::fill(Memory::fcram.data() + *offset, Memory::fcram.data() + *offset + size, 0);
shared_memory->backing_blocks = {{Memory::fcram.data() + *offset, size}};
std::fill(memory.GetFCRAMPointer(*offset), memory.GetFCRAMPointer(*offset + size), 0);
shared_memory->backing_blocks = {{memory.GetFCRAMPointer(*offset), size}};
shared_memory->holding_memory += MemoryRegionInfo::Interval(*offset, *offset + size);
shared_memory->linear_heap_phys_offset = *offset;
@ -86,9 +86,9 @@ SharedPtr<SharedMemory> KernelSystem::CreateSharedMemoryForApplet(
shared_memory->other_permissions = other_permissions;
for (const auto& interval : backing_blocks) {
shared_memory->backing_blocks.push_back(
{Memory::fcram.data() + interval.lower(), interval.upper() - interval.lower()});
std::fill(Memory::fcram.data() + interval.lower(), Memory::fcram.data() + interval.upper(),
0);
{memory.GetFCRAMPointer(interval.lower()), interval.upper() - interval.lower()});
std::fill(memory.GetFCRAMPointer(interval.lower()),
memory.GetFCRAMPointer(interval.upper()), 0);
}
shared_memory->base_address = Memory::HEAP_VADDR + offset;

@ -105,6 +105,7 @@ public:
private:
Core::System& system;
Kernel::KernelSystem& kernel;
Memory::MemorySystem& memory;
friend class SVCWrapper<SVC>;
@ -351,7 +352,7 @@ ResultCode SVC::ConnectToPort(Handle* out_handle, VAddr port_name_address) {
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
std::string port_name = memory.ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength)
return ERR_PORT_NAME_TOO_LONG;
@ -466,7 +467,7 @@ ResultCode SVC::WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle
std::vector<ObjectPtr> objects(handle_count);
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
auto object = kernel.GetCurrentProcess()->handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
@ -635,7 +636,7 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
auto object = current_process->handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
@ -645,7 +646,7 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
// We are also sending a command reply.
// Do not send a reply if the command id in the command buffer is 0xFFFF.
Thread* thread = kernel.GetThreadManager().GetCurrentThread();
u32 cmd_buff_header = Memory::Read32(thread->GetCommandBufferAddress());
u32 cmd_buff_header = memory.Read32(thread->GetCommandBufferAddress());
IPC::Header header{cmd_buff_header};
if (reply_target != 0 && header.command_id != 0xFFFF) {
auto session = current_process->handle_table.Get<ServerSession>(reply_target);
@ -801,7 +802,7 @@ void SVC::OutputDebugString(VAddr address, s32 len) {
}
std::string string(len, ' ');
Memory::ReadBlock(*kernel.GetCurrentProcess(), address, string.data(), len);
memory.ReadBlock(*kernel.GetCurrentProcess(), address, string.data(), len);
LOG_DEBUG(Debug_Emulated, "{}", string);
}
@ -831,9 +832,9 @@ ResultCode SVC::GetResourceLimitCurrentValues(VAddr values, Handle resource_limi
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i) {
u32 name = Memory::Read32(names + i * sizeof(u32));
u32 name = memory.Read32(names + i * sizeof(u32));
s64 value = resource_limit->GetCurrentResourceValue(name);
Memory::Write64(values + i * sizeof(u64), value);
memory.Write64(values + i * sizeof(u64), value);
}
return RESULT_SUCCESS;
@ -851,9 +852,9 @@ ResultCode SVC::GetResourceLimitLimitValues(VAddr values, Handle resource_limit_
return ERR_INVALID_HANDLE;
for (unsigned int i = 0; i < name_count; ++i) {
u32 name = Memory::Read32(names + i * sizeof(u32));
u32 name = memory.Read32(names + i * sizeof(u32));
s64 value = resource_limit->GetMaxResourceValue(name);
Memory::Write64(values + i * sizeof(u64), value);
memory.Write64(values + i * sizeof(u64), value);
}
return RESULT_SUCCESS;
@ -1584,7 +1585,7 @@ void SVC::CallSVC(u32 immediate) {
}
}
SVC::SVC(Core::System& system) : system(system), kernel(system.Kernel()) {}
SVC::SVC(Core::System& system) : system(system), kernel(system.Kernel()), memory(system.Memory()) {}
u32 SVC::GetReg(std::size_t n) {
return system.CPU().GetReg(static_cast<int>(n));

@ -104,7 +104,7 @@ void ThreadManager::SwitchContext(Thread* new_thread) {
// Cancel any outstanding wakeup events for this thread
timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id);
auto previous_process = Core::System::GetInstance().Kernel().GetCurrentProcess();
auto previous_process = kernel.GetCurrentProcess();
current_thread = new_thread;
@ -112,8 +112,9 @@ void ThreadManager::SwitchContext(Thread* new_thread) {
new_thread->status = ThreadStatus::Running;
if (previous_process != current_thread->owner_process) {
Core::System::GetInstance().Kernel().SetCurrentProcess(current_thread->owner_process);
SetCurrentPageTable(&current_thread->owner_process->vm_manager.page_table);
kernel.SetCurrentProcess(current_thread->owner_process);
kernel.memory.SetCurrentPageTable(
&current_thread->owner_process->vm_manager.page_table);
}
Core::CPU().LoadContext(new_thread->context);
@ -354,7 +355,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
// Map the page to the current process' address space.
vm_manager.MapBackingMemory(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
Memory::fcram.data() + *offset, Memory::PAGE_SIZE,
memory.GetFCRAMPointer(*offset), Memory::PAGE_SIZE,
MemoryState::Locked);
}
@ -363,7 +364,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
available_slot * Memory::TLS_ENTRY_SIZE;
Memory::ZeroBlock(owner_process, thread->tls_address, Memory::TLS_ENTRY_SIZE);
memory.ZeroBlock(owner_process, thread->tls_address, Memory::TLS_ENTRY_SIZE);
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
@ -460,7 +461,7 @@ VAddr Thread::GetCommandBufferAddress() const {
return GetTLSAddress() + CommandHeaderOffset;
}
ThreadManager::ThreadManager() {
ThreadManager::ThreadManager(Kernel::KernelSystem& kernel) : kernel(kernel) {
ThreadWakeupEventType = Core::System::GetInstance().CoreTiming().RegisterEvent(
"ThreadWakeupCallback",
[this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); });

@ -57,7 +57,7 @@ enum class ThreadWakeupReason {
class ThreadManager {
public:
ThreadManager();
explicit ThreadManager(Kernel::KernelSystem& kernel);
~ThreadManager();
/**
@ -121,6 +121,8 @@ private:
*/
void ThreadWakeupCallback(u64 thread_id, s64 cycles_late);
Kernel::KernelSystem& kernel;
u32 next_thread_id = 1;
SharedPtr<Thread> current_thread;
Common::ThreadQueueList<Thread*, ThreadPrioLowest + 1> ready_queue;

@ -113,7 +113,7 @@ void Module::CompletionEventCallBack(u64 port_id, s64) {
if (copy_length <= 0) {
break;
}
Memory::WriteBlock(*port.dest_process, dest_ptr, src_ptr, copy_length);
system.Memory().WriteBlock(*port.dest_process, dest_ptr, src_ptr, copy_length);
dest_ptr += copy_length;
dest_size_left -= copy_length;
src_ptr += original_width;
@ -125,8 +125,8 @@ void Module::CompletionEventCallBack(u64 port_id, s64) {
LOG_ERROR(Service_CAM, "The destination size ({}) doesn't match the source ({})!",
port.dest_size, buffer_size);
}
Memory::WriteBlock(*port.dest_process, port.dest, buffer.data(),
std::min<std::size_t>(port.dest_size, buffer_size));
system.Memory().WriteBlock(*port.dest_process, port.dest, buffer.data(),
std::min<std::size_t>(port.dest_size, buffer_size));
}
port.is_receiving = false;

@ -491,6 +491,7 @@ static void ExecuteCommand(const Command& command, u32 thread_id) {
// GX request DMA - typically used for copying memory from GSP heap to VRAM
case CommandId::REQUEST_DMA: {
MICROPROFILE_SCOPE(GPU_GSP_DMA);
Memory::MemorySystem& memory = Core::System::GetInstance().Memory();
// TODO: Consider attempting rasterizer-accelerated surface blit if that usage is ever
// possible/likely
@ -502,9 +503,9 @@ static void ExecuteCommand(const Command& command, u32 thread_id) {
// TODO(Subv): These memory accesses should not go through the application's memory mapping.
// They should go through the GSP module's memory mapping.
Memory::CopyBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(),
command.dma_request.dest_address, command.dma_request.source_address,
command.dma_request.size);
memory.CopyBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(),
command.dma_request.dest_address, command.dma_request.source_address,
command.dma_request.size);
SignalInterrupt(InterruptId::DMA);
break;
}

@ -55,7 +55,7 @@ VAddr CROHelper::SegmentTagToAddress(SegmentTag segment_tag) const {
return 0;
SegmentEntry entry;
GetEntry(segment_tag.segment_index, entry);
GetEntry(memory, segment_tag.segment_index, entry);
if (segment_tag.offset_into_segment >= entry.size)
return 0;
@ -71,11 +71,11 @@ ResultCode CROHelper::ApplyRelocation(VAddr target_address, RelocationType reloc
break;
case RelocationType::AbsoluteAddress:
case RelocationType::AbsoluteAddress2:
Memory::Write32(target_address, symbol_address + addend);
memory.Write32(target_address, symbol_address + addend);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::RelativeAddress:
Memory::Write32(target_address, symbol_address + addend - target_future_address);
memory.Write32(target_address, symbol_address + addend - target_future_address);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::ThumbBranch:
@ -98,7 +98,7 @@ ResultCode CROHelper::ClearRelocation(VAddr target_address, RelocationType reloc
case RelocationType::AbsoluteAddress:
case RelocationType::AbsoluteAddress2:
case RelocationType::RelativeAddress:
Memory::Write32(target_address, 0);
memory.Write32(target_address, 0);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::ThumbBranch:
@ -121,7 +121,7 @@ ResultCode CROHelper::ApplyRelocationBatch(VAddr batch, u32 symbol_address, bool
VAddr relocation_address = batch;
while (true) {
RelocationEntry relocation;
Memory::ReadBlock(process, relocation_address, &relocation, sizeof(RelocationEntry));
memory.ReadBlock(process, relocation_address, &relocation, sizeof(RelocationEntry));
VAddr relocation_target = SegmentTagToAddress(relocation.target_position);
if (relocation_target == 0) {
@ -142,9 +142,9 @@ ResultCode CROHelper::ApplyRelocationBatch(VAddr batch, u32 symbol_address, bool
}
RelocationEntry relocation;
Memory::ReadBlock(process, batch, &relocation, sizeof(RelocationEntry));
memory.ReadBlock(process, batch, &relocation, sizeof(RelocationEntry));
relocation.is_batch_resolved = reset ? 0 : 1;
Memory::WriteBlock(process, batch, &relocation, sizeof(RelocationEntry));
memory.WriteBlock(process, batch, &relocation, sizeof(RelocationEntry));
return RESULT_SUCCESS;
}
@ -154,13 +154,13 @@ VAddr CROHelper::FindExportNamedSymbol(const std::string& name) const {
std::size_t len = name.size();
ExportTreeEntry entry;
GetEntry(0, entry);
GetEntry(memory, 0, entry);
ExportTreeEntry::Child next;
next.raw = entry.left.raw;
u32 found_id;
while (true) {
GetEntry(next.next_index, entry);
GetEntry(memory, next.next_index, entry);
if (next.is_end) {
found_id = entry.export_table_index;
@ -186,9 +186,9 @@ VAddr CROHelper::FindExportNamedSymbol(const std::string& name) const {
u32 export_strings_size = GetField(ExportStringsSize);
ExportNamedSymbolEntry symbol_entry;
GetEntry(found_id, symbol_entry);
GetEntry(memory, found_id, symbol_entry);
if (Memory::ReadCString(symbol_entry.name_offset, export_strings_size) != name)
if (memory.ReadCString(symbol_entry.name_offset, export_strings_size) != name)
return 0;
return SegmentTagToAddress(symbol_entry.symbol_position);
@ -279,7 +279,7 @@ ResultVal<VAddr> CROHelper::RebaseSegmentTable(u32 cro_size, VAddr data_segment_
u32 segment_num = GetField(SegmentNum);
for (u32 i = 0; i < segment_num; ++i) {
SegmentEntry segment;
GetEntry(i, segment);
GetEntry(memory, i, segment);
if (segment.type == SegmentType::Data) {
if (segment.size != 0) {
if (segment.size > data_segment_size)
@ -298,7 +298,7 @@ ResultVal<VAddr> CROHelper::RebaseSegmentTable(u32 cro_size, VAddr data_segment_
if (segment.offset > module_address + cro_size)
return CROFormatError(0x19);
}
SetEntry(i, segment);
SetEntry(memory, i, segment);
}
return MakeResult<u32>(prev_data_segment + module_address);
}
@ -310,7 +310,7 @@ ResultCode CROHelper::RebaseExportNamedSymbolTable() {
u32 export_named_symbol_num = GetField(ExportNamedSymbolNum);
for (u32 i = 0; i < export_named_symbol_num; ++i) {
ExportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset += module_address;
@ -320,7 +320,7 @@ ResultCode CROHelper::RebaseExportNamedSymbolTable() {
}
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
return RESULT_SUCCESS;
}
@ -329,7 +329,7 @@ ResultCode CROHelper::VerifyExportTreeTable() const {
u32 tree_num = GetField(ExportTreeNum);
for (u32 i = 0; i < tree_num; ++i) {
ExportTreeEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.left.next_index >= tree_num || entry.right.next_index >= tree_num) {
return CROFormatError(0x11);
@ -353,7 +353,7 @@ ResultCode CROHelper::RebaseImportModuleTable() {
u32 module_num = GetField(ImportModuleNum);
for (u32 i = 0; i < module_num; ++i) {
ImportModuleEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset += module_address;
@ -379,7 +379,7 @@ ResultCode CROHelper::RebaseImportModuleTable() {
}
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
return RESULT_SUCCESS;
}
@ -395,7 +395,7 @@ ResultCode CROHelper::RebaseImportNamedSymbolTable() {
u32 num = GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset += module_address;
@ -413,7 +413,7 @@ ResultCode CROHelper::RebaseImportNamedSymbolTable() {
}
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
return RESULT_SUCCESS;
}
@ -427,7 +427,7 @@ ResultCode CROHelper::RebaseImportIndexedSymbolTable() {
u32 num = GetField(ImportIndexedSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportIndexedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.relocation_batch_offset != 0) {
entry.relocation_batch_offset += module_address;
@ -437,7 +437,7 @@ ResultCode CROHelper::RebaseImportIndexedSymbolTable() {
}
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
return RESULT_SUCCESS;
}
@ -451,7 +451,7 @@ ResultCode CROHelper::RebaseImportAnonymousSymbolTable() {
u32 num = GetField(ImportAnonymousSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportAnonymousSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.relocation_batch_offset != 0) {
entry.relocation_batch_offset += module_address;
@ -461,7 +461,7 @@ ResultCode CROHelper::RebaseImportAnonymousSymbolTable() {
}
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
return RESULT_SUCCESS;
}
@ -476,14 +476,14 @@ ResultCode CROHelper::ResetExternalRelocations() {
ExternalRelocationEntry relocation;
// Verifies that the last relocation is the end of a batch
GetEntry(external_relocation_num - 1, relocation);
GetEntry(memory, external_relocation_num - 1, relocation);
if (!relocation.is_batch_end) {
return CROFormatError(0x12);
}
bool batch_begin = true;
for (u32 i = 0; i < external_relocation_num; ++i) {
GetEntry(i, relocation);
GetEntry(memory, i, relocation);
VAddr relocation_target = SegmentTagToAddress(relocation.target_position);
if (relocation_target == 0) {
@ -500,7 +500,7 @@ ResultCode CROHelper::ResetExternalRelocations() {
if (batch_begin) {
// resets to unresolved state
relocation.is_batch_resolved = 0;
SetEntry(i, relocation);
SetEntry(memory, i, relocation);
}
// if current is an end, then the next is a beginning
@ -516,7 +516,7 @@ ResultCode CROHelper::ClearExternalRelocations() {
bool batch_begin = true;
for (u32 i = 0; i < external_relocation_num; ++i) {
GetEntry(i, relocation);
GetEntry(memory, i, relocation);
VAddr relocation_target = SegmentTagToAddress(relocation.target_position);
if (relocation_target == 0) {
@ -532,7 +532,7 @@ ResultCode CROHelper::ClearExternalRelocations() {
if (batch_begin) {
// resets to unresolved state
relocation.is_batch_resolved = 0;
SetEntry(i, relocation);
SetEntry(memory, i, relocation);
}
// if current is an end, then the next is a beginning
@ -548,13 +548,13 @@ ResultCode CROHelper::ApplyStaticAnonymousSymbolToCRS(VAddr crs_address) {
static_relocation_table_offset +
GetField(StaticRelocationNum) * sizeof(StaticRelocationEntry);
CROHelper crs(crs_address, process);
CROHelper crs(crs_address, process, memory);
u32 offset_export_num = GetField(StaticAnonymousSymbolNum);
LOG_INFO(Service_LDR, "CRO \"{}\" exports {} static anonymous symbols", ModuleName(),
offset_export_num);
for (u32 i = 0; i < offset_export_num; ++i) {
StaticAnonymousSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
u32 batch_address = entry.relocation_batch_offset + module_address;
if (batch_address < static_relocation_table_offset ||
@ -579,7 +579,7 @@ ResultCode CROHelper::ApplyInternalRelocations(u32 old_data_segment_address) {
u32 internal_relocation_num = GetField(InternalRelocationNum);
for (u32 i = 0; i < internal_relocation_num; ++i) {
InternalRelocationEntry relocation;
GetEntry(i, relocation);
GetEntry(memory, i, relocation);
VAddr target_addressB = SegmentTagToAddress(relocation.target_position);
if (target_addressB == 0) {
return CROFormatError(0x15);
@ -587,7 +587,7 @@ ResultCode CROHelper::ApplyInternalRelocations(u32 old_data_segment_address) {
VAddr target_address;
SegmentEntry target_segment;
GetEntry(relocation.target_position.segment_index, target_segment);
GetEntry(memory, relocation.target_position.segment_index, target_segment);
if (target_segment.type == SegmentType::Data) {
// If the relocation is to the .data segment, we need to relocate it in the old buffer
@ -602,7 +602,7 @@ ResultCode CROHelper::ApplyInternalRelocations(u32 old_data_segment_address) {
}
SegmentEntry symbol_segment;
GetEntry(relocation.symbol_segment, symbol_segment);
GetEntry(memory, relocation.symbol_segment, symbol_segment);
LOG_TRACE(Service_LDR, "Internally relocates 0x{:08X} with 0x{:08X}", target_address,
symbol_segment.offset);
ResultCode result = ApplyRelocation(target_address, relocation.type, relocation.addend,
@ -619,7 +619,7 @@ ResultCode CROHelper::ClearInternalRelocations() {
u32 internal_relocation_num = GetField(InternalRelocationNum);
for (u32 i = 0; i < internal_relocation_num; ++i) {
InternalRelocationEntry relocation;
GetEntry(i, relocation);
GetEntry(memory, i, relocation);
VAddr target_address = SegmentTagToAddress(relocation.target_position);
if (target_address == 0) {
@ -639,13 +639,13 @@ void CROHelper::UnrebaseImportAnonymousSymbolTable() {
u32 num = GetField(ImportAnonymousSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportAnonymousSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.relocation_batch_offset != 0) {
entry.relocation_batch_offset -= module_address;
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
}
@ -653,13 +653,13 @@ void CROHelper::UnrebaseImportIndexedSymbolTable() {
u32 num = GetField(ImportIndexedSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportIndexedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.relocation_batch_offset != 0) {
entry.relocation_batch_offset -= module_address;
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
}
@ -667,7 +667,7 @@ void CROHelper::UnrebaseImportNamedSymbolTable() {
u32 num = GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < num; ++i) {
ImportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset -= module_address;
@ -677,7 +677,7 @@ void CROHelper::UnrebaseImportNamedSymbolTable() {
entry.relocation_batch_offset -= module_address;
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
}
@ -685,7 +685,7 @@ void CROHelper::UnrebaseImportModuleTable() {
u32 module_num = GetField(ImportModuleNum);
for (u32 i = 0; i < module_num; ++i) {
ImportModuleEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset -= module_address;
@ -699,7 +699,7 @@ void CROHelper::UnrebaseImportModuleTable() {
entry.import_anonymous_symbol_table_offset -= module_address;
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
}
@ -707,13 +707,13 @@ void CROHelper::UnrebaseExportNamedSymbolTable() {
u32 export_named_symbol_num = GetField(ExportNamedSymbolNum);
for (u32 i = 0; i < export_named_symbol_num; ++i) {
ExportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.name_offset != 0) {
entry.name_offset -= module_address;
}
SetEntry(i, entry);
SetEntry(memory, i, entry);
}
}
@ -721,7 +721,7 @@ void CROHelper::UnrebaseSegmentTable() {
u32 segment_num = GetField(SegmentNum);
for (u32 i = 0; i < segment_num; ++i) {
SegmentEntry segment;
GetEntry(i, segment);
GetEntry(memory, i, segment);
if (segment.type == SegmentType::BSS) {
segment.offset = 0;
@ -729,7 +729,7 @@ void CROHelper::UnrebaseSegmentTable() {
segment.offset -= module_address;
}
SetEntry(i, segment);
SetEntry(memory, i, segment);
}
}
@ -751,17 +751,17 @@ ResultCode CROHelper::ApplyImportNamedSymbol(VAddr crs_address) {
u32 symbol_import_num = GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < symbol_import_num; ++i) {
ImportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
if (!relocation_entry.is_batch_resolved) {
ResultCode result =
ForEachAutoLinkCRO(process, crs_address, [&](CROHelper source) -> ResultVal<bool> {
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
std::string symbol_name =
Memory::ReadCString(entry.name_offset, import_strings_size);
memory.ReadCString(entry.name_offset, import_strings_size);
u32 symbol_address = source.FindExportNamedSymbol(symbol_name);
if (symbol_address != 0) {
@ -794,11 +794,11 @@ ResultCode CROHelper::ResetImportNamedSymbol() {
u32 symbol_import_num = GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < symbol_import_num; ++i) {
ImportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
ResultCode result = ApplyRelocationBatch(relocation_addr, unresolved_symbol, true);
if (result.IsError()) {
@ -815,11 +815,11 @@ ResultCode CROHelper::ResetImportIndexedSymbol() {
u32 import_num = GetField(ImportIndexedSymbolNum);
for (u32 i = 0; i < import_num; ++i) {
ImportIndexedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
ResultCode result = ApplyRelocationBatch(relocation_addr, unresolved_symbol, true);
if (result.IsError()) {
@ -836,11 +836,11 @@ ResultCode CROHelper::ResetImportAnonymousSymbol() {
u32 import_num = GetField(ImportAnonymousSymbolNum);
for (u32 i = 0; i < import_num; ++i) {
ImportAnonymousSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
ResultCode result = ApplyRelocationBatch(relocation_addr, unresolved_symbol, true);
if (result.IsError()) {
@ -857,19 +857,19 @@ ResultCode CROHelper::ApplyModuleImport(VAddr crs_address) {
u32 import_module_num = GetField(ImportModuleNum);
for (u32 i = 0; i < import_module_num; ++i) {
ImportModuleEntry entry;
GetEntry(i, entry);
std::string want_cro_name = Memory::ReadCString(entry.name_offset, import_strings_size);
GetEntry(memory, i, entry);
std::string want_cro_name = memory.ReadCString(entry.name_offset, import_strings_size);
ResultCode result =
ForEachAutoLinkCRO(process, crs_address, [&](CROHelper source) -> ResultVal<bool> {
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
if (want_cro_name == source.ModuleName()) {
LOG_INFO(Service_LDR, "CRO \"{}\" imports {} indexed symbols from \"{}\"",
ModuleName(), entry.import_indexed_symbol_num, source.ModuleName());
for (u32 j = 0; j < entry.import_indexed_symbol_num; ++j) {
ImportIndexedSymbolEntry im;
entry.GetImportIndexedSymbolEntry(process, j, im);
entry.GetImportIndexedSymbolEntry(process, memory, j, im);
ExportIndexedSymbolEntry ex;
source.GetEntry(im.index, ex);
source.GetEntry(memory, im.index, ex);
u32 symbol_address = source.SegmentTagToAddress(ex.symbol_position);
LOG_TRACE(Service_LDR, " Imports 0x{:08X}", symbol_address);
ResultCode result =
@ -884,7 +884,7 @@ ResultCode CROHelper::ApplyModuleImport(VAddr crs_address) {
ModuleName(), entry.import_anonymous_symbol_num, source.ModuleName());
for (u32 j = 0; j < entry.import_anonymous_symbol_num; ++j) {
ImportAnonymousSymbolEntry im;
entry.GetImportAnonymousSymbolEntry(process, j, im);
entry.GetImportAnonymousSymbolEntry(process, memory, j, im);
u32 symbol_address = source.SegmentTagToAddress(im.symbol_position);
LOG_TRACE(Service_LDR, " Imports 0x{:08X}", symbol_address);
ResultCode result =
@ -913,15 +913,15 @@ ResultCode CROHelper::ApplyExportNamedSymbol(CROHelper target) {
u32 target_symbol_import_num = target.GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < target_symbol_import_num; ++i) {
ImportNamedSymbolEntry entry;
target.GetEntry(i, entry);
target.GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
if (!relocation_entry.is_batch_resolved) {
std::string symbol_name =
Memory::ReadCString(entry.name_offset, target_import_strings_size);
memory.ReadCString(entry.name_offset, target_import_strings_size);
u32 symbol_address = FindExportNamedSymbol(symbol_name);
if (symbol_address != 0) {
LOG_TRACE(Service_LDR, " exports symbol \"{}\"", symbol_name);
@ -944,15 +944,15 @@ ResultCode CROHelper::ResetExportNamedSymbol(CROHelper target) {
u32 target_symbol_import_num = target.GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < target_symbol_import_num; ++i) {
ImportNamedSymbolEntry entry;
target.GetEntry(i, entry);
target.GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
if (relocation_entry.is_batch_resolved) {
std::string symbol_name =
Memory::ReadCString(entry.name_offset, target_import_strings_size);
memory.ReadCString(entry.name_offset, target_import_strings_size);
u32 symbol_address = FindExportNamedSymbol(symbol_name);
if (symbol_address != 0) {
LOG_TRACE(Service_LDR, " unexports symbol \"{}\"", symbol_name);
@ -974,18 +974,18 @@ ResultCode CROHelper::ApplyModuleExport(CROHelper target) {
u32 target_import_module_num = target.GetField(ImportModuleNum);
for (u32 i = 0; i < target_import_module_num; ++i) {
ImportModuleEntry entry;
target.GetEntry(i, entry);
target.GetEntry(memory, i, entry);
if (Memory::ReadCString(entry.name_offset, target_import_string_size) != module_name)
if (memory.ReadCString(entry.name_offset, target_import_string_size) != module_name)
continue;
LOG_INFO(Service_LDR, "CRO \"{}\" exports {} indexed symbols to \"{}\"", module_name,
entry.import_indexed_symbol_num, target.ModuleName());
for (u32 j = 0; j < entry.import_indexed_symbol_num; ++j) {
ImportIndexedSymbolEntry im;
entry.GetImportIndexedSymbolEntry(process, j, im);
entry.GetImportIndexedSymbolEntry(process, memory, j, im);
ExportIndexedSymbolEntry ex;
GetEntry(im.index, ex);
GetEntry(memory, im.index, ex);
u32 symbol_address = SegmentTagToAddress(ex.symbol_position);
LOG_TRACE(Service_LDR, " exports symbol 0x{:08X}", symbol_address);
ResultCode result =
@ -1000,7 +1000,7 @@ ResultCode CROHelper::ApplyModuleExport(CROHelper target) {
entry.import_anonymous_symbol_num, target.ModuleName());
for (u32 j = 0; j < entry.import_anonymous_symbol_num; ++j) {
ImportAnonymousSymbolEntry im;
entry.GetImportAnonymousSymbolEntry(process, j, im);
entry.GetImportAnonymousSymbolEntry(process, memory, j, im);
u32 symbol_address = SegmentTagToAddress(im.symbol_position);
LOG_TRACE(Service_LDR, " exports symbol 0x{:08X}", symbol_address);
ResultCode result =
@ -1023,16 +1023,16 @@ ResultCode CROHelper::ResetModuleExport(CROHelper target) {
u32 target_import_module_num = target.GetField(ImportModuleNum);
for (u32 i = 0; i < target_import_module_num; ++i) {
ImportModuleEntry entry;
target.GetEntry(i, entry);
target.GetEntry(memory, i, entry);
if (Memory::ReadCString(entry.name_offset, target_import_string_size) != module_name)
if (memory.ReadCString(entry.name_offset, target_import_string_size) != module_name)
continue;
LOG_DEBUG(Service_LDR, "CRO \"{}\" unexports indexed symbols to \"{}\"", module_name,
target.ModuleName());
for (u32 j = 0; j < entry.import_indexed_symbol_num; ++j) {
ImportIndexedSymbolEntry im;
entry.GetImportIndexedSymbolEntry(process, j, im);
entry.GetImportIndexedSymbolEntry(process, memory, j, im);
ResultCode result =
target.ApplyRelocationBatch(im.relocation_batch_offset, unresolved_symbol, true);
if (result.IsError()) {
@ -1045,7 +1045,7 @@ ResultCode CROHelper::ResetModuleExport(CROHelper target) {
target.ModuleName());
for (u32 j = 0; j < entry.import_anonymous_symbol_num; ++j) {
ImportAnonymousSymbolEntry im;
entry.GetImportAnonymousSymbolEntry(process, j, im);
entry.GetImportAnonymousSymbolEntry(process, memory, j, im);
ResultCode result =
target.ApplyRelocationBatch(im.relocation_batch_offset, unresolved_symbol, true);
if (result.IsError()) {
@ -1063,15 +1063,15 @@ ResultCode CROHelper::ApplyExitRelocations(VAddr crs_address) {
u32 symbol_import_num = GetField(ImportNamedSymbolNum);
for (u32 i = 0; i < symbol_import_num; ++i) {
ImportNamedSymbolEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
VAddr relocation_addr = entry.relocation_batch_offset;
ExternalRelocationEntry relocation_entry;
Memory::ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
memory.ReadBlock(process, relocation_addr, &relocation_entry,
sizeof(ExternalRelocationEntry));
if (Memory::ReadCString(entry.name_offset, import_strings_size) == "__aeabi_atexit") {
ResultCode result =
ForEachAutoLinkCRO(process, crs_address, [&](CROHelper source) -> ResultVal<bool> {
if (memory.ReadCString(entry.name_offset, import_strings_size) == "__aeabi_atexit") {
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
u32 symbol_address = source.FindExportNamedSymbol("nnroAeabiAtexit_");
if (symbol_address != 0) {
@ -1108,9 +1108,9 @@ ResultCode CROHelper::ApplyExitRelocations(VAddr crs_address) {
* @param size the size of the string (table), including the terminating 0
* @returns ResultCode RESULT_SUCCESS if the size matches, otherwise error code.
*/
static ResultCode VerifyStringTableLength(VAddr address, u32 size) {
static ResultCode VerifyStringTableLength(Memory::MemorySystem& memory, VAddr address, u32 size) {
if (size != 0) {
if (Memory::Read8(address + size - 1) != 0)
if (memory.Read8(address + size - 1) != 0)
return CROFormatError(0x0B);
}
return RESULT_SUCCESS;
@ -1126,7 +1126,7 @@ ResultCode CROHelper::Rebase(VAddr crs_address, u32 cro_size, VAddr data_segment
return result;
}
result = VerifyStringTableLength(GetField(ModuleNameOffset), GetField(ModuleNameSize));
result = VerifyStringTableLength(memory, GetField(ModuleNameOffset), GetField(ModuleNameSize));
if (result.IsError()) {
LOG_ERROR(Service_LDR, "Error verifying module name {:08X}", result.raw);
return result;
@ -1155,7 +1155,8 @@ ResultCode CROHelper::Rebase(VAddr crs_address, u32 cro_size, VAddr data_segment
return result;
}
result = VerifyStringTableLength(GetField(ExportStringsOffset), GetField(ExportStringsSize));
result =
VerifyStringTableLength(memory, GetField(ExportStringsOffset), GetField(ExportStringsSize));
if (result.IsError()) {
LOG_ERROR(Service_LDR, "Error verifying export strings {:08X}", result.raw);
return result;
@ -1191,7 +1192,8 @@ ResultCode CROHelper::Rebase(VAddr crs_address, u32 cro_size, VAddr data_segment
return result;
}
result = VerifyStringTableLength(GetField(ImportStringsOffset), GetField(ImportStringsSize));
result =
VerifyStringTableLength(memory, GetField(ImportStringsOffset), GetField(ImportStringsSize));
if (result.IsError()) {
LOG_ERROR(Service_LDR, "Error verifying import strings {:08X}", result.raw);
return result;
@ -1264,11 +1266,11 @@ ResultCode CROHelper::Link(VAddr crs_address, bool link_on_load_bug_fix) {
// so we do the same
if (GetField(SegmentNum) >= 2) { // means we have .data segment
SegmentEntry entry;
GetEntry(2, entry);
GetEntry(memory, 2, entry);
ASSERT(entry.type == SegmentType::Data);
data_segment_address = entry.offset;
entry.offset = GetField(DataOffset);
SetEntry(2, entry);
SetEntry(memory, 2, entry);
}
}
SCOPE_EXIT({
@ -1276,9 +1278,9 @@ ResultCode CROHelper::Link(VAddr crs_address, bool link_on_load_bug_fix) {
if (link_on_load_bug_fix) {
if (GetField(SegmentNum) >= 2) {
SegmentEntry entry;
GetEntry(2, entry);
GetEntry(memory, 2, entry);
entry.offset = data_segment_address;
SetEntry(2, entry);
SetEntry(memory, 2, entry);
}
}
});
@ -1299,17 +1301,18 @@ ResultCode CROHelper::Link(VAddr crs_address, bool link_on_load_bug_fix) {
}
// Exports symbols to other modules
result = ForEachAutoLinkCRO(process, crs_address, [this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ApplyExportNamedSymbol(target);
if (result.IsError())
return result;
result = ForEachAutoLinkCRO(process, memory, crs_address,
[this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ApplyExportNamedSymbol(target);
if (result.IsError())
return result;
result = ApplyModuleExport(target);
if (result.IsError())
return result;
result = ApplyModuleExport(target);
if (result.IsError())
return result;
return MakeResult<bool>(true);
});
return MakeResult<bool>(true);
});
if (result.IsError()) {
LOG_ERROR(Service_LDR, "Error applying export {:08X}", result.raw);
return result;
@ -1343,17 +1346,18 @@ ResultCode CROHelper::Unlink(VAddr crs_address) {
// Resets all symbols in other modules imported from this module
// Note: the RO service seems only searching in auto-link modules
result = ForEachAutoLinkCRO(process, crs_address, [this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ResetExportNamedSymbol(target);
if (result.IsError())
return result;
result = ForEachAutoLinkCRO(process, memory, crs_address,
[this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ResetExportNamedSymbol(target);
if (result.IsError())
return result;
result = ResetModuleExport(target);
if (result.IsError())
return result;
result = ResetModuleExport(target);
if (result.IsError())
return result;
return MakeResult<bool>(true);
});
return MakeResult<bool>(true);
});
if (result.IsError()) {
LOG_ERROR(Service_LDR, "Error resetting export {:08X}", result.raw);
return result;
@ -1383,13 +1387,13 @@ void CROHelper::InitCRS() {
}
void CROHelper::Register(VAddr crs_address, bool auto_link) {
CROHelper crs(crs_address, process);
CROHelper head(auto_link ? crs.NextModule() : crs.PreviousModule(), process);
CROHelper crs(crs_address, process, memory);
CROHelper head(auto_link ? crs.NextModule() : crs.PreviousModule(), process, memory);
if (head.module_address) {
// there are already CROs registered
// register as the new tail
CROHelper tail(head.PreviousModule(), process);
CROHelper tail(head.PreviousModule(), process, memory);
// link with the old tail
ASSERT(tail.NextModule() == 0);
@ -1415,9 +1419,11 @@ void CROHelper::Register(VAddr crs_address, bool auto_link) {
}
void CROHelper::Unregister(VAddr crs_address) {
CROHelper crs(crs_address, process);
CROHelper next_head(crs.NextModule(), process), previous_head(crs.PreviousModule(), process);
CROHelper next(NextModule(), process), previous(PreviousModule(), process);
CROHelper crs(crs_address, process, memory);
CROHelper next_head(crs.NextModule(), process, memory);
CROHelper previous_head(crs.PreviousModule(), process, memory);
CROHelper next(NextModule(), process, memory);
CROHelper previous(PreviousModule(), process, memory);
if (module_address == next_head.module_address ||
module_address == previous_head.module_address) {
@ -1511,7 +1517,7 @@ std::tuple<VAddr, u32> CROHelper::GetExecutablePages() const {
u32 segment_num = GetField(SegmentNum);
for (u32 i = 0; i < segment_num; ++i) {
SegmentEntry entry;
GetEntry(i, entry);
GetEntry(memory, i, entry);
if (entry.type == SegmentType::Code && entry.size != 0) {
VAddr begin = Common::AlignDown(entry.offset, Memory::PAGE_SIZE);
VAddr end = Common::AlignUp(entry.offset + entry.size, Memory::PAGE_SIZE);

@ -40,11 +40,11 @@ static constexpr u32 CRO_HASH_SIZE = 0x80;
class CROHelper final {
public:
// TODO (wwylele): pass in the process handle for memory access
explicit CROHelper(VAddr cro_address, Kernel::Process& process)
: module_address(cro_address), process(process) {}
explicit CROHelper(VAddr cro_address, Kernel::Process& process, Memory::MemorySystem& memory)
: module_address(cro_address), process(process), memory(memory) {}
std::string ModuleName() const {
return Memory::ReadCString(GetField(ModuleNameOffset), GetField(ModuleNameSize));
return memory.ReadCString(GetField(ModuleNameOffset), GetField(ModuleNameSize));
}
u32 GetFileSize() const {
@ -150,6 +150,7 @@ public:
private:
const VAddr module_address; ///< the virtual address of this module
Kernel::Process& process; ///< the owner process of this module
Memory::MemorySystem& memory;
/**
* Each item in this enum represents a u32 field in the header begin from address+0x80,
@ -317,20 +318,20 @@ private:
static constexpr HeaderField TABLE_OFFSET_FIELD = ImportModuleTableOffset;
void GetImportIndexedSymbolEntry(Kernel::Process& process, u32 index,
ImportIndexedSymbolEntry& entry) {
Memory::ReadBlock(process,
import_indexed_symbol_table_offset +
index * sizeof(ImportIndexedSymbolEntry),
&entry, sizeof(ImportIndexedSymbolEntry));
void GetImportIndexedSymbolEntry(Kernel::Process& process, Memory::MemorySystem& memory,
u32 index, ImportIndexedSymbolEntry& entry) {
memory.ReadBlock(process,
import_indexed_symbol_table_offset +
index * sizeof(ImportIndexedSymbolEntry),
&entry, sizeof(ImportIndexedSymbolEntry));
}
void GetImportAnonymousSymbolEntry(Kernel::Process& process, u32 index,
ImportAnonymousSymbolEntry& entry) {
Memory::ReadBlock(process,
import_anonymous_symbol_table_offset +
index * sizeof(ImportAnonymousSymbolEntry),
&entry, sizeof(ImportAnonymousSymbolEntry));
void GetImportAnonymousSymbolEntry(Kernel::Process& process, Memory::MemorySystem& memory,
u32 index, ImportAnonymousSymbolEntry& entry) {
memory.ReadBlock(process,
import_anonymous_symbol_table_offset +
index * sizeof(ImportAnonymousSymbolEntry),
&entry, sizeof(ImportAnonymousSymbolEntry));
}
};
ASSERT_CRO_STRUCT(ImportModuleEntry, 20);
@ -407,11 +408,11 @@ private:
}
u32 GetField(HeaderField field) const {
return Memory::Read32(Field(field));
return memory.Read32(Field(field));
}
void SetField(HeaderField field, u32 value) {
Memory::Write32(Field(field), value);
memory.Write32(Field(field), value);
}
/**
@ -422,10 +423,10 @@ private:
* indicating which table the entry is in.
*/
template <typename T>
void GetEntry(std::size_t index, T& data) const {
Memory::ReadBlock(process,
GetField(T::TABLE_OFFSET_FIELD) + static_cast<u32>(index * sizeof(T)),
&data, sizeof(T));
void GetEntry(Memory::MemorySystem& memory, std::size_t index, T& data) const {
memory.ReadBlock(process,
GetField(T::TABLE_OFFSET_FIELD) + static_cast<u32>(index * sizeof(T)),
&data, sizeof(T));
}
/**
@ -436,10 +437,10 @@ private:
* indicating which table the entry is in.
*/
template <typename T>
void SetEntry(std::size_t index, const T& data) {
Memory::WriteBlock(process,
GetField(T::TABLE_OFFSET_FIELD) + static_cast<u32>(index * sizeof(T)),
&data, sizeof(T));
void SetEntry(Memory::MemorySystem& memory, std::size_t index, const T& data) {
memory.WriteBlock(process,
GetField(T::TABLE_OFFSET_FIELD) + static_cast<u32>(index * sizeof(T)),
&data, sizeof(T));
}
/**
@ -478,11 +479,11 @@ private:
* otherwise error code of the last iteration.
*/
template <typename FunctionObject>
static ResultCode ForEachAutoLinkCRO(Kernel::Process& process, VAddr crs_address,
FunctionObject func) {
static ResultCode ForEachAutoLinkCRO(Kernel::Process& process, Memory::MemorySystem& memory,
VAddr crs_address, FunctionObject func) {
VAddr current = crs_address;
while (current != 0) {
CROHelper cro(current, process);
CROHelper cro(current, process, memory);
CASCADE_RESULT(bool next, func(cro));
if (!next)
break;

@ -115,7 +115,7 @@ void RO::Initialize(Kernel::HLERequestContext& ctx) {
return;
}
CROHelper crs(crs_address, *process);
CROHelper crs(crs_address, *process, system.Memory());
crs.InitCRS();
result = crs.Rebase(0, crs_size, 0, 0, 0, 0, true);
@ -249,7 +249,7 @@ void RO::LoadCRO(Kernel::HLERequestContext& ctx, bool link_on_load_bug_fix) {
return;
}
CROHelper cro(cro_address, *process);
CROHelper cro(cro_address, *process, system.Memory());
result = cro.VerifyHash(cro_size, crr_address);
if (result.IsError()) {
@ -331,7 +331,7 @@ void RO::UnloadCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}, zero={}, cro_buffer_ptr=0x{:08X}",
cro_address, zero, cro_buffer_ptr);
CROHelper cro(cro_address, *process);
CROHelper cro(cro_address, *process, system.Memory());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -398,7 +398,7 @@ void RO::LinkCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}", cro_address);
CROHelper cro(cro_address, *process);
CROHelper cro(cro_address, *process, system.Memory());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -438,7 +438,7 @@ void RO::UnlinkCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}", cro_address);
CROHelper cro(cro_address, *process);
CROHelper cro(cro_address, *process, system.Memory());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -487,7 +487,7 @@ void RO::Shutdown(Kernel::HLERequestContext& ctx) {
return;
}
CROHelper crs(slot->loaded_crs, *process);
CROHelper crs(slot->loaded_crs, *process, system.Memory());
crs.Unrebase(true);
ResultCode result = RESULT_SUCCESS;
@ -502,7 +502,7 @@ void RO::Shutdown(Kernel::HLERequestContext& ctx) {
rb.Push(result);
}
RO::RO() : ServiceFramework("ldr:ro", 2) {
RO::RO(Core::System& system) : ServiceFramework("ldr:ro", 2), system(system) {
static const FunctionInfo functions[] = {
{0x000100C2, &RO::Initialize, "Initialize"},
{0x00020082, &RO::LoadCRR, "LoadCRR"},
@ -519,7 +519,7 @@ RO::RO() : ServiceFramework("ldr:ro", 2) {
void InstallInterfaces(Core::System& system) {
auto& service_manager = system.ServiceManager();
std::make_shared<RO>()->InstallAsService(service_manager);
std::make_shared<RO>(system)->InstallAsService(service_manager);
}
} // namespace Service::LDR

@ -18,7 +18,7 @@ struct ClientSlot : public Kernel::SessionRequestHandler::SessionDataBase {
class RO final : public ServiceFramework<RO, ClientSlot> {
public:
RO();
explicit RO(Core::System& system);
private:
/**
@ -149,6 +149,8 @@ private:
* 1 : Result of function, 0 on success, otherwise error code
*/
void Shutdown(Kernel::HLERequestContext& self);
Core::System& system;
};
void InstallInterfaces(Core::System& system);

@ -180,7 +180,8 @@ void ServiceFrameworkBase::HandleSyncRequest(SharedPtr<ServerSession> server_ses
Kernel::KernelSystem& kernel = Core::System::GetInstance().Kernel();
auto thread = kernel.GetThreadManager().GetCurrentThread();
// TODO(wwylele): avoid GetPointer
u32* cmd_buf = reinterpret_cast<u32*>(Memory::GetPointer(thread->GetCommandBufferAddress()));
u32* cmd_buf = reinterpret_cast<u32*>(
Core::System::GetInstance().Memory().GetPointer(thread->GetCommandBufferAddress()));
u32 header_code = cmd_buf[0];
auto itr = handlers.find(header_code);

@ -27,6 +27,7 @@
namespace GPU {
Regs g_regs;
Memory::MemorySystem* g_memory;
/// 268MHz CPU clocks / 60Hz frames per second
const u64 frame_ticks = static_cast<u64>(BASE_CLOCK_RATE_ARM11 / SCREEN_REFRESH_RATE);
@ -78,12 +79,12 @@ static void MemoryFill(const Regs::MemoryFillConfig& config) {
const PAddr end_addr = config.GetEndAddress();
// TODO: do hwtest with these cases
if (!Memory::IsValidPhysicalAddress(start_addr)) {
if (!g_memory->IsValidPhysicalAddress(start_addr)) {
LOG_CRITICAL(HW_GPU, "invalid start address {:#010X}", start_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(end_addr)) {
if (!g_memory->IsValidPhysicalAddress(end_addr)) {
LOG_CRITICAL(HW_GPU, "invalid end address {:#010X}", end_addr);
return;
}
@ -94,8 +95,8 @@ static void MemoryFill(const Regs::MemoryFillConfig& config) {
return;
}
u8* start = Memory::GetPhysicalPointer(start_addr);
u8* end = Memory::GetPhysicalPointer(end_addr);
u8* start = g_memory->GetPhysicalPointer(start_addr);
u8* end = g_memory->GetPhysicalPointer(end_addr);
if (VideoCore::g_renderer->Rasterizer()->AccelerateFill(config))
return;
@ -131,12 +132,12 @@ static void DisplayTransfer(const Regs::DisplayTransferConfig& config) {
const PAddr dst_addr = config.GetPhysicalOutputAddress();
// TODO: do hwtest with these cases
if (!Memory::IsValidPhysicalAddress(src_addr)) {
if (!g_memory->IsValidPhysicalAddress(src_addr)) {
LOG_CRITICAL(HW_GPU, "invalid input address {:#010X}", src_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(dst_addr)) {
if (!g_memory->IsValidPhysicalAddress(dst_addr)) {
LOG_CRITICAL(HW_GPU, "invalid output address {:#010X}", dst_addr);
return;
}
@ -164,8 +165,8 @@ static void DisplayTransfer(const Regs::DisplayTransferConfig& config) {
if (VideoCore::g_renderer->Rasterizer()->AccelerateDisplayTransfer(config))
return;
u8* src_pointer = Memory::GetPhysicalPointer(src_addr);
u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr);
u8* src_pointer = g_memory->GetPhysicalPointer(src_addr);
u8* dst_pointer = g_memory->GetPhysicalPointer(dst_addr);
if (config.scaling > config.ScaleXY) {
LOG_CRITICAL(HW_GPU, "Unimplemented display transfer scaling mode {}",
@ -307,12 +308,12 @@ static void TextureCopy(const Regs::DisplayTransferConfig& config) {
const PAddr dst_addr = config.GetPhysicalOutputAddress();
// TODO: do hwtest with invalid addresses
if (!Memory::IsValidPhysicalAddress(src_addr)) {
if (!g_memory->IsValidPhysicalAddress(src_addr)) {
LOG_CRITICAL(HW_GPU, "invalid input address {:#010X}", src_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(dst_addr)) {
if (!g_memory->IsValidPhysicalAddress(dst_addr)) {
LOG_CRITICAL(HW_GPU, "invalid output address {:#010X}", dst_addr);
return;
}
@ -320,8 +321,8 @@ static void TextureCopy(const Regs::DisplayTransferConfig& config) {
if (VideoCore::g_renderer->Rasterizer()->AccelerateTextureCopy(config))
return;
u8* src_pointer = Memory::GetPhysicalPointer(src_addr);
u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr);
u8* src_pointer = g_memory->GetPhysicalPointer(src_addr);
u8* dst_pointer = g_memory->GetPhysicalPointer(dst_addr);
u32 remaining_size = Common::AlignDown(config.texture_copy.size, 16);
@ -470,7 +471,7 @@ inline void Write(u32 addr, const T data) {
if (config.trigger & 1) {
MICROPROFILE_SCOPE(GPU_CmdlistProcessing);
u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress());
u32* buffer = (u32*)g_memory->GetPhysicalPointer(config.GetPhysicalAddress());
if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
Pica::g_debug_context->recorder->MemoryAccessed((u8*)buffer, config.size,
@ -526,7 +527,8 @@ static void VBlankCallback(u64 userdata, s64 cycles_late) {
}
/// Initialize hardware
void Init() {
void Init(Memory::MemorySystem& memory) {
g_memory = &memory;
memset(&g_regs, 0, sizeof(g_regs));
auto& framebuffer_top = g_regs.framebuffer_config[0];

@ -11,6 +11,10 @@
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Memory {
class MemorySystem;
}
namespace GPU {
constexpr float SCREEN_REFRESH_RATE = 60;
@ -326,7 +330,7 @@ template <typename T>
void Write(u32 addr, const T data);
/// Initialize hardware
void Init();
void Init(Memory::MemorySystem& memory);
/// Shutdown hardware
void Shutdown();

@ -86,9 +86,9 @@ template void Write<u8>(u32 addr, const u8 data);
void Update() {}
/// Initialize hardware
void Init() {
void Init(Memory::MemorySystem& memory) {
AES::InitKeys();
GPU::Init();
GPU::Init(memory);
LCD::Init();
LOG_DEBUG(HW, "initialized OK");
}

@ -6,6 +6,10 @@
#include "common/common_types.h"
namespace Memory {
class MemorySystem;
}
namespace HW {
/// Beginnings of IO register regions, in the user VA space.
@ -42,7 +46,7 @@ void Write(u32 addr, const T data);
void Update();
/// Initialize hardware
void Init();
void Init(Memory::MemorySystem& memory);
/// Shutdown hardware
void Shutdown();

@ -10,6 +10,7 @@
#include "common/color.h"
#include "common/common_types.h"
#include "common/vector_math.h"
#include "core/core.h"
#include "core/hle/service/y2r_u.h"
#include "core/hw/y2r.h"
#include "core/memory.h"
@ -80,7 +81,7 @@ static void ConvertYUVToRGB(InputFormat input_format, const u8* input_Y, const u
/// formats to 8-bit.
template <std::size_t N>
static void ReceiveData(u8* output, ConversionBuffer& buf, std::size_t amount_of_data) {
const u8* input = Memory::GetPointer(buf.address);
const u8* input = Core::System::GetInstance().Memory().GetPointer(buf.address);
std::size_t output_unit = buf.transfer_unit / N;
ASSERT(amount_of_data % output_unit == 0);
@ -104,7 +105,7 @@ static void ReceiveData(u8* output, ConversionBuffer& buf, std::size_t amount_of
static void SendData(const u32* input, ConversionBuffer& buf, int amount_of_data,
OutputFormat output_format, u8 alpha) {
u8* output = Memory::GetPointer(buf.address);
u8* output = Core::System::GetInstance().Memory().GetPointer(buf.address);
while (amount_of_data > 0) {
u8* unit_end = output + buf.transfer_unit;

@ -21,21 +21,35 @@
namespace Memory {
static std::array<u8, Memory::VRAM_SIZE> vram;
static std::array<u8, Memory::N3DS_EXTRA_RAM_SIZE> n3ds_extra_ram;
std::array<u8, Memory::FCRAM_N3DS_SIZE> fcram;
class MemorySystem::Impl {
public:
Impl() {
std::fill(fcram.get(), fcram.get() + Memory::FCRAM_N3DS_SIZE, 0);
std::fill(vram.get(), vram.get() + Memory::VRAM_SIZE, 0);
std::fill(n3ds_extra_ram.get(), n3ds_extra_ram.get() + Memory::N3DS_EXTRA_RAM_SIZE, 0);
}
static PageTable* current_page_table = nullptr;
// Visual Studio would try to allocate these on compile time if they are std::array, which would
// exceed the memory limit.
std::unique_ptr<u8[]> fcram = std::make_unique<u8[]>(Memory::FCRAM_N3DS_SIZE);
std::unique_ptr<u8[]> vram = std::make_unique<u8[]>(Memory::VRAM_SIZE);
std::unique_ptr<u8[]> n3ds_extra_ram = std::make_unique<u8[]>(Memory::N3DS_EXTRA_RAM_SIZE);
void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table;
PageTable* current_page_table = nullptr;
};
MemorySystem::MemorySystem() : impl(std::make_unique<Impl>()) {}
MemorySystem::~MemorySystem() = default;
void MemorySystem::SetCurrentPageTable(PageTable* page_table) {
impl->current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
}
}
PageTable* GetCurrentPageTable() {
return current_page_table;
PageTable* MemorySystem::GetCurrentPageTable() const {
return impl->current_page_table;
}
static void MapPages(PageTable& page_table, u32 base, u32 size, u8* memory, PageType type) {
@ -78,21 +92,15 @@ void UnmapRegion(PageTable& page_table, VAddr base, u32 size) {
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
/**
* Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory.
* This is used to access the memory where the page pointer is nullptr due to rasterizer cache.
* Since the cache only happens on linear heap or VRAM, we know the exact physical address and
* pointer of such virtual address
*/
static u8* GetPointerForRasterizerCache(VAddr addr) {
u8* MemorySystem::GetPointerForRasterizerCache(VAddr addr) {
if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return fcram.data() + (addr - LINEAR_HEAP_VADDR);
return impl->fcram.get() + (addr - LINEAR_HEAP_VADDR);
}
if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return fcram.data() + (addr - NEW_LINEAR_HEAP_VADDR);
return impl->fcram.get() + (addr - NEW_LINEAR_HEAP_VADDR);
}
if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return vram.data() + (addr - VRAM_VADDR);
return impl->vram.get() + (addr - VRAM_VADDR);
}
UNREACHABLE();
}
@ -114,8 +122,8 @@ template <typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
T MemorySystem::Read(const VAddr vaddr) {
const u8* page_pointer = impl->current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
@ -126,7 +134,7 @@ T Read(const VAddr vaddr) {
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
PageType type = impl->current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
@ -142,7 +150,7 @@ T Read(const VAddr vaddr) {
return value;
}
case PageType::Special:
return ReadMMIO<T>(GetMMIOHandler(*current_page_table, vaddr), vaddr);
return ReadMMIO<T>(GetMMIOHandler(*impl->current_page_table, vaddr), vaddr);
default:
UNREACHABLE();
}
@ -152,8 +160,8 @@ template <typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
void MemorySystem::Write(const VAddr vaddr, const T data) {
u8* page_pointer = impl->current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
@ -163,7 +171,7 @@ void Write(const VAddr vaddr, const T data) {
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
PageType type = impl->current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X}", sizeof(data) * 8, (u32)data,
@ -178,7 +186,7 @@ void Write(const VAddr vaddr, const T data) {
break;
}
case PageType::Special:
WriteMMIO<T>(GetMMIOHandler(*current_page_table, vaddr), vaddr, data);
WriteMMIO<T>(GetMMIOHandler(*impl->current_page_table, vaddr), vaddr, data);
break;
default:
UNREACHABLE();
@ -206,17 +214,18 @@ bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
return false;
}
bool IsValidPhysicalAddress(const PAddr paddr) {
bool MemorySystem::IsValidPhysicalAddress(const PAddr paddr) {
return GetPhysicalPointer(paddr) != nullptr;
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
u8* MemorySystem::GetPointer(const VAddr vaddr) {
u8* page_pointer = impl->current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
if (impl->current_page_table->attributes[vaddr >> PAGE_BITS] ==
PageType::RasterizerCachedMemory) {
return GetPointerForRasterizerCache(vaddr);
}
@ -224,7 +233,7 @@ u8* GetPointer(const VAddr vaddr) {
return nullptr;
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string MemorySystem::ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
@ -238,7 +247,7 @@ std::string ReadCString(VAddr vaddr, std::size_t max_length) {
return string;
}
u8* GetPhysicalPointer(PAddr address) {
u8* MemorySystem::GetPhysicalPointer(PAddr address) {
struct MemoryArea {
PAddr paddr_base;
u32 size;
@ -268,16 +277,16 @@ u8* GetPhysicalPointer(PAddr address) {
u8* target_pointer = nullptr;
switch (area->paddr_base) {
case VRAM_PADDR:
target_pointer = vram.data() + offset_into_region;
target_pointer = impl->vram.get() + offset_into_region;
break;
case DSP_RAM_PADDR:
target_pointer = Core::DSP().GetDspMemory().data() + offset_into_region;
break;
case FCRAM_PADDR:
target_pointer = fcram.data() + offset_into_region;
target_pointer = impl->fcram.get() + offset_into_region;
break;
case N3DS_EXTRA_RAM_PADDR:
target_pointer = n3ds_extra_ram.data() + offset_into_region;
target_pointer = impl->n3ds_extra_ram.get() + offset_into_region;
break;
default:
UNREACHABLE();
@ -305,7 +314,7 @@ static std::vector<VAddr> PhysicalToVirtualAddressForRasterizer(PAddr addr) {
return {};
}
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
void MemorySystem::RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
if (start == 0) {
return;
}
@ -315,7 +324,7 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
for (VAddr vaddr : PhysicalToVirtualAddressForRasterizer(paddr)) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
PageType& page_type = impl->current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
@ -326,7 +335,7 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
impl->current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
default:
UNREACHABLE();
@ -340,7 +349,7 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
break;
case PageType::RasterizerCachedMemory: {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] =
impl->current_page_table->pointers[vaddr >> PAGE_BITS] =
GetPointerForRasterizerCache(vaddr & ~PAGE_MASK);
break;
}
@ -417,24 +426,24 @@ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
CheckRegion(VRAM_VADDR, VRAM_VADDR_END, VRAM_PADDR);
}
u8 Read8(const VAddr addr) {
u8 MemorySystem::Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
u16 MemorySystem::Read16(const VAddr addr) {
return Read<u16_le>(addr);
}
u32 Read32(const VAddr addr) {
u32 MemorySystem::Read32(const VAddr addr) {
return Read<u32_le>(addr);
}
u64 Read64(const VAddr addr) {
u64 MemorySystem::Read64(const VAddr addr) {
return Read<u64_le>(addr);
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
void MemorySystem::ReadBlock(const Kernel::Process& process, const VAddr src_addr,
void* dest_buffer, const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
@ -483,24 +492,24 @@ void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_
}
}
void Write8(const VAddr addr, const u8 data) {
void MemorySystem::Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
void MemorySystem::Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
}
void Write32(const VAddr addr, const u32 data) {
void MemorySystem::Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
}
void Write64(const VAddr addr, const u64 data) {
void MemorySystem::Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
void MemorySystem::WriteBlock(const Kernel::Process& process, const VAddr dest_addr,
const void* src_buffer, const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
@ -547,7 +556,8 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
}
}
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) {
void MemorySystem::ZeroBlock(const Kernel::Process& process, const VAddr dest_addr,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
@ -595,8 +605,8 @@ void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std:
}
}
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
void MemorySystem::CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
@ -647,8 +657,9 @@ void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
}
}
void CopyBlock(const Kernel::Process& src_process, const Kernel::Process& dest_process,
VAddr src_addr, VAddr dest_addr, std::size_t size) {
void MemorySystem::CopyBlock(const Kernel::Process& src_process,
const Kernel::Process& dest_process, VAddr src_addr, VAddr dest_addr,
std::size_t size) {
auto& page_table = src_process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
@ -739,9 +750,14 @@ void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data)
mmio_handler->Write64(addr, data);
}
u32 GetFCRAMOffset(u8* pointer) {
ASSERT(pointer >= fcram.data() && pointer < fcram.data() + fcram.size());
return pointer - fcram.data();
u32 MemorySystem::GetFCRAMOffset(u8* pointer) {
ASSERT(pointer >= impl->fcram.get() && pointer <= impl->fcram.get() + Memory::FCRAM_N3DS_SIZE);
return pointer - impl->fcram.get();
}
u8* MemorySystem::GetFCRAMPointer(u32 offset) {
ASSERT(offset <= Memory::FCRAM_N3DS_SIZE);
return impl->fcram.get() + offset;
}
} // namespace Memory

@ -6,6 +6,7 @@
#include <array>
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "common/common_types.h"
@ -178,49 +179,6 @@ enum : VAddr {
NEW_LINEAR_HEAP_VADDR_END = NEW_LINEAR_HEAP_VADDR + NEW_LINEAR_HEAP_SIZE,
};
extern std::array<u8, Memory::FCRAM_N3DS_SIZE> fcram;
/// Currently active page table
void SetCurrentPageTable(PageTable* page_table);
PageTable* GetCurrentPageTable();
/// Determines if the given VAddr is valid for the specified process.
bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr);
bool IsValidPhysicalAddress(PAddr paddr);
u8 Read8(VAddr addr);
u16 Read16(VAddr addr);
u32 Read32(VAddr addr);
u64 Read64(VAddr addr);
void Write8(VAddr addr, u8 data);
void Write16(VAddr addr, u16 data);
void Write32(VAddr addr, u32 data);
void Write64(VAddr addr, u64 data);
void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer, std::size_t size);
void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer,
std::size_t size);
void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size);
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, std::size_t size);
void CopyBlock(const Kernel::Process& src_process, const Kernel::Process& dest_process,
VAddr src_addr, VAddr dest_addr, std::size_t size);
u8* GetPointer(VAddr vaddr);
std::string ReadCString(VAddr vaddr, std::size_t max_length);
/**
* Gets a pointer to the memory region beginning at the specified physical address.
*/
u8* GetPhysicalPointer(PAddr address);
/**
* Mark each page touching the region as cached.
*/
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached);
/**
* Flushes any externally cached rasterizer resources touching the given region.
*/
@ -251,7 +209,78 @@ enum class FlushMode {
*/
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode);
/// Gets offset in FCRAM from a pointer inside FCRAM range
u32 GetFCRAMOffset(u8* pointer);
class MemorySystem {
public:
MemorySystem();
~MemorySystem();
/// Currently active page table
void SetCurrentPageTable(PageTable* page_table);
PageTable* GetCurrentPageTable() const;
u8 Read8(VAddr addr);
u16 Read16(VAddr addr);
u32 Read32(VAddr addr);
u64 Read64(VAddr addr);
void Write8(VAddr addr, u8 data);
void Write16(VAddr addr, u16 data);
void Write32(VAddr addr, u32 data);
void Write64(VAddr addr, u64 data);
void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer,
std::size_t size);
void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer,
std::size_t size);
void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size);
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
std::size_t size);
void CopyBlock(const Kernel::Process& src_process, const Kernel::Process& dest_process,
VAddr src_addr, VAddr dest_addr, std::size_t size);
std::string ReadCString(VAddr vaddr, std::size_t max_length);
/**
* Gets a pointer to the memory region beginning at the specified physical address.
*/
u8* GetPhysicalPointer(PAddr address);
u8* GetPointer(VAddr vaddr);
bool IsValidPhysicalAddress(PAddr paddr);
/// Gets offset in FCRAM from a pointer inside FCRAM range
u32 GetFCRAMOffset(u8* pointer);
/// Gets pointer in FCRAM with given offset
u8* GetFCRAMPointer(u32 offset);
/**
* Mark each page touching the region as cached.
*/
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached);
private:
template <typename T>
T Read(const VAddr vaddr);
template <typename T>
void Write(const VAddr vaddr, const T data);
/**
* Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory.
* This is used to access the memory where the page pointer is nullptr due to rasterizer cache.
* Since the cache only happens on linear heap or VRAM, we know the exact physical address and
* pointer of such virtual address
*/
u8* GetPointerForRasterizerCache(VAddr addr);
class Impl;
std::unique_ptr<Impl> impl;
};
/// Determines if the given VAddr is valid for the specified process.
bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr);
} // namespace Memory

@ -30,8 +30,9 @@ void RPCServer::HandleReadMemory(Packet& packet, u32 address, u32 data_size) {
}
// Note: Memory read occurs asynchronously from the state of the emulator
Memory::ReadBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), address,
packet.GetPacketData().data(), data_size);
Core::System::GetInstance().Memory().ReadBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), address,
packet.GetPacketData().data(), data_size);
packet.SetPacketDataSize(data_size);
packet.SendReply();
}
@ -42,8 +43,8 @@ void RPCServer::HandleWriteMemory(Packet& packet, u32 address, const u8* data, u
(address >= Memory::HEAP_VADDR && address <= Memory::HEAP_VADDR_END) ||
(address >= Memory::N3DS_EXTRA_RAM_VADDR && address <= Memory::N3DS_EXTRA_RAM_VADDR_END)) {
// Note: Memory write occurs asynchronously from the state of the emulator
Memory::WriteBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), address, data,
data_size);
Core::System::GetInstance().Memory().WriteBlock(
*Core::System::GetInstance().Kernel().GetCurrentProcess(), address, data, data_size);
// If the memory happens to be executable code, make sure the changes become visible
Core::CPU().InvalidateCacheRange(address, data_size);
}

@ -20,7 +20,9 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
// so we need to create the kernel object there.
// Change this when all global states are eliminated.
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().kernel = std::make_unique<Kernel::KernelSystem>(0);
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Memory::MemorySystem& memory = *Core::System::GetInstance().memory;
Core::System::GetInstance().kernel = std::make_unique<Kernel::KernelSystem>(memory, 0);
kernel = Core::System::GetInstance().kernel.get();
kernel->SetCurrentProcess(kernel->CreateProcess(kernel->CreateCodeSet("", 0)));
@ -32,7 +34,7 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
Memory::MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory);
Memory::MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory);
Memory::SetCurrentPageTable(page_table);
memory.SetCurrentPageTable(page_table);
}
TestEnvironment::~TestEnvironment() {

@ -3,8 +3,8 @@
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include "core/arm/dyncom/arm_dyncom.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "tests/core/arm/arm_test_common.h"
@ -23,7 +23,7 @@ TEST_CASE("ARM_DynCom (vfp): vadd", "[arm_dyncom]") {
test_env.SetMemory32(0, 0xEE321A03); // vadd.f32 s2, s4, s6
test_env.SetMemory32(4, 0xEAFFFFFE); // b +#0
ARM_DynCom dyncom(USER32MODE);
ARM_DynCom dyncom(Core::System::GetInstance(), USER32MODE);
std::vector<VfpTestCase> test_cases{{
#include "vfp_vadd_f32.inc"
@ -47,4 +47,4 @@ TEST_CASE("ARM_DynCom (vfp): vadd", "[arm_dyncom]") {
}
}
} // namespace ArmTests
} // namespace ArmTests

@ -23,7 +23,8 @@ static SharedPtr<Object> MakeObject(Kernel::KernelSystem& kernel) {
TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
auto memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*memory, 0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));
@ -235,7 +236,8 @@ TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel
TEST_CASE("HLERequestContext::WriteToOutgoingCommandBuffer", "[core][kernel]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
auto memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*memory, 0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));

@ -13,7 +13,8 @@
TEST_CASE("Memory::IsValidVirtualAddress", "[core][memory]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*Core::System::GetInstance().memory, 0);
SECTION("these regions should not be mapped on an empty process") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
CHECK(Memory::IsValidVirtualAddress(*process, Memory::PROCESS_IMAGE_VADDR) == false);
@ -35,13 +36,13 @@ TEST_CASE("Memory::IsValidVirtualAddress", "[core][memory]") {
SECTION("special regions should be valid after mapping them") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
SECTION("VRAM") {
Kernel::HandleSpecialMapping(process->vm_manager,
{Memory::VRAM_VADDR, Memory::VRAM_SIZE, false, false});
kernel.HandleSpecialMapping(process->vm_manager,
{Memory::VRAM_VADDR, Memory::VRAM_SIZE, false, false});
CHECK(Memory::IsValidVirtualAddress(*process, Memory::VRAM_VADDR) == true);
}
SECTION("IO (Not yet implemented)") {
Kernel::HandleSpecialMapping(
kernel.HandleSpecialMapping(
process->vm_manager, {Memory::IO_AREA_VADDR, Memory::IO_AREA_SIZE, false, false});
CHECK_FALSE(Memory::IsValidVirtualAddress(*process, Memory::IO_AREA_VADDR) == true);
}

@ -269,7 +269,7 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(pipeline.command_buffer.trigger[1], 0x23d): {
unsigned index =
static_cast<unsigned>(id - PICA_REG_INDEX(pipeline.command_buffer.trigger[0]));
u32* head_ptr = (u32*)Memory::GetPhysicalPointer(
u32* head_ptr = (u32*)VideoCore::g_memory->GetPhysicalPointer(
regs.pipeline.command_buffer.GetPhysicalAddress(index));
g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr;
g_state.cmd_list.length = regs.pipeline.command_buffer.GetSize(index) / sizeof(u32);
@ -328,7 +328,8 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
// Load vertices
const auto& index_info = regs.pipeline.index_array;
const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
const u8* index_address_8 =
VideoCore::g_memory->GetPhysicalPointer(base_address + index_info.offset);
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
@ -338,7 +339,8 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
if (!texture.enabled)
continue;
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
u8* texture_data =
VideoCore::g_memory->GetPhysicalPointer(texture.config.GetPhysicalAddress());
g_debug_context->recorder->MemoryAccessed(
texture_data,
Pica::TexturingRegs::NibblesPerPixel(texture.format) * texture.config.width /
@ -424,8 +426,8 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
}
for (auto& range : memory_accesses.ranges) {
g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first),
range.second, range.first);
g_debug_context->recorder->MemoryAccessed(
VideoCore::g_memory->GetPhysicalPointer(range.first), range.second, range.first);
}
VideoCore::g_renderer->Rasterizer()->DrawTriangles();

@ -24,6 +24,7 @@
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/pica_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
#include "video_core/video_core.h"
namespace OpenGL {
@ -259,7 +260,7 @@ RasterizerOpenGL::VertexArrayInfo RasterizerOpenGL::AnalyzeVertexArray(bool is_i
if (is_indexed) {
const auto& index_info = regs.pipeline.index_array;
PAddr address = vertex_attributes.GetPhysicalBaseAddress() + index_info.offset;
const u8* index_address_8 = Memory::GetPhysicalPointer(address);
const u8* index_address_8 = VideoCore::g_memory->GetPhysicalPointer(address);
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
@ -340,7 +341,7 @@ void RasterizerOpenGL::SetupVertexArray(u8* array_ptr, GLintptr buffer_offset,
u32 data_size = loader.byte_count * vertex_num;
res_cache.FlushRegion(data_addr, data_size, nullptr);
std::memcpy(array_ptr, Memory::GetPhysicalPointer(data_addr), data_size);
std::memcpy(array_ptr, VideoCore::g_memory->GetPhysicalPointer(data_addr), data_size);
array_ptr += data_size;
buffer_offset += data_size;
@ -471,9 +472,9 @@ bool RasterizerOpenGL::AccelerateDrawBatchInternal(bool is_indexed, bool use_gs)
return false;
}
const u8* index_data =
Memory::GetPhysicalPointer(regs.pipeline.vertex_attributes.GetPhysicalBaseAddress() +
regs.pipeline.index_array.offset);
const u8* index_data = VideoCore::g_memory->GetPhysicalPointer(
regs.pipeline.vertex_attributes.GetPhysicalBaseAddress() +
regs.pipeline.index_array.offset);
std::tie(buffer_ptr, buffer_offset, std::ignore) = index_buffer.Map(index_buffer_size, 4);
std::memcpy(buffer_ptr, index_data, index_buffer_size);
index_buffer.Unmap(index_buffer_size);

@ -134,7 +134,7 @@ static void MortonCopy(u32 stride, u32 height, u8* gl_buffer, PAddr base, PAddr
}
};
u8* tile_buffer = Memory::GetPhysicalPointer(start);
u8* tile_buffer = VideoCore::g_memory->GetPhysicalPointer(start);
if (start < aligned_start && !morton_to_gl) {
std::array<u8, tile_size> tmp_buf;
@ -625,7 +625,7 @@ MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 19
void CachedSurface::LoadGLBuffer(PAddr load_start, PAddr load_end) {
ASSERT(type != SurfaceType::Fill);
const u8* const texture_src_data = Memory::GetPhysicalPointer(addr);
const u8* const texture_src_data = VideoCore::g_memory->GetPhysicalPointer(addr);
if (texture_src_data == nullptr)
return;
@ -680,7 +680,7 @@ void CachedSurface::LoadGLBuffer(PAddr load_start, PAddr load_end) {
MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void CachedSurface::FlushGLBuffer(PAddr flush_start, PAddr flush_end) {
u8* const dst_buffer = Memory::GetPhysicalPointer(addr);
u8* const dst_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
if (dst_buffer == nullptr)
return;
@ -1718,9 +1718,11 @@ void RasterizerCacheOpenGL::UpdatePagesCachedCount(PAddr addr, u32 size, int del
const u32 interval_size = interval_end_addr - interval_start_addr;
if (delta > 0 && count == delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, true);
VideoCore::g_memory->RasterizerMarkRegionCached(interval_start_addr, interval_size,
true);
else if (delta < 0 && count == -delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, false);
VideoCore::g_memory->RasterizerMarkRegionCached(interval_start_addr, interval_size,
false);
else
ASSERT(count >= 0);
}

@ -228,7 +228,7 @@ void RendererOpenGL::LoadFBToScreenInfo(const GPU::Regs::FramebufferConfig& fram
Memory::RasterizerFlushRegion(framebuffer_addr, framebuffer.stride * framebuffer.height);
const u8* framebuffer_data = Memory::GetPhysicalPointer(framebuffer_addr);
const u8* framebuffer_data = VideoCore::g_memory->GetPhysicalPointer(framebuffer_addr);
state.texture_units[0].texture_2d = screen_info.texture.resource.handle;
state.Apply();

@ -14,6 +14,7 @@
#include "video_core/regs_framebuffer.h"
#include "video_core/swrasterizer/framebuffer.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"
namespace Pica {
namespace Rasterizer {
@ -31,7 +32,7 @@ void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
u8* dst_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + dst_offset;
switch (framebuffer.color_format) {
case FramebufferRegs::ColorFormat::RGBA8:
@ -72,7 +73,7 @@ const Math::Vec4<u8> GetPixel(int x, int y) {
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
coarse_y * framebuffer.width * bytes_per_pixel;
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
u8* src_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + src_offset;
switch (framebuffer.color_format) {
case FramebufferRegs::ColorFormat::RGBA8:
@ -102,7 +103,7 @@ const Math::Vec4<u8> GetPixel(int x, int y) {
u32 GetDepth(int x, int y) {
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
y = framebuffer.height - y;
@ -131,7 +132,7 @@ u32 GetDepth(int x, int y) {
u8 GetStencil(int x, int y) {
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
y = framebuffer.height - y;
@ -158,7 +159,7 @@ u8 GetStencil(int x, int y) {
void SetDepth(int x, int y, u32 value) {
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
y = framebuffer.height - y;
@ -193,7 +194,7 @@ void SetDepth(int x, int y, u32 value) {
void SetStencil(int x, int y, u8 value) {
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
u8* depth_buffer = VideoCore::g_memory->GetPhysicalPointer(addr);
y = framebuffer.height - y;
@ -384,7 +385,7 @@ void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) {
u32 bytes_per_pixel = 4;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
u8* dst_pixel = VideoCore::g_memory->GetPhysicalPointer(addr) + dst_offset;
auto ref = DecodeD24S8Shadow(dst_pixel);
u32 ref_z = ref.x;

@ -30,6 +30,7 @@
#include "video_core/swrasterizer/texturing.h"
#include "video_core/texture/texture_decode.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"
namespace Pica {
namespace Rasterizer {
@ -402,7 +403,8 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
t = texture.config.height - 1 -
GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
const u8* texture_data = Memory::GetPhysicalPointer(texture_address);
const u8* texture_data =
VideoCore::g_memory->GetPhysicalPointer(texture_address);
auto info =
Texture::TextureInfo::FromPicaRegister(texture.config, texture.format);

@ -13,6 +13,7 @@
#include "video_core/regs_pipeline.h"
#include "video_core/shader/shader.h"
#include "video_core/vertex_loader.h"
#include "video_core/video_core.h"
namespace Pica {
@ -95,32 +96,32 @@ void VertexLoader::LoadVertex(u32 base_address, int index, int vertex,
switch (vertex_attribute_formats[i]) {
case PipelineRegs::VertexAttributeFormat::BYTE: {
const s8* srcdata =
reinterpret_cast<const s8*>(Memory::GetPhysicalPointer(source_addr));
const s8* srcdata = reinterpret_cast<const s8*>(
VideoCore::g_memory->GetPhysicalPointer(source_addr));
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
input.attr[i][comp] = float24::FromFloat32(srcdata[comp]);
}
break;
}
case PipelineRegs::VertexAttributeFormat::UBYTE: {
const u8* srcdata =
reinterpret_cast<const u8*>(Memory::GetPhysicalPointer(source_addr));
const u8* srcdata = reinterpret_cast<const u8*>(
VideoCore::g_memory->GetPhysicalPointer(source_addr));
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
input.attr[i][comp] = float24::FromFloat32(srcdata[comp]);
}
break;
}
case PipelineRegs::VertexAttributeFormat::SHORT: {
const s16* srcdata =
reinterpret_cast<const s16*>(Memory::GetPhysicalPointer(source_addr));
const s16* srcdata = reinterpret_cast<const s16*>(
VideoCore::g_memory->GetPhysicalPointer(source_addr));
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
input.attr[i][comp] = float24::FromFloat32(srcdata[comp]);
}
break;
}
case PipelineRegs::VertexAttributeFormat::FLOAT: {
const float* srcdata =
reinterpret_cast<const float*>(Memory::GetPhysicalPointer(source_addr));
const float* srcdata = reinterpret_cast<const float*>(
VideoCore::g_memory->GetPhysicalPointer(source_addr));
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
input.attr[i][comp] = float24::FromFloat32(srcdata[comp]);
}

@ -29,8 +29,11 @@ void* g_screenshot_bits;
std::function<void()> g_screenshot_complete_callback;
Layout::FramebufferLayout g_screenshot_framebuffer_layout;
Memory::MemorySystem* g_memory;
/// Initialize the video core
Core::System::ResultStatus Init(EmuWindow& emu_window) {
Core::System::ResultStatus Init(EmuWindow& emu_window, Memory::MemorySystem& memory) {
g_memory = &memory;
Pica::Init();
g_renderer = std::make_unique<OpenGL::RendererOpenGL>(emu_window);

@ -12,6 +12,10 @@
class EmuWindow;
class RendererBase;
namespace Memory {
class MemorySystem;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Video Core namespace
@ -33,8 +37,10 @@ extern void* g_screenshot_bits;
extern std::function<void()> g_screenshot_complete_callback;
extern Layout::FramebufferLayout g_screenshot_framebuffer_layout;
extern Memory::MemorySystem* g_memory;
/// Initialize the video core
Core::System::ResultStatus Init(EmuWindow& emu_window);
Core::System::ResultStatus Init(EmuWindow& emu_window, Memory::MemorySystem& memory);
/// Shutdown the video core
void Shutdown();