|
|
|
@ -6,6 +6,7 @@
|
|
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
|
#include <bitset>
|
|
|
|
|
#include <cstdlib>
|
|
|
|
|
#include <string>
|
|
|
|
|
#include "common/file_util.h"
|
|
|
|
|
#include "core/core.h"
|
|
|
|
@ -13,7 +14,7 @@
|
|
|
|
|
|
|
|
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
|
|
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
|
|
|
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
|
|
|
|
|
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
|
|
|
|
|
|
|
|
|
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|
|
|
|
static u64 expected_callback = 0;
|
|
|
|
@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
|
|
|
|
REQUIRE(lateness == cycles_late);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u64 callbacks_done = 0;
|
|
|
|
|
|
|
|
|
|
void EmptyCallback(u64 userdata, s64 cycles_late) {
|
|
|
|
|
++callbacks_done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct ScopeInit final {
|
|
|
|
|
ScopeInit() {
|
|
|
|
|
core_timing.Initialize();
|
|
|
|
@ -39,16 +46,159 @@ struct ScopeInit final {
|
|
|
|
|
Core::Timing::CoreTiming core_timing;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount,
|
|
|
|
|
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
|
|
|
|
|
int expected_lateness = 0, int cpu_downcount = 0) {
|
|
|
|
|
callbacks_ran_flags = 0;
|
|
|
|
|
expected_callback = CB_IDS[idx];
|
|
|
|
|
lateness = expected_lateness;
|
|
|
|
|
|
|
|
|
|
// Pretend we executed X cycles of instructions.
|
|
|
|
|
core_timing.SwitchContext(context);
|
|
|
|
|
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
|
|
|
|
core_timing.Advance();
|
|
|
|
|
core_timing.SwitchContext((context + 1) % 4);
|
|
|
|
|
|
|
|
|
|
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
|
|
|
|
REQUIRE(downcount == core_timing.GetDowncount());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|
|
|
|
ScopeInit guard;
|
|
|
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
|
|
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
|
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
|
|
|
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
|
|
|
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
|
|
|
|
|
|
// Enter slice 0
|
|
|
|
|
core_timing.ResetRun();
|
|
|
|
|
|
|
|
|
|
// D -> B -> C -> A -> E
|
|
|
|
|
core_timing.SwitchContext(0);
|
|
|
|
|
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
|
|
|
REQUIRE(1000 == core_timing.GetDowncount());
|
|
|
|
|
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
|
|
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
|
|
|
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
|
|
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
|
|
|
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
|
|
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
|
|
|
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
|
|
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
|
|
|
|
|
|
|
|
AdvanceAndCheck(core_timing, 3, 0);
|
|
|
|
|
AdvanceAndCheck(core_timing, 1, 1);
|
|
|
|
|
AdvanceAndCheck(core_timing, 2, 2);
|
|
|
|
|
AdvanceAndCheck(core_timing, 0, 3);
|
|
|
|
|
AdvanceAndCheck(core_timing, 4, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
|
|
|
|
|
|
|
|
|
|
ScopeInit guard;
|
|
|
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
|
|
|
|
|
|
Core::Timing::EventType* empty_callback =
|
|
|
|
|
core_timing.RegisterEvent("empty_callback", EmptyCallback);
|
|
|
|
|
|
|
|
|
|
callbacks_done = 0;
|
|
|
|
|
u64 MAX_CALLBACKS = 10;
|
|
|
|
|
for (std::size_t i = 0; i < 10; i++) {
|
|
|
|
|
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const s64 advances = MAX_SLICE_LENGTH / 10;
|
|
|
|
|
core_timing.ResetRun();
|
|
|
|
|
u64 current_time = core_timing.GetTicks();
|
|
|
|
|
bool keep_running{};
|
|
|
|
|
do {
|
|
|
|
|
keep_running = false;
|
|
|
|
|
for (u32 active_core = 0; active_core < 4; ++active_core) {
|
|
|
|
|
core_timing.SwitchContext(active_core);
|
|
|
|
|
if (core_timing.CurrentContextCanRun()) {
|
|
|
|
|
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
|
|
|
|
|
core_timing.Advance();
|
|
|
|
|
}
|
|
|
|
|
keep_running |= core_timing.CurrentContextCanRun();
|
|
|
|
|
}
|
|
|
|
|
} while (keep_running);
|
|
|
|
|
u64 current_time_2 = core_timing.GetTicks();
|
|
|
|
|
|
|
|
|
|
REQUIRE(MAX_CALLBACKS == callbacks_done);
|
|
|
|
|
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
|
|
|
|
ScopeInit guard;
|
|
|
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
|
|
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
|
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
|
|
|
|
|
|
// Enter slice 0
|
|
|
|
|
core_timing.ResetRun();
|
|
|
|
|
|
|
|
|
|
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
|
|
|
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
|
|
|
|
|
|
|
|
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
|
|
|
|
|
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace ChainSchedulingTest {
|
|
|
|
|
static int reschedules = 0;
|
|
|
|
|
|
|
|
|
|
static void RescheduleCallback(Core::Timing::CoreTiming& core_timing, u64 userdata,
|
|
|
|
|
s64 cycles_late) {
|
|
|
|
|
--reschedules;
|
|
|
|
|
REQUIRE(reschedules >= 0);
|
|
|
|
|
REQUIRE(lateness == cycles_late);
|
|
|
|
|
|
|
|
|
|
if (reschedules > 0) {
|
|
|
|
|
core_timing.ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata),
|
|
|
|
|
userdata);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} // namespace ChainSchedulingTest
|
|
|
|
|
|
|
|
|
|
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
|
|
|
|
|
using namespace ChainSchedulingTest;
|
|
|
|
|
|
|
|
|
|
ScopeInit guard;
|
|
|
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
|
|
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
|
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
|
|
|
Core::Timing::EventType* cb_rs = core_timing.RegisterEvent(
|
|
|
|
|
"callbackReschedule", [&core_timing](u64 userdata, s64 cycles_late) {
|
|
|
|
|
RescheduleCallback(core_timing, userdata, cycles_late);
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// Enter slice 0
|
|
|
|
|
core_timing.ResetRun();
|
|
|
|
|
|
|
|
|
|
core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
|
|
|
|
|
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
|
|
|
|
core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
|
|
|
|
|
core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
|
|
|
|
|
REQUIRE(800 == core_timing.GetDowncount());
|
|
|
|
|
|
|
|
|
|
reschedules = 3;
|
|
|
|
|
AdvanceAndCheck(core_timing, 0, 0); // cb_a
|
|
|
|
|
AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs
|
|
|
|
|
REQUIRE(2 == reschedules);
|
|
|
|
|
|
|
|
|
|
core_timing.AddTicks(core_timing.GetDowncount());
|
|
|
|
|
core_timing.Advance(); // cb_rs
|
|
|
|
|
core_timing.SwitchContext(3);
|
|
|
|
|
REQUIRE(1 == reschedules);
|
|
|
|
|
REQUIRE(200 == core_timing.GetDowncount());
|
|
|
|
|
|
|
|
|
|
AdvanceAndCheck(core_timing, 2, 3); // cb_c
|
|
|
|
|
|
|
|
|
|
core_timing.AddTicks(core_timing.GetDowncount());
|
|
|
|
|
core_timing.Advance(); // cb_rs
|
|
|
|
|
REQUIRE(0 == reschedules);
|
|
|
|
|
}
|
|
|
|
|