hle: nvdrv: Rewrite of GPU memory management.

master
bunnei 2020-07-26 00:16:21 +07:00
parent b69f902b18
commit 05def61398
6 changed files with 451 additions and 613 deletions

@ -16,11 +16,12 @@
#include "video_core/renderer_base.h"
namespace Service::Nvidia::Devices {
namespace NvErrCodes {
enum {
InvalidNmapHandle = -22,
};
}
constexpr u32 Success{};
constexpr u32 OutOfMemory{static_cast<u32>(-12)};
constexpr u32 InvalidInput{static_cast<u32>(-22)};
} // namespace NvErrCodes
nvhost_as_gpu::nvhost_as_gpu(Core::System& system, std::shared_ptr<nvmap> nvmap_dev)
: nvdevice(system), nvmap_dev(std::move(nvmap_dev)) {}
@ -49,8 +50,9 @@ u32 nvhost_as_gpu::ioctl(Ioctl command, const std::vector<u8>& input, const std:
break;
}
if (static_cast<IoctlCommand>(command.cmd.Value()) == IoctlCommand::IocRemapCommand)
if (static_cast<IoctlCommand>(command.cmd.Value()) == IoctlCommand::IocRemapCommand) {
return Remap(input, output);
}
UNIMPLEMENTED_MSG("Unimplemented ioctl command");
return 0;
@ -59,6 +61,7 @@ u32 nvhost_as_gpu::ioctl(Ioctl command, const std::vector<u8>& input, const std:
u32 nvhost_as_gpu::InitalizeEx(const std::vector<u8>& input, std::vector<u8>& output) {
IoctlInitalizeEx params{};
std::memcpy(&params, input.data(), input.size());
LOG_WARNING(Service_NVDRV, "(STUBBED) called, big_page_size=0x{:X}", params.big_page_size);
return 0;
@ -67,53 +70,61 @@ u32 nvhost_as_gpu::InitalizeEx(const std::vector<u8>& input, std::vector<u8>& ou
u32 nvhost_as_gpu::AllocateSpace(const std::vector<u8>& input, std::vector<u8>& output) {
IoctlAllocSpace params{};
std::memcpy(&params, input.data(), input.size());
LOG_DEBUG(Service_NVDRV, "called, pages={:X}, page_size={:X}, flags={:X}", params.pages,
params.page_size, params.flags);
auto& gpu = system.GPU();
const u64 size{static_cast<u64>(params.pages) * static_cast<u64>(params.page_size)};
if (params.flags & 1) {
params.offset = gpu.MemoryManager().AllocateSpace(params.offset, size, 1);
const auto size{static_cast<u64>(params.pages) * static_cast<u64>(params.page_size)};
if ((params.flags & AddressSpaceFlags::FixedOffset) != AddressSpaceFlags::None) {
params.offset = *system.GPU().MemoryManager().AllocateFixed(params.offset, size);
} else {
params.offset = gpu.MemoryManager().AllocateSpace(size, params.align);
params.offset = system.GPU().MemoryManager().Allocate(size, params.align);
}
auto result{NvErrCodes::Success};
if (!params.offset) {
LOG_CRITICAL(Service_NVDRV, "allocation failed for size {}", size);
result = NvErrCodes::OutOfMemory;
}
std::memcpy(output.data(), &params, output.size());
return 0;
return result;
}
u32 nvhost_as_gpu::Remap(const std::vector<u8>& input, std::vector<u8>& output) {
std::size_t num_entries = input.size() / sizeof(IoctlRemapEntry);
const auto num_entries = input.size() / sizeof(IoctlRemapEntry);
LOG_WARNING(Service_NVDRV, "(STUBBED) called, num_entries=0x{:X}", num_entries);
LOG_DEBUG(Service_NVDRV, "called, num_entries=0x{:X}", num_entries);
auto result{NvErrCodes::Success};
std::vector<IoctlRemapEntry> entries(num_entries);
std::memcpy(entries.data(), input.data(), input.size());
auto& gpu = system.GPU();
for (const auto& entry : entries) {
LOG_WARNING(Service_NVDRV, "remap entry, offset=0x{:X} handle=0x{:X} pages=0x{:X}",
entry.offset, entry.nvmap_handle, entry.pages);
GPUVAddr offset = static_cast<GPUVAddr>(entry.offset) << 0x10;
auto object = nvmap_dev->GetObject(entry.nvmap_handle);
LOG_DEBUG(Service_NVDRV, "remap entry, offset=0x{:X} handle=0x{:X} pages=0x{:X}",
entry.offset, entry.nvmap_handle, entry.pages);
const auto object{nvmap_dev->GetObject(entry.nvmap_handle)};
if (!object) {
LOG_CRITICAL(Service_NVDRV, "nvmap {} is an invalid handle!", entry.nvmap_handle);
std::memcpy(output.data(), entries.data(), output.size());
return static_cast<u32>(NvErrCodes::InvalidNmapHandle);
LOG_CRITICAL(Service_NVDRV, "invalid nvmap_handle={:X}", entry.nvmap_handle);
result = NvErrCodes::InvalidInput;
break;
}
ASSERT(object->status == nvmap::Object::Status::Allocated);
const auto offset{static_cast<GPUVAddr>(entry.offset) << 0x10};
const auto size{static_cast<u64>(entry.pages) << 0x10};
const auto map_offset{static_cast<u64>(entry.map_offset) << 0x10};
const auto addr{system.GPU().MemoryManager().Map(object->addr + map_offset, offset, size)};
const u64 size = static_cast<u64>(entry.pages) << 0x10;
ASSERT(size <= object->size);
const u64 map_offset = static_cast<u64>(entry.map_offset) << 0x10;
const GPUVAddr returned =
gpu.MemoryManager().MapBufferEx(object->addr + map_offset, offset, size);
ASSERT(returned == offset);
if (!addr) {
LOG_CRITICAL(Service_NVDRV, "map returned an invalid address!");
result = NvErrCodes::InvalidInput;
break;
}
}
std::memcpy(output.data(), entries.data(), output.size());
return 0;
return result;
}
u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& output) {
@ -126,44 +137,76 @@ u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& ou
params.flags, params.nvmap_handle, params.buffer_offset, params.mapping_size,
params.offset);
if (!params.nvmap_handle) {
return 0;
const auto object{nvmap_dev->GetObject(params.nvmap_handle)};
if (!object) {
LOG_CRITICAL(Service_NVDRV, "invalid nvmap_handle={:X}", params.nvmap_handle);
std::memcpy(output.data(), &params, output.size());
return NvErrCodes::InvalidInput;
}
auto object = nvmap_dev->GetObject(params.nvmap_handle);
ASSERT(object);
// We can only map objects that have already been assigned a CPU address.
ASSERT(object->status == nvmap::Object::Status::Allocated);
ASSERT(params.buffer_offset == 0);
// The real nvservices doesn't make a distinction between handles and ids, and
// object can only have one handle and it will be the same as its id. Assert that this is the
// case to prevent unexpected behavior.
ASSERT(object->id == params.nvmap_handle);
auto& gpu = system.GPU();
if (params.flags & 1) {
params.offset = gpu.MemoryManager().MapBufferEx(object->addr, params.offset, object->size);
} else {
params.offset = gpu.MemoryManager().MapBufferEx(object->addr, object->size);
u64 page_size{params.page_size};
if (!page_size) {
page_size = object->align;
}
// Create a new mapping entry for this operation.
ASSERT_MSG(buffer_mappings.find(params.offset) == buffer_mappings.end(),
"Offset is already mapped");
if ((params.flags & AddressSpaceFlags::Remap) != AddressSpaceFlags::None) {
if (const auto buffer_map{FindBufferMap(params.offset)}; buffer_map) {
const auto cpu_addr{static_cast<VAddr>(buffer_map->CpuAddr() + params.buffer_offset)};
const auto gpu_addr{static_cast<GPUVAddr>(params.offset + params.buffer_offset)};
BufferMapping mapping{};
mapping.nvmap_handle = params.nvmap_handle;
mapping.offset = params.offset;
mapping.size = object->size;
if (!gpu.MemoryManager().Map(cpu_addr, gpu_addr, params.mapping_size)) {
LOG_CRITICAL(Service_NVDRV,
"remap failed, flags={:X}, nvmap_handle={:X}, buffer_offset={}, "
"mapping_size = {}, offset={}",
params.flags, params.nvmap_handle, params.buffer_offset,
params.mapping_size, params.offset);
buffer_mappings[params.offset] = mapping;
std::memcpy(output.data(), &params, output.size());
return NvErrCodes::InvalidInput;
}
std::memcpy(output.data(), &params, output.size());
return NvErrCodes::Success;
} else {
LOG_CRITICAL(Service_NVDRV, "address not mapped offset={}", params.offset);
std::memcpy(output.data(), &params, output.size());
return NvErrCodes::InvalidInput;
}
}
// We can only map objects that have already been assigned a CPU address.
ASSERT(object->status == nvmap::Object::Status::Allocated);
const auto physical_address{object->addr + params.buffer_offset};
u64 size{params.mapping_size};
if (!size) {
size = object->size;
}
const bool is_alloc{(params.flags & AddressSpaceFlags::FixedOffset) == AddressSpaceFlags::None};
if (is_alloc) {
params.offset = gpu.MemoryManager().MapAllocate(physical_address, size, page_size);
} else {
params.offset = gpu.MemoryManager().Map(physical_address, params.offset, size);
}
auto result{NvErrCodes::Success};
if (!params.offset) {
LOG_CRITICAL(Service_NVDRV, "failed to map size={}", size);
result = NvErrCodes::InvalidInput;
} else {
AddBufferMap(params.offset, size, physical_address, is_alloc);
}
std::memcpy(output.data(), &params, output.size());
return 0;
return result;
}
u32 nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& output) {
@ -172,24 +215,20 @@ u32 nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& ou
LOG_DEBUG(Service_NVDRV, "called, offset=0x{:X}", params.offset);
const auto itr = buffer_mappings.find(params.offset);
if (itr == buffer_mappings.end()) {
LOG_WARNING(Service_NVDRV, "Tried to unmap an invalid offset 0x{:X}", params.offset);
// Hardware tests shows that unmapping an already unmapped buffer always returns successful
// and doesn't fail.
return 0;
if (const auto size{RemoveBufferMap(params.offset)}; size) {
system.GPU().MemoryManager().Unmap(params.offset, *size);
} else {
LOG_ERROR(Service_NVDRV, "invalid offset=0x{:X}", params.offset);
}
params.offset = system.GPU().MemoryManager().UnmapBuffer(params.offset, itr->second.size);
buffer_mappings.erase(itr->second.offset);
std::memcpy(output.data(), &params, output.size());
return 0;
return NvErrCodes::Success;
}
u32 nvhost_as_gpu::BindChannel(const std::vector<u8>& input, std::vector<u8>& output) {
IoctlBindChannel params{};
std::memcpy(&params, input.data(), input.size());
LOG_DEBUG(Service_NVDRV, "called, fd={:X}", params.fd);
channel = params.fd;
@ -199,6 +238,7 @@ u32 nvhost_as_gpu::BindChannel(const std::vector<u8>& input, std::vector<u8>& ou
u32 nvhost_as_gpu::GetVARegions(const std::vector<u8>& input, std::vector<u8>& output) {
IoctlGetVaRegions params{};
std::memcpy(&params, input.data(), input.size());
LOG_WARNING(Service_NVDRV, "(STUBBED) called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
@ -210,9 +250,43 @@ u32 nvhost_as_gpu::GetVARegions(const std::vector<u8>& input, std::vector<u8>& o
params.regions[1].offset = 0x04000000;
params.regions[1].page_size = 0x10000;
params.regions[1].pages = 0x1bffff;
// TODO(ogniK): This probably can stay stubbed but should add support way way later
std::memcpy(output.data(), &params, output.size());
return 0;
}
std::optional<nvhost_as_gpu::BufferMap> nvhost_as_gpu::FindBufferMap(GPUVAddr gpu_addr) const {
const auto end{buffer_mappings.upper_bound(gpu_addr)};
for (auto iter{buffer_mappings.begin()}; iter != end; ++iter) {
if (gpu_addr >= iter->second.StartAddr() && gpu_addr < iter->second.EndAddr()) {
return iter->second;
}
}
return {};
}
void nvhost_as_gpu::AddBufferMap(GPUVAddr gpu_addr, std::size_t size, VAddr cpu_addr,
bool is_allocated) {
buffer_mappings[gpu_addr] = {gpu_addr, size, cpu_addr, is_allocated};
}
std::optional<std::size_t> nvhost_as_gpu::RemoveBufferMap(GPUVAddr gpu_addr) {
if (const auto iter{buffer_mappings.find(gpu_addr)}; iter != buffer_mappings.end()) {
std::size_t size{};
if (iter->second.IsAllocated()) {
size = iter->second.Size();
}
buffer_mappings.erase(iter);
return size;
}
return {};
}
} // namespace Service::Nvidia::Devices

@ -4,9 +4,12 @@
#pragma once
#include <map>
#include <memory>
#include <unordered_map>
#include <optional>
#include <vector>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
#include "core/hle/service/nvdrv/devices/nvdevice.h"
@ -15,6 +18,13 @@ namespace Service::Nvidia::Devices {
class nvmap;
enum class AddressSpaceFlags : u32 {
None = 0x0,
FixedOffset = 0x1,
Remap = 0x100,
};
DECLARE_ENUM_FLAG_OPERATORS(AddressSpaceFlags);
class nvhost_as_gpu final : public nvdevice {
public:
explicit nvhost_as_gpu(Core::System& system, std::shared_ptr<nvmap> nvmap_dev);
@ -25,6 +35,45 @@ public:
IoctlVersion version) override;
private:
class BufferMap final {
public:
constexpr BufferMap() = default;
constexpr BufferMap(GPUVAddr start_addr, std::size_t size)
: start_addr{start_addr}, end_addr{start_addr + size} {}
constexpr BufferMap(GPUVAddr start_addr, std::size_t size, VAddr cpu_addr,
bool is_allocated)
: start_addr{start_addr}, end_addr{start_addr + size}, cpu_addr{cpu_addr},
is_allocated{is_allocated} {}
constexpr VAddr StartAddr() const {
return start_addr;
}
constexpr VAddr EndAddr() const {
return end_addr;
}
constexpr std::size_t Size() const {
return end_addr - start_addr;
}
constexpr VAddr CpuAddr() const {
return cpu_addr;
}
constexpr bool IsAllocated() const {
return is_allocated;
}
private:
GPUVAddr start_addr{};
GPUVAddr end_addr{};
VAddr cpu_addr{};
bool is_allocated{};
};
enum class IoctlCommand : u32_le {
IocInitalizeExCommand = 0x40284109,
IocAllocateSpaceCommand = 0xC0184102,
@ -49,7 +98,7 @@ private:
struct IoctlAllocSpace {
u32_le pages;
u32_le page_size;
u32_le flags;
AddressSpaceFlags flags;
INSERT_PADDING_WORDS(1);
union {
u64_le offset;
@ -69,18 +118,18 @@ private:
static_assert(sizeof(IoctlRemapEntry) == 20, "IoctlRemapEntry is incorrect size");
struct IoctlMapBufferEx {
u32_le flags; // bit0: fixed_offset, bit2: cacheable
u32_le kind; // -1 is default
AddressSpaceFlags flags; // bit0: fixed_offset, bit2: cacheable
u32_le kind; // -1 is default
u32_le nvmap_handle;
u32_le page_size; // 0 means don't care
u64_le buffer_offset;
s64_le buffer_offset;
u64_le mapping_size;
u64_le offset;
s64_le offset;
};
static_assert(sizeof(IoctlMapBufferEx) == 40, "IoctlMapBufferEx is incorrect size");
struct IoctlUnmapBuffer {
u64_le offset;
s64_le offset;
};
static_assert(sizeof(IoctlUnmapBuffer) == 8, "IoctlUnmapBuffer is incorrect size");
@ -106,15 +155,6 @@ private:
static_assert(sizeof(IoctlGetVaRegions) == 16 + sizeof(IoctlVaRegion) * 2,
"IoctlGetVaRegions is incorrect size");
struct BufferMapping {
u64 offset;
u64 size;
u32 nvmap_handle;
};
/// Map containing the nvmap object mappings in GPU memory.
std::unordered_map<u64, BufferMapping> buffer_mappings;
u32 channel{};
u32 InitalizeEx(const std::vector<u8>& input, std::vector<u8>& output);
@ -125,7 +165,14 @@ private:
u32 BindChannel(const std::vector<u8>& input, std::vector<u8>& output);
u32 GetVARegions(const std::vector<u8>& input, std::vector<u8>& output);
std::optional<BufferMap> FindBufferMap(GPUVAddr gpu_addr) const;
void AddBufferMap(GPUVAddr gpu_addr, std::size_t size, VAddr cpu_addr, bool is_allocated);
std::optional<std::size_t> RemoveBufferMap(GPUVAddr gpu_addr);
std::shared_ptr<nvmap> nvmap_dev;
// This is expected to be ordered, therefore we must use a map, not unordered_map
std::map<GPUVAddr, BufferMap> buffer_mappings;
};
} // namespace Service::Nvidia::Devices

@ -18,7 +18,12 @@ enum {
};
}
nvmap::nvmap(Core::System& system) : nvdevice(system) {}
nvmap::nvmap(Core::System& system) : nvdevice(system) {
// Handle 0 appears to be used when remapping, so we create a placeholder empty nvmap object to
// represent this.
CreateObject(0);
}
nvmap::~nvmap() = default;
VAddr nvmap::GetObjectAddress(u32 handle) const {
@ -50,6 +55,21 @@ u32 nvmap::ioctl(Ioctl command, const std::vector<u8>& input, const std::vector<
return 0;
}
u32 nvmap::CreateObject(u32 size) {
// Create a new nvmap object and obtain a handle to it.
auto object = std::make_shared<Object>();
object->id = next_id++;
object->size = size;
object->status = Object::Status::Created;
object->refcount = 1;
const u32 handle = next_handle++;
handles[handle] = std::move(object);
return handle;
}
u32 nvmap::IocCreate(const std::vector<u8>& input, std::vector<u8>& output) {
IocCreateParams params;
std::memcpy(&params, input.data(), sizeof(params));
@ -59,17 +79,8 @@ u32 nvmap::IocCreate(const std::vector<u8>& input, std::vector<u8>& output) {
LOG_ERROR(Service_NVDRV, "Size is 0");
return static_cast<u32>(NvErrCodes::InvalidValue);
}
// Create a new nvmap object and obtain a handle to it.
auto object = std::make_shared<Object>();
object->id = next_id++;
object->size = params.size;
object->status = Object::Status::Created;
object->refcount = 1;
u32 handle = next_handle++;
handles[handle] = std::move(object);
params.handle = handle;
params.handle = CreateObject(params.size);
std::memcpy(output.data(), &params, sizeof(params));
return 0;

@ -49,10 +49,10 @@ public:
private:
/// Id to use for the next handle that is created.
u32 next_handle = 1;
u32 next_handle = 0;
/// Id to use for the next object that is created.
u32 next_id = 1;
u32 next_id = 0;
/// Mapping of currently allocated handles to the objects they represent.
std::unordered_map<u32, std::shared_ptr<Object>> handles;
@ -119,6 +119,8 @@ private:
};
static_assert(sizeof(IocGetIdParams) == 8, "IocGetIdParams has wrong size");
u32 CreateObject(u32 size);
u32 IocCreate(const std::vector<u8>& input, std::vector<u8>& output);
u32 IocAlloc(const std::vector<u8>& input, std::vector<u8>& output);
u32 IocGetId(const std::vector<u8>& input, std::vector<u8>& output);

@ -4,7 +4,6 @@
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/process.h"
@ -16,121 +15,137 @@
namespace Tegra {
MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
: rasterizer{rasterizer}, system{system} {
page_table.Resize(address_space_width, page_bits, false);
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = address_space_end;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
: system{system}, rasterizer{rasterizer}, page_table(page_table_size) {}
MemoryManager::~MemoryManager() = default;
GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
AllocateMemory(gpu_addr, 0, aligned_size);
GPUVAddr MemoryManager::UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
u64 remaining_size{size};
for (u64 offset{}; offset < size; offset += page_size) {
if (remaining_size < page_size) {
SetPageEntry(gpu_addr + offset, page_entry + offset, remaining_size);
} else {
SetPageEntry(gpu_addr + offset, page_entry + offset);
}
remaining_size -= page_size;
}
return gpu_addr;
}
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
AllocateMemory(gpu_addr, 0, aligned_size);
return gpu_addr;
GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) {
return UpdateRange(gpu_addr, cpu_addr, size);
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
ASSERT(
system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
return gpu_addr;
GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
return Map(cpu_addr, *FindFreeRange(size, align), size);
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0);
const u64 aligned_size{Common::AlignUp(size, page_size)};
MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
ASSERT(
system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
return gpu_addr;
}
GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0);
const u64 aligned_size{Common::AlignUp(size, page_size)};
const auto cpu_addr = GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
if (!size) {
return;
}
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
system.GPU().FlushAndInvalidateRegion(*cpu_addr, aligned_size);
system.GPU().FlushAndInvalidateRegion(*GpuToCpuAddress(gpu_addr), size);
UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
}
std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
for (u64 offset{}; offset < size; offset += page_size) {
if (!GetPageEntry(gpu_addr + offset).IsUnmapped()) {
return {};
}
}
return UpdateRange(gpu_addr, PageEntry::State::Allocated, size);
}
GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
return *AllocateFixed(*FindFreeRange(size, align), size);
}
void MemoryManager::TryLockPage(PageEntry page_entry, std::size_t size) {
if (!page_entry.IsValid()) {
return;
}
UnmapRange(gpu_addr, aligned_size);
ASSERT(system.CurrentProcess()
->PageTable()
.UnlockForDeviceAddressSpace(cpu_addr.value(), size)
.LockForDeviceAddressSpace(page_entry.ToAddress(), size)
.IsSuccess());
return gpu_addr;
}
GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) const {
// Find the first Free VMA.
const VMAHandle vma_handle{
std::find_if(vma_map.begin(), vma_map.end(), [region_start, size](const auto& vma) {
if (vma.second.type != VirtualMemoryArea::Type::Unmapped) {
return false;
void MemoryManager::TryUnlockPage(PageEntry page_entry, std::size_t size) {
if (!page_entry.IsValid()) {
return;
}
ASSERT(system.CurrentProcess()
->PageTable()
.UnlockForDeviceAddressSpace(page_entry.ToAddress(), size)
.IsSuccess());
}
PageEntry MemoryManager::GetPageEntry(GPUVAddr gpu_addr) const {
return page_table[PageEntryIndex(gpu_addr)];
}
void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
// TODO(bunnei): We should lock/unlock device regions. This currently causes issues due to
// improper tracking, but should be fixed in the future.
//// Unlock the old page
// TryUnlockPage(page_table[PageEntryIndex(gpu_addr)], size);
//// Lock the new page
// TryLockPage(page_entry, size);
page_table[PageEntryIndex(gpu_addr)] = page_entry;
}
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align) const {
if (!align) {
align = page_size;
} else {
align = Common::AlignUp(align, page_size);
}
u64 available_size{};
GPUVAddr gpu_addr{address_space_start};
while (gpu_addr + available_size < address_space_size) {
if (GetPageEntry(gpu_addr + available_size).IsUnmapped()) {
available_size += page_size;
if (available_size >= size) {
return gpu_addr;
}
} else {
gpu_addr += available_size + page_size;
available_size = 0;
const VAddr vma_end{vma.second.base + vma.second.size};
return vma_end > region_start && vma_end >= region_start + size;
})};
if (vma_handle == vma_map.end()) {
return {};
}
return std::max(region_start, vma_handle->second.base);
}
bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
return (addr >> page_bits) < page_table.pointers.size();
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
return {};
}
const VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
if (cpu_addr) {
return cpu_addr + (addr & page_mask);
const auto remainder{gpu_addr % align};
if (remainder) {
gpu_addr = (gpu_addr - remainder) + align;
}
}
}
return {};
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
const auto page_entry{GetPageEntry(gpu_addr)};
if (!page_entry.IsValid()) {
return {};
}
const u8* page_pointer{GetPointer(addr)};
if (page_pointer) {
return page_entry.ToAddress() + (gpu_addr & page_mask);
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
@ -144,12 +159,7 @@ T MemoryManager::Read(GPUVAddr addr) const {
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
if (!IsAddressValid(addr)) {
return;
}
u8* page_pointer{GetPointer(addr)};
if (page_pointer) {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
@ -167,66 +177,49 @@ template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr addr) {
if (!IsAddressValid(addr)) {
u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
auto& memory = system.Memory();
const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
if (page_addr != 0) {
return memory.GetPointer(page_addr + (addr & page_mask));
}
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
return {};
}
const u8* MemoryManager::GetPointer(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
const auto& memory = system.Memory();
return system.Memory().GetPointer(*address);
}
const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
if (page_addr != 0) {
return memory.GetPointer(page_addr + (addr & page_mask));
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
return {};
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return system.Memory().GetPointer(*address);
}
bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const {
const std::size_t inner_size = size - 1;
const GPUVAddr end = start + inner_size;
const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start));
const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end));
const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start);
return range == inner_size;
}
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer,
const std::size_t size) const {
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
// Flush must happen on the rasterizer interface, such that memory is always synchronous
// when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
rasterizer.FlushRegion(src_addr, copy_amount);
memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto src_addr{*page_addr + page_offset};
// Flush must happen on the rasterizer interface, such that memory is always synchronous
// when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
rasterizer.FlushRegion(src_addr, copy_amount);
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
}
page_index++;
page_offset = 0;
@ -241,18 +234,17 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const u8* page_pointer = page_table.pointers[page_index];
if (page_pointer) {
const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto src_addr{*page_addr + page_offset};
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
@ -260,23 +252,23 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
}
}
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer,
const std::size_t size) {
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer.InvalidateRegion(dest_addr, copy_amount);
memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto dest_addr{*page_addr + page_offset};
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer.InvalidateRegion(dest_addr, copy_amount);
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
@ -286,21 +278,20 @@ void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer,
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
const std::size_t size) {
std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
u8* page_pointer = page_table.pointers[page_index];
if (page_pointer) {
const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto dest_addr{*page_addr + page_offset};
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
@ -308,273 +299,26 @@ void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buf
}
}
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr,
const std::size_t size) {
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlock(gpu_src_addr, tmp_buffer.data(), size);
WriteBlock(gpu_dest_addr, tmp_buffer.data(), size);
}
void MemoryManager::CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr,
const std::size_t size) {
std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlockUnsafe(gpu_src_addr, tmp_buffer.data(), size);
WriteBlockUnsafe(gpu_dest_addr, tmp_buffer.data(), size);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) {
const VAddr addr = page_table.backing_addr[gpu_addr >> page_bits];
const std::size_t page = (addr & Core::Memory::PAGE_MASK) + size;
const auto cpu_addr{GpuToCpuAddress(gpu_addr)};
if (!cpu_addr) {
return {};
}
const std::size_t page{(*cpu_addr & Core::Memory::PAGE_MASK) + size};
return page <= Core::Memory::PAGE_SIZE;
}
void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr) {
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
(base + size) * page_size);
const VAddr end{base + size};
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
if (memory == nullptr) {
while (base != end) {
page_table.pointers[base] = nullptr;
page_table.backing_addr[base] = 0;
base += 1;
}
} else {
while (base != end) {
page_table.pointers[base] = memory;
page_table.backing_addr[base] = backing_addr;
base += 1;
memory += page_size;
backing_addr += page_size;
}
}
}
void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
}
void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
}
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (type != next.type) {
return {};
}
if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
return {};
}
if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
return {};
}
return true;
}
MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
if (target >= address_space_end) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
VirtualMemoryArea& vma{vma_handle->second};
vma.type = VirtualMemoryArea::Type::Allocated;
vma.backing_addr = 0;
vma.backing_memory = {};
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
u64 size) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& vma{vma_handle->second};
ASSERT(vma.size == size);
vma.offset = offset;
return Allocate(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
VAddr backing_addr) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& vma{vma_handle->second};
ASSERT(vma.size == size);
vma.type = VirtualMemoryArea::Type::Mapped;
vma.backing_memory = memory;
vma.backing_addr = backing_addr;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
VMAIter vma{CarveVMARange(target, size)};
const VAddr target_end{target + size};
const VMAIter end{vma_map.end()};
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
// Unmapped ranges return to allocated state and can be reused
// This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
vma = std::next(Allocate(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
}
MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
VMAIter vma_handle{StripIterConstness(FindVMA(base))};
if (vma_handle == vma_map.end()) {
// Target address is outside the managed range
return {};
}
const VirtualMemoryArea& vma{vma_handle->second};
if (vma.type == VirtualMemoryArea::Type::Mapped) {
// Region is already allocated
return vma_handle;
}
const VAddr start_in_vma{base - vma.base};
const VAddr end_in_vma{start_in_vma + size};
ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
vma.size, end_in_vma);
if (end_in_vma < vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return vma_handle;
}
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
const VAddr target_end{target + size};
ASSERT(target_end >= target);
ASSERT(size > 0);
VMAIter begin_vma{StripIterConstness(FindVMA(target))};
const VMAIter i_end{vma_map.lower_bound(target_end)};
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
})) {
return {};
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return begin_vma;
}
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma{vma_handle->second};
VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VirtualMemoryArea::Type::Unmapped:
break;
case VirtualMemoryArea::Type::Allocated:
new_vma.offset += offset_in_vma;
break;
case VirtualMemoryArea::Type::Mapped:
new_vma.backing_memory += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma{std::next(iter)};
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma{std::prev(iter)};
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VirtualMemoryArea::Type::Unmapped:
UnmapRegion(vma.base, vma.size);
break;
case VirtualMemoryArea::Type::Allocated:
MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
break;
case VirtualMemoryArea::Type::Mapped:
MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
break;
}
}
} // namespace Tegra

@ -6,9 +6,9 @@
#include <map>
#include <optional>
#include <vector>
#include "common/common_types.h"
#include "common/page_table.h"
namespace VideoCore {
class RasterizerInterface;
@ -20,45 +20,57 @@ class System;
namespace Tegra {
/**
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
* with homogeneous attributes across its extents. In this particular implementation each VMA is
* also backed by a single host memory allocation.
*/
struct VirtualMemoryArea {
enum class Type : u8 {
Unmapped,
Allocated,
Mapped,
class PageEntry final {
public:
enum class State : u32 {
Unmapped = static_cast<u32>(-1),
Allocated = static_cast<u32>(-2),
};
/// Virtual base address of the region.
GPUVAddr base{};
/// Size of the region.
u64 size{};
/// Memory area mapping type.
Type type{Type::Unmapped};
/// CPU memory mapped address corresponding to this memory area.
VAddr backing_addr{};
/// Offset into the backing_memory the mapping starts from.
std::size_t offset{};
/// Pointer backing this VMA.
u8* backing_memory{};
constexpr PageEntry() = default;
constexpr PageEntry(State state) : state{state} {}
constexpr PageEntry(VAddr addr) : state{static_cast<State>(addr >> ShiftBits)} {}
/// Tests if this area can be merged to the right with `next`.
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
constexpr bool IsUnmapped() const {
return state == State::Unmapped;
}
constexpr bool IsAllocated() const {
return state == State::Allocated;
}
constexpr bool IsValid() const {
return !IsUnmapped() && !IsAllocated();
}
constexpr VAddr ToAddress() const {
if (!IsValid()) {
return {};
}
return static_cast<VAddr>(state) << ShiftBits;
}
constexpr PageEntry operator+(u64 offset) {
// If this is a reserved value, offsets do not apply
if (!IsValid()) {
return *this;
}
return PageEntry{(static_cast<VAddr>(state) << ShiftBits) + offset};
}
private:
static constexpr std::size_t ShiftBits{12};
State state{State::Unmapped};
};
static_assert(sizeof(PageEntry) == 4, "PageEntry is too large");
class MemoryManager final {
public:
explicit MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
~MemoryManager();
GPUVAddr AllocateSpace(u64 size, u64 align);
GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align);
GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr addr, u64 size);
GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size);
std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
template <typename T>
@ -70,9 +82,6 @@ public:
u8* GetPointer(GPUVAddr addr);
const u8* GetPointer(GPUVAddr addr) const;
/// Returns true if the block is continuous in host memory, false otherwise
bool IsBlockContinuous(GPUVAddr start, std::size_t size) const;
/**
* ReadBlock and WriteBlock are full read and write operations over virtual
* GPU Memory. It's important to use these when GPU memory may not be continuous
@ -98,92 +107,43 @@ public:
void CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size);
/**
* IsGranularRange checks if a gpu region can be simply read with a pointer
* IsGranularRange checks if a gpu region can be simply read with a pointer.
*/
bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size);
private:
using VMAMap = std::map<GPUVAddr, VirtualMemoryArea>;
using VMAHandle = VMAMap::const_iterator;
using VMAIter = VMAMap::iterator;
bool IsAddressValid(GPUVAddr addr) const;
void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr = 0);
void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr);
void UnmapRegion(GPUVAddr base, u64 size);
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
VMAHandle FindVMA(GPUVAddr target) const;
VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size);
/**
* Maps an unmanaged host memory pointer at a given address.
*
* @param target The guest address to start the mapping at.
* @param memory The memory to be mapped.
* @param size Size of the mapping in bytes.
* @param backing_addr The base address of the range to back this mapping.
*/
VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr);
/// Unmaps a range of addresses, splitting VMAs as necessary.
void UnmapRange(GPUVAddr target, u64 size);
/// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter);
/// Marks as the specified VMA as allocated.
VMAIter Allocate(VMAIter vma);
/**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking.
*/
VMAIter CarveVMA(GPUVAddr base, u64 size);
/**
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
* end of the range.
*/
VMAIter CarveVMARange(GPUVAddr base, u64 size);
/**
* Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side.
*/
VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
/**
* Checks for and merges the specified VMA with adjacent ones if possible.
* @returns the merged VMA or the original if no merging was possible.
*/
VMAIter MergeAdjacent(VMAIter vma);
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
/// Finds a free (unmapped region) of the specified size starting at the specified address.
GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size) const;
GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
std::optional<GPUVAddr> AllocateFixed(GPUVAddr gpu_addr, std::size_t size);
GPUVAddr Allocate(std::size_t size, std::size_t align);
void Unmap(GPUVAddr gpu_addr, std::size_t size);
private:
PageEntry GetPageEntry(GPUVAddr gpu_addr) const;
void SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size = page_size);
GPUVAddr UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size);
std::optional<GPUVAddr> FindFreeRange(std::size_t size, std::size_t align) const;
void TryLockPage(PageEntry page_entry, std::size_t size);
void TryUnlockPage(PageEntry page_entry, std::size_t size);
static constexpr std::size_t PageEntryIndex(GPUVAddr gpu_addr) {
return (gpu_addr >> page_bits) & page_table_mask;
}
static constexpr u64 address_space_size = 1ULL << 40;
static constexpr u64 address_space_start = 1ULL << 32;
static constexpr u64 page_bits{16};
static constexpr u64 page_size{1 << page_bits};
static constexpr u64 page_mask{page_size - 1};
/// Address space in bits, according to Tegra X1 TRM
static constexpr u32 address_space_width{40};
/// Start address for mapping, this is fairly arbitrary but must be non-zero.
static constexpr GPUVAddr address_space_base{0x100000};
/// End of address space, based on address space in bits.
static constexpr GPUVAddr address_space_end{1ULL << address_space_width};
Common::PageTable page_table;
VMAMap vma_map;
VideoCore::RasterizerInterface& rasterizer;
static constexpr u64 page_table_bits{24};
static constexpr u64 page_table_size{1 << page_table_bits};
static constexpr u64 page_table_mask{page_table_size - 1};
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
std::vector<PageEntry> page_table;
};
} // namespace Tegra