|
|
|
@ -5,198 +5,187 @@
|
|
|
|
|
#include "common/alignment.h"
|
|
|
|
|
#include "common/assert.h"
|
|
|
|
|
#include "common/logging/log.h"
|
|
|
|
|
#include "core/core.h"
|
|
|
|
|
#include "core/memory.h"
|
|
|
|
|
#include "video_core/gpu.h"
|
|
|
|
|
#include "video_core/memory_manager.h"
|
|
|
|
|
#include "video_core/rasterizer_interface.h"
|
|
|
|
|
#include "video_core/renderer_base.h"
|
|
|
|
|
|
|
|
|
|
namespace Tegra {
|
|
|
|
|
|
|
|
|
|
MemoryManager::MemoryManager() {
|
|
|
|
|
// Mark the first page as reserved, so that 0 is not a valid GPUVAddr. Otherwise, games might
|
|
|
|
|
// try to use 0 as a valid address, which is also used to mean nullptr. This fixes a bug with
|
|
|
|
|
// Undertale using 0 for a render target.
|
|
|
|
|
PageSlot(0) = static_cast<u64>(PageStatus::Reserved);
|
|
|
|
|
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
|
|
|
|
|
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
|
|
|
|
|
Common::PageType::Unmapped);
|
|
|
|
|
page_table.Resize(address_space_width);
|
|
|
|
|
|
|
|
|
|
// Initialize the map with a single free region covering the entire managed space.
|
|
|
|
|
VirtualMemoryArea initial_vma;
|
|
|
|
|
initial_vma.size = address_space_end;
|
|
|
|
|
vma_map.emplace(initial_vma.base, initial_vma);
|
|
|
|
|
|
|
|
|
|
UpdatePageTableForVMA(initial_vma);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
|
|
|
|
|
const std::optional<GPUVAddr> gpu_addr{FindFreeBlock(0, size, align, PageStatus::Unmapped)};
|
|
|
|
|
const u64 aligned_size{Common::AlignUp(size, page_size)};
|
|
|
|
|
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
|
|
|
|
|
|
|
|
|
|
ASSERT_MSG(gpu_addr, "unable to find available GPU memory");
|
|
|
|
|
AllocateMemory(gpu_addr, 0, aligned_size);
|
|
|
|
|
|
|
|
|
|
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
|
|
|
|
|
VAddr& slot{PageSlot(*gpu_addr + offset)};
|
|
|
|
|
|
|
|
|
|
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
|
|
|
|
|
|
|
|
|
|
slot = static_cast<u64>(PageStatus::Allocated);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return *gpu_addr;
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
|
|
|
|
|
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
|
|
|
|
|
VAddr& slot{PageSlot(gpu_addr + offset)};
|
|
|
|
|
const u64 aligned_size{Common::AlignUp(size, page_size)};
|
|
|
|
|
|
|
|
|
|
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
|
|
|
|
|
|
|
|
|
|
slot = static_cast<u64>(PageStatus::Allocated);
|
|
|
|
|
}
|
|
|
|
|
AllocateMemory(gpu_addr, 0, aligned_size);
|
|
|
|
|
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
|
|
|
|
|
const std::optional<GPUVAddr> gpu_addr{FindFreeBlock(0, size, PAGE_SIZE, PageStatus::Unmapped)};
|
|
|
|
|
const u64 aligned_size{Common::AlignUp(size, page_size)};
|
|
|
|
|
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
|
|
|
|
|
|
|
|
|
|
ASSERT_MSG(gpu_addr, "unable to find available GPU memory");
|
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), aligned_size, cpu_addr);
|
|
|
|
|
|
|
|
|
|
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
|
|
|
|
|
VAddr& slot{PageSlot(*gpu_addr + offset)};
|
|
|
|
|
|
|
|
|
|
ASSERT(slot == static_cast<u64>(PageStatus::Unmapped));
|
|
|
|
|
|
|
|
|
|
slot = cpu_addr + offset;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const MappedRegion region{cpu_addr, *gpu_addr, size};
|
|
|
|
|
mapped_regions.push_back(region);
|
|
|
|
|
|
|
|
|
|
return *gpu_addr;
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
|
|
|
|
|
ASSERT((gpu_addr & PAGE_MASK) == 0);
|
|
|
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
|
|
|
|
|
|
if (PageSlot(gpu_addr) != static_cast<u64>(PageStatus::Allocated)) {
|
|
|
|
|
// Page has been already mapped. In this case, we must find a new area of memory to use that
|
|
|
|
|
// is different than the specified one. Super Mario Odyssey hits this scenario when changing
|
|
|
|
|
// areas, but we do not want to overwrite the old pages.
|
|
|
|
|
// TODO(bunnei): We need to write a hardware test to confirm this behavior.
|
|
|
|
|
const u64 aligned_size{Common::AlignUp(size, page_size)};
|
|
|
|
|
|
|
|
|
|
LOG_ERROR(HW_GPU, "attempting to map addr 0x{:016X}, which is not available!", gpu_addr);
|
|
|
|
|
|
|
|
|
|
const std::optional<GPUVAddr> new_gpu_addr{
|
|
|
|
|
FindFreeBlock(gpu_addr, size, PAGE_SIZE, PageStatus::Allocated)};
|
|
|
|
|
|
|
|
|
|
ASSERT_MSG(new_gpu_addr, "unable to find available GPU memory");
|
|
|
|
|
|
|
|
|
|
gpu_addr = *new_gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
|
|
|
|
|
VAddr& slot{PageSlot(gpu_addr + offset)};
|
|
|
|
|
|
|
|
|
|
ASSERT(slot == static_cast<u64>(PageStatus::Allocated));
|
|
|
|
|
|
|
|
|
|
slot = cpu_addr + offset;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const MappedRegion region{cpu_addr, gpu_addr, size};
|
|
|
|
|
mapped_regions.push_back(region);
|
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), aligned_size, cpu_addr);
|
|
|
|
|
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
|
|
|
|
|
ASSERT((gpu_addr & PAGE_MASK) == 0);
|
|
|
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
|
|
|
|
|
|
for (u64 offset{}; offset < size; offset += PAGE_SIZE) {
|
|
|
|
|
VAddr& slot{PageSlot(gpu_addr + offset)};
|
|
|
|
|
const u64 aligned_size{Common::AlignUp(size, page_size)};
|
|
|
|
|
const CacheAddr cache_addr{ToCacheAddr(GetPointer(gpu_addr))};
|
|
|
|
|
|
|
|
|
|
ASSERT(slot != static_cast<u64>(PageStatus::Allocated) &&
|
|
|
|
|
slot != static_cast<u64>(PageStatus::Unmapped));
|
|
|
|
|
Core::System::GetInstance().Renderer().Rasterizer().FlushAndInvalidateRegion(cache_addr,
|
|
|
|
|
aligned_size);
|
|
|
|
|
UnmapRange(gpu_addr, aligned_size);
|
|
|
|
|
|
|
|
|
|
slot = static_cast<u64>(PageStatus::Unmapped);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Delete the region mappings that are contained within the unmapped region
|
|
|
|
|
mapped_regions.erase(std::remove_if(mapped_regions.begin(), mapped_regions.end(),
|
|
|
|
|
[&](const MappedRegion& region) {
|
|
|
|
|
return region.gpu_addr <= gpu_addr &&
|
|
|
|
|
region.gpu_addr + region.size < gpu_addr + size;
|
|
|
|
|
}),
|
|
|
|
|
mapped_regions.end());
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::GetRegionEnd(GPUVAddr region_start) const {
|
|
|
|
|
for (const auto& region : mapped_regions) {
|
|
|
|
|
const GPUVAddr region_end{region.gpu_addr + region.size};
|
|
|
|
|
if (region_start >= region.gpu_addr && region_start < region_end) {
|
|
|
|
|
return region_end;
|
|
|
|
|
GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) {
|
|
|
|
|
// Find the first Free VMA.
|
|
|
|
|
const VMAHandle vma_handle{std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
|
|
|
|
|
if (vma.second.type != VirtualMemoryArea::Type::Unmapped) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::optional<GPUVAddr> MemoryManager::FindFreeBlock(GPUVAddr region_start, u64 size, u64 align,
|
|
|
|
|
PageStatus status) {
|
|
|
|
|
GPUVAddr gpu_addr{region_start};
|
|
|
|
|
u64 free_space{};
|
|
|
|
|
align = (align + PAGE_MASK) & ~PAGE_MASK;
|
|
|
|
|
const VAddr vma_end{vma.second.base + vma.second.size};
|
|
|
|
|
return vma_end > region_start && vma_end >= region_start + size;
|
|
|
|
|
})};
|
|
|
|
|
|
|
|
|
|
while (gpu_addr + free_space < MAX_ADDRESS) {
|
|
|
|
|
if (PageSlot(gpu_addr + free_space) == static_cast<u64>(status)) {
|
|
|
|
|
free_space += PAGE_SIZE;
|
|
|
|
|
if (free_space >= size) {
|
|
|
|
|
return gpu_addr;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
gpu_addr += free_space + PAGE_SIZE;
|
|
|
|
|
free_space = 0;
|
|
|
|
|
gpu_addr = Common::AlignUp(gpu_addr, align);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) {
|
|
|
|
|
const VAddr base_addr{PageSlot(gpu_addr)};
|
|
|
|
|
|
|
|
|
|
if (base_addr == static_cast<u64>(PageStatus::Allocated) ||
|
|
|
|
|
base_addr == static_cast<u64>(PageStatus::Unmapped) ||
|
|
|
|
|
base_addr == static_cast<u64>(PageStatus::Reserved)) {
|
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return base_addr + (gpu_addr & PAGE_MASK);
|
|
|
|
|
return std::max(region_start, vma_handle->second.base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8 MemoryManager::Read8(GPUVAddr addr) {
|
|
|
|
|
return Memory::Read8(*GpuToCpuAddress(addr));
|
|
|
|
|
bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
|
|
|
|
|
return (addr >> page_bits) < page_table.pointers.size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u16 MemoryManager::Read16(GPUVAddr addr) {
|
|
|
|
|
return Memory::Read16(*GpuToCpuAddress(addr));
|
|
|
|
|
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) {
|
|
|
|
|
if (!IsAddressValid(addr)) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
|
|
|
|
|
if (cpu_addr) {
|
|
|
|
|
return cpu_addr + (addr & page_mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 MemoryManager::Read32(GPUVAddr addr) {
|
|
|
|
|
return Memory::Read32(*GpuToCpuAddress(addr));
|
|
|
|
|
template <typename T>
|
|
|
|
|
T MemoryManager::Read(GPUVAddr addr) {
|
|
|
|
|
if (!IsAddressValid(addr)) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
|
T value;
|
|
|
|
|
std::memcpy(&value, &page_pointer[addr & page_mask], sizeof(T));
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (page_table.attributes[addr >> page_bits]) {
|
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr);
|
|
|
|
|
return 0;
|
|
|
|
|
case Common::PageType::Memory:
|
|
|
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", addr);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
UNREACHABLE();
|
|
|
|
|
}
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u64 MemoryManager::Read64(GPUVAddr addr) {
|
|
|
|
|
return Memory::Read64(*GpuToCpuAddress(addr));
|
|
|
|
|
template <typename T>
|
|
|
|
|
void MemoryManager::Write(GPUVAddr addr, T data) {
|
|
|
|
|
if (!IsAddressValid(addr)) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
|
std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T));
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (page_table.attributes[addr >> page_bits]) {
|
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
|
|
|
|
|
static_cast<u32>(data), addr);
|
|
|
|
|
return;
|
|
|
|
|
case Common::PageType::Memory:
|
|
|
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", addr);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
UNREACHABLE();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::Write8(GPUVAddr addr, u8 data) {
|
|
|
|
|
Memory::Write8(*GpuToCpuAddress(addr), data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::Write16(GPUVAddr addr, u16 data) {
|
|
|
|
|
Memory::Write16(*GpuToCpuAddress(addr), data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::Write32(GPUVAddr addr, u32 data) {
|
|
|
|
|
Memory::Write32(*GpuToCpuAddress(addr), data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::Write64(GPUVAddr addr, u64 data) {
|
|
|
|
|
Memory::Write64(*GpuToCpuAddress(addr), data);
|
|
|
|
|
}
|
|
|
|
|
template u8 MemoryManager::Read<u8>(GPUVAddr addr);
|
|
|
|
|
template u16 MemoryManager::Read<u16>(GPUVAddr addr);
|
|
|
|
|
template u32 MemoryManager::Read<u32>(GPUVAddr addr);
|
|
|
|
|
template u64 MemoryManager::Read<u64>(GPUVAddr addr);
|
|
|
|
|
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
|
|
|
|
|
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
|
|
|
|
|
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
|
|
|
|
|
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
|
|
|
|
|
|
|
|
|
|
u8* MemoryManager::GetPointer(GPUVAddr addr) {
|
|
|
|
|
return Memory::GetPointer(*GpuToCpuAddress(addr));
|
|
|
|
|
if (!IsAddressValid(addr)) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
return page_pointer + (addr & page_mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size) {
|
|
|
|
@ -210,13 +199,252 @@ void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t
|
|
|
|
|
std::memcpy(GetPointer(dest_addr), GetPointer(src_addr), size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VAddr& MemoryManager::PageSlot(GPUVAddr gpu_addr) {
|
|
|
|
|
auto& block{page_table[(gpu_addr >> (PAGE_BITS + PAGE_TABLE_BITS)) & PAGE_TABLE_MASK]};
|
|
|
|
|
if (!block) {
|
|
|
|
|
block = std::make_unique<PageBlock>();
|
|
|
|
|
block->fill(static_cast<VAddr>(PageStatus::Unmapped));
|
|
|
|
|
void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
|
|
|
|
|
VAddr backing_addr) {
|
|
|
|
|
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
|
|
|
|
|
(base + size) * page_size);
|
|
|
|
|
|
|
|
|
|
const VAddr end{base + size};
|
|
|
|
|
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
|
|
|
|
|
base + page_table.pointers.size());
|
|
|
|
|
|
|
|
|
|
std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type);
|
|
|
|
|
|
|
|
|
|
if (memory == nullptr) {
|
|
|
|
|
std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory);
|
|
|
|
|
std::fill(page_table.backing_addr.begin() + base, page_table.backing_addr.begin() + end,
|
|
|
|
|
backing_addr);
|
|
|
|
|
} else {
|
|
|
|
|
while (base != end) {
|
|
|
|
|
page_table.pointers[base] = memory;
|
|
|
|
|
page_table.backing_addr[base] = backing_addr;
|
|
|
|
|
|
|
|
|
|
base += 1;
|
|
|
|
|
memory += page_size;
|
|
|
|
|
backing_addr += page_size;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
|
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
|
|
|
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
|
|
|
|
|
MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
|
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
|
|
|
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
|
|
|
|
|
MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
|
|
|
|
|
ASSERT(base + size == next.base);
|
|
|
|
|
if (type != next.type) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
|
|
|
|
|
if (target >= address_space_end) {
|
|
|
|
|
return vma_map.end();
|
|
|
|
|
} else {
|
|
|
|
|
return std::prev(vma_map.upper_bound(target));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
|
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
|
|
|
|
|
|
vma.type = VirtualMemoryArea::Type::Allocated;
|
|
|
|
|
vma.backing_addr = 0;
|
|
|
|
|
vma.backing_memory = {};
|
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
|
|
|
|
|
u64 size) {
|
|
|
|
|
|
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
|
VMAIter vma_handle{CarveVMA(target, size)};
|
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
|
|
|
|
|
|
ASSERT(vma.size == size);
|
|
|
|
|
|
|
|
|
|
vma.offset = offset;
|
|
|
|
|
|
|
|
|
|
return Allocate(vma_handle);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
|
|
|
|
|
VAddr backing_addr) {
|
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
|
VMAIter vma_handle{CarveVMA(target, size)};
|
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
|
|
|
|
|
|
ASSERT(vma.size == size);
|
|
|
|
|
|
|
|
|
|
vma.type = VirtualMemoryArea::Type::Mapped;
|
|
|
|
|
vma.backing_memory = memory;
|
|
|
|
|
vma.backing_addr = backing_addr;
|
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
|
|
|
|
|
VMAIter vma{CarveVMARange(target, size)};
|
|
|
|
|
const VAddr target_end{target + size};
|
|
|
|
|
const VMAIter end{vma_map.end()};
|
|
|
|
|
|
|
|
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
|
|
|
// merged during this process, causing invalidation of the iterators.
|
|
|
|
|
while (vma != end && vma->second.base < target_end) {
|
|
|
|
|
// Unmapped ranges return to allocated state and can be reused
|
|
|
|
|
// This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
|
|
|
|
|
vma = std::next(Allocate(vma));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ASSERT(FindVMA(target)->second.size >= size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
|
|
|
|
|
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
|
|
|
|
|
// non-const access to its container.
|
|
|
|
|
return vma_map.erase(iter, iter); // Erases an empty range of elements
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
|
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
|
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
|
|
|
|
|
|
|
|
|
|
VMAIter vma_handle{StripIterConstness(FindVMA(base))};
|
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
|
// Target address is outside the managed range
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
|
if (vma.type == VirtualMemoryArea::Type::Mapped) {
|
|
|
|
|
// Region is already allocated
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const VAddr start_in_vma{base - vma.base};
|
|
|
|
|
const VAddr end_in_vma{start_in_vma + size};
|
|
|
|
|
|
|
|
|
|
ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
|
|
|
|
|
vma.size, end_in_vma);
|
|
|
|
|
|
|
|
|
|
if (end_in_vma < vma.size) {
|
|
|
|
|
// Split VMA at the end of the allocated region
|
|
|
|
|
SplitVMA(vma_handle, end_in_vma);
|
|
|
|
|
}
|
|
|
|
|
if (start_in_vma != 0) {
|
|
|
|
|
// Split VMA at the start of the allocated region
|
|
|
|
|
vma_handle = SplitVMA(vma_handle, start_in_vma);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return vma_handle;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
|
|
|
ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
|
|
|
|
|
|
|
|
|
|
const VAddr target_end{target + size};
|
|
|
|
|
ASSERT(target_end >= target);
|
|
|
|
|
ASSERT(size > 0);
|
|
|
|
|
|
|
|
|
|
VMAIter begin_vma{StripIterConstness(FindVMA(target))};
|
|
|
|
|
const VMAIter i_end{vma_map.lower_bound(target_end)};
|
|
|
|
|
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
|
|
|
|
|
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
|
|
|
|
|
})) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (target != begin_vma->second.base) {
|
|
|
|
|
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
|
|
|
|
|
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
|
|
|
|
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return begin_vma;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
|
|
|
|
|
VirtualMemoryArea& old_vma{vma_handle->second};
|
|
|
|
|
VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
|
|
|
|
|
|
|
|
|
|
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
|
|
|
|
// a bug. This restriction might be removed later.
|
|
|
|
|
ASSERT(offset_in_vma < old_vma.size);
|
|
|
|
|
ASSERT(offset_in_vma > 0);
|
|
|
|
|
|
|
|
|
|
old_vma.size = offset_in_vma;
|
|
|
|
|
new_vma.base += offset_in_vma;
|
|
|
|
|
new_vma.size -= offset_in_vma;
|
|
|
|
|
|
|
|
|
|
switch (new_vma.type) {
|
|
|
|
|
case VirtualMemoryArea::Type::Unmapped:
|
|
|
|
|
break;
|
|
|
|
|
case VirtualMemoryArea::Type::Allocated:
|
|
|
|
|
new_vma.offset += offset_in_vma;
|
|
|
|
|
break;
|
|
|
|
|
case VirtualMemoryArea::Type::Mapped:
|
|
|
|
|
new_vma.backing_memory += offset_in_vma;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ASSERT(old_vma.CanBeMergedWith(new_vma));
|
|
|
|
|
|
|
|
|
|
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
|
|
|
|
|
const VMAIter next_vma{std::next(iter)};
|
|
|
|
|
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
|
|
|
|
iter->second.size += next_vma->second.size;
|
|
|
|
|
vma_map.erase(next_vma);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (iter != vma_map.begin()) {
|
|
|
|
|
VMAIter prev_vma{std::prev(iter)};
|
|
|
|
|
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
|
|
|
|
prev_vma->second.size += iter->second.size;
|
|
|
|
|
vma_map.erase(iter);
|
|
|
|
|
iter = prev_vma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return iter;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
|
|
|
|
|
switch (vma.type) {
|
|
|
|
|
case VirtualMemoryArea::Type::Unmapped:
|
|
|
|
|
UnmapRegion(vma.base, vma.size);
|
|
|
|
|
break;
|
|
|
|
|
case VirtualMemoryArea::Type::Allocated:
|
|
|
|
|
MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
|
|
|
|
|
break;
|
|
|
|
|
case VirtualMemoryArea::Type::Mapped:
|
|
|
|
|
MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return (*block)[(gpu_addr >> PAGE_BITS) & PAGE_BLOCK_MASK];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Tegra
|
|
|
|
|