|
|
|
@ -6,7 +6,9 @@
|
|
|
|
|
#include <string>
|
|
|
|
|
#include <tuple>
|
|
|
|
|
|
|
|
|
|
#include "common/logging/log.h"
|
|
|
|
|
#include "common/microprofile.h"
|
|
|
|
|
#include "common/thread.h"
|
|
|
|
|
#include "core/core_timing.h"
|
|
|
|
|
#include "core/core_timing_util.h"
|
|
|
|
|
#include "core/hardware_properties.h"
|
|
|
|
@ -41,11 +43,11 @@ CoreTiming::CoreTiming()
|
|
|
|
|
|
|
|
|
|
CoreTiming::~CoreTiming() = default;
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
|
|
|
|
constexpr char name[] = "yuzu:HostTiming";
|
|
|
|
|
MicroProfileOnThreadCreate(name);
|
|
|
|
|
Common::SetCurrentThreadName(name);
|
|
|
|
|
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
|
|
|
|
|
void CoreTiming::ThreadEntry(CoreTiming& instance, size_t id) {
|
|
|
|
|
const std::string name = "yuzu:HostTiming_" + std::to_string(id);
|
|
|
|
|
MicroProfileOnThreadCreate(name.c_str());
|
|
|
|
|
Common::SetCurrentThreadName(name.c_str());
|
|
|
|
|
Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
|
|
|
|
|
instance.on_thread_init();
|
|
|
|
|
instance.ThreadLoop();
|
|
|
|
|
MicroProfileOnThreadExit();
|
|
|
|
@ -59,68 +61,97 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
|
|
|
|
|
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
|
|
|
|
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
|
|
|
|
if (is_multicore) {
|
|
|
|
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
|
|
|
|
const auto hardware_concurrency = std::thread::hardware_concurrency();
|
|
|
|
|
size_t id = 0;
|
|
|
|
|
worker_threads.emplace_back(ThreadEntry, std::ref(*this), id++);
|
|
|
|
|
if (hardware_concurrency > 8) {
|
|
|
|
|
worker_threads.emplace_back(ThreadEntry, std::ref(*this), id++);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::Shutdown() {
|
|
|
|
|
paused = true;
|
|
|
|
|
is_paused = true;
|
|
|
|
|
shutting_down = true;
|
|
|
|
|
pause_event.Set();
|
|
|
|
|
event.Set();
|
|
|
|
|
if (timer_thread) {
|
|
|
|
|
timer_thread->join();
|
|
|
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
|
|
|
|
|
|
|
|
event_cv.notify_all();
|
|
|
|
|
wait_pause_cv.notify_all();
|
|
|
|
|
for (auto& thread : worker_threads) {
|
|
|
|
|
thread.join();
|
|
|
|
|
}
|
|
|
|
|
worker_threads.clear();
|
|
|
|
|
ClearPendingEvents();
|
|
|
|
|
timer_thread.reset();
|
|
|
|
|
has_started = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::Pause(bool is_paused) {
|
|
|
|
|
paused = is_paused;
|
|
|
|
|
pause_event.Set();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::SyncPause(bool is_paused) {
|
|
|
|
|
if (is_paused == paused && paused_set == paused) {
|
|
|
|
|
void CoreTiming::Pause(bool is_paused_) {
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
Pause(is_paused);
|
|
|
|
|
if (timer_thread) {
|
|
|
|
|
if (!is_paused) {
|
|
|
|
|
pause_event.Set();
|
|
|
|
|
if (is_multicore) {
|
|
|
|
|
is_paused = is_paused_;
|
|
|
|
|
event_cv.notify_all();
|
|
|
|
|
if (!is_paused_) {
|
|
|
|
|
wait_pause_cv.notify_all();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
paused_state.store(is_paused_, std::memory_order_relaxed);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::SyncPause(bool is_paused_) {
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (is_multicore) {
|
|
|
|
|
is_paused = is_paused_;
|
|
|
|
|
event_cv.notify_all();
|
|
|
|
|
if (!is_paused_) {
|
|
|
|
|
wait_pause_cv.notify_all();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
paused_state.store(is_paused_, std::memory_order_relaxed);
|
|
|
|
|
if (is_multicore) {
|
|
|
|
|
if (is_paused_) {
|
|
|
|
|
wait_signal_cv.wait(main_lock, [this] { return pause_count == worker_threads.size(); });
|
|
|
|
|
} else {
|
|
|
|
|
wait_signal_cv.wait(main_lock, [this] { return pause_count == 0; });
|
|
|
|
|
}
|
|
|
|
|
event.Set();
|
|
|
|
|
while (paused_set != is_paused)
|
|
|
|
|
;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool CoreTiming::IsRunning() const {
|
|
|
|
|
return !paused_set;
|
|
|
|
|
return !paused_state.load(std::memory_order_acquire);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool CoreTiming::HasPendingEvents() const {
|
|
|
|
|
return !(wait_set && event_queue.empty());
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
return !event_queue.empty() || pending_events.load(std::memory_order_relaxed) != 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
|
|
|
|
const std::shared_ptr<EventType>& event_type,
|
|
|
|
|
std::uintptr_t user_data) {
|
|
|
|
|
{
|
|
|
|
|
std::scoped_lock scope{basic_lock};
|
|
|
|
|
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
|
|
|
|
|
|
|
|
|
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
|
|
|
|
|
|
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
|
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
|
|
|
|
|
pending_events.fetch_add(1, std::memory_order_relaxed);
|
|
|
|
|
|
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
|
|
|
|
|
|
|
if (is_multicore) {
|
|
|
|
|
event_cv.notify_one();
|
|
|
|
|
}
|
|
|
|
|
event.Set();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
|
|
|
|
std::uintptr_t user_data) {
|
|
|
|
|
std::scoped_lock scope{basic_lock};
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
|
|
|
|
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
|
|
|
|
|
});
|
|
|
|
@ -129,6 +160,7 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
|
|
|
|
if (itr != event_queue.end()) {
|
|
|
|
|
event_queue.erase(itr, event_queue.end());
|
|
|
|
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
|
|
pending_events.fetch_sub(1, std::memory_order_relaxed);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -168,11 +200,12 @@ u64 CoreTiming::GetClockTicks() const {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ClearPendingEvents() {
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
event_queue.clear();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
|
|
|
|
std::scoped_lock lock{basic_lock};
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
|
|
|
|
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
|
|
|
|
return e.type.lock().get() == event_type.get();
|
|
|
|
@ -186,21 +219,28 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::optional<s64> CoreTiming::Advance() {
|
|
|
|
|
std::scoped_lock lock{advance_lock, basic_lock};
|
|
|
|
|
global_timer = GetGlobalTimeNs().count();
|
|
|
|
|
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
|
|
|
|
Event evt = std::move(event_queue.front());
|
|
|
|
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
|
|
event_queue.pop_back();
|
|
|
|
|
basic_lock.unlock();
|
|
|
|
|
|
|
|
|
|
if (const auto event_type{evt.type.lock()}) {
|
|
|
|
|
event_type->callback(
|
|
|
|
|
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
|
|
|
|
|
sequence_mutex.lock();
|
|
|
|
|
event_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
event_type->guard.lock();
|
|
|
|
|
sequence_mutex.unlock();
|
|
|
|
|
const s64 delay = static_cast<s64>(GetGlobalTimeNs().count() - evt.time);
|
|
|
|
|
event_type->callback(evt.user_data, std::chrono::nanoseconds{delay});
|
|
|
|
|
event_type->guard.unlock();
|
|
|
|
|
|
|
|
|
|
event_mutex.lock();
|
|
|
|
|
pending_events.fetch_sub(1, std::memory_order_relaxed);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
basic_lock.lock();
|
|
|
|
|
global_timer = GetGlobalTimeNs().count();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -213,26 +253,34 @@ std::optional<s64> CoreTiming::Advance() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ThreadLoop() {
|
|
|
|
|
const auto predicate = [this] { return !event_queue.empty() || is_paused; };
|
|
|
|
|
has_started = true;
|
|
|
|
|
while (!shutting_down) {
|
|
|
|
|
while (!paused) {
|
|
|
|
|
paused_set = false;
|
|
|
|
|
while (!is_paused && !shutting_down) {
|
|
|
|
|
const auto next_time = Advance();
|
|
|
|
|
if (next_time) {
|
|
|
|
|
if (*next_time > 0) {
|
|
|
|
|
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
|
|
|
|
event.WaitFor(next_time_ns);
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
event_cv.wait_for(main_lock, next_time_ns, predicate);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
wait_set = true;
|
|
|
|
|
event.Wait();
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
event_cv.wait(main_lock, predicate);
|
|
|
|
|
}
|
|
|
|
|
wait_set = false;
|
|
|
|
|
}
|
|
|
|
|
paused_set = true;
|
|
|
|
|
clock->Pause(true);
|
|
|
|
|
pause_event.Wait();
|
|
|
|
|
clock->Pause(false);
|
|
|
|
|
std::unique_lock main_lock(event_mutex);
|
|
|
|
|
pause_count++;
|
|
|
|
|
if (pause_count == worker_threads.size()) {
|
|
|
|
|
clock->Pause(true);
|
|
|
|
|
wait_signal_cv.notify_all();
|
|
|
|
|
}
|
|
|
|
|
wait_pause_cv.wait(main_lock, [this] { return !is_paused || shutting_down; });
|
|
|
|
|
pause_count--;
|
|
|
|
|
if (pause_count == 0) {
|
|
|
|
|
clock->Pause(false);
|
|
|
|
|
wait_signal_cv.notify_all();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|