scope_exit: Make constexpr

Allows the use of the macro in constexpr-contexts.
Also avoids some potential problems when nesting braces inside it.
merge-requests/60/head
FearlessTobi 2024-02-19 16:00:46 +07:00
parent 665fce871f
commit 310c1f50be
58 changed files with 421 additions and 226 deletions

@ -404,7 +404,9 @@ static Core::SystemResultStatus RunEmulation(const std::string& filepath,
const size_t program_index,
const bool frontend_initiated) {
MicroProfileOnThreadCreate("EmuThread");
SCOPE_EXIT({ MicroProfileShutdown(); });
SCOPE_EXIT {
MicroProfileShutdown();
};
LOG_INFO(Frontend, "starting");
@ -413,7 +415,9 @@ static Core::SystemResultStatus RunEmulation(const std::string& filepath,
return Core::SystemResultStatus::ErrorLoader;
}
SCOPE_EXIT({ EmulationSession::GetInstance().ShutdownEmulation(); });
SCOPE_EXIT {
EmulationSession::GetInstance().ShutdownEmulation();
};
jconst result = EmulationSession::GetInstance().InitializeEmulation(filepath, program_index,
frontend_initiated);

@ -357,7 +357,9 @@ bool IsCubebSuitable() {
return false;
}
SCOPE_EXIT({ cubeb_destroy(ctx); });
SCOPE_EXIT {
cubeb_destroy(ctx);
};
#ifdef _WIN32
if (SUCCEEDED(com_init_result)) {

@ -20,10 +20,10 @@
namespace AudioCore::Sink {
void SinkStream::AppendBuffer(SinkBuffer& buffer, std::span<s16> samples) {
SCOPE_EXIT({
SCOPE_EXIT {
queue.enqueue(buffer);
++queued_buffers;
});
};
if (type == StreamType::In) {
return;

@ -20,7 +20,9 @@ std::string DemangleSymbol(const std::string& mangled) {
}
char* demangled = nullptr;
SCOPE_EXIT({ std::free(demangled); });
SCOPE_EXIT {
std::free(demangled);
};
if (is_itanium(mangled)) {
demangled = llvm::itaniumDemangle(mangled.c_str());

@ -430,11 +430,11 @@ public:
explicit Impl(size_t backing_size_, size_t virtual_size_)
: backing_size{backing_size_}, virtual_size{virtual_size_} {
bool good = false;
SCOPE_EXIT({
SCOPE_EXIT {
if (!good) {
Release();
}
});
};
long page_size = sysconf(_SC_PAGESIZE);
if (page_size != 0x1000) {

@ -24,10 +24,10 @@ bool PageTable::ContinueTraversal(TraversalEntry* out_entry, TraversalContext* c
out_entry->block_size = page_size;
// Regardless of whether the page was mapped, advance on exit.
SCOPE_EXIT({
SCOPE_EXIT {
context->next_page += 1;
context->next_offset += page_size;
});
};
// Validate that we can read the actual entry.
const auto page = context->next_page;

@ -7,29 +7,61 @@
#include "common/common_funcs.h"
namespace detail {
template <typename Func>
struct ScopeExitHelper {
explicit ScopeExitHelper(Func&& func_) : func(std::move(func_)) {}
~ScopeExitHelper() {
if (active) {
func();
}
}
template <class F>
class ScopeGuard {
YUZU_NON_COPYABLE(ScopeGuard);
void Cancel() {
private:
F f;
bool active;
public:
constexpr ScopeGuard(F f_) : f(std::move(f_)), active(true) {}
constexpr ~ScopeGuard() {
if (active) {
f();
}
}
constexpr void Cancel() {
active = false;
}
Func func;
bool active{true};
constexpr ScopeGuard(ScopeGuard&& rhs) : f(std::move(rhs.f)), active(rhs.active) {
rhs.Cancel();
}
ScopeGuard& operator=(ScopeGuard&& rhs) = delete;
};
template <typename Func>
ScopeExitHelper<Func> ScopeExit(Func&& func) {
return ScopeExitHelper<Func>(std::forward<Func>(func));
template <class F>
constexpr ScopeGuard<F> MakeScopeGuard(F f) {
return ScopeGuard<F>(std::move(f));
}
enum class ScopeGuardOnExit {};
template <typename F>
constexpr ScopeGuard<F> operator+(ScopeGuardOnExit, F&& f) {
return ScopeGuard<F>(std::forward<F>(f));
}
} // namespace detail
#define CONCATENATE_IMPL(s1, s2) s1##s2
#define CONCATENATE(s1, s2) CONCATENATE_IMPL(s1, s2)
#ifdef __COUNTER__
#define ANONYMOUS_VARIABLE(pref) CONCATENATE(pref, __COUNTER__)
#else
#define ANONYMOUS_VARIABLE(pref) CONCATENATE(pref, __LINE__)
#endif
/**
* This macro is similar to SCOPE_EXIT, except the object is caller managed. This is intended to be
* used when the caller might want to cancel the ScopeExit.
*/
#define SCOPE_GUARD detail::ScopeGuardOnExit() + [&]()
/**
* This macro allows you to conveniently specify a block of code that will run on scope exit. Handy
* for doing ad-hoc clean-up tasks in a function with multiple returns.
@ -38,7 +70,7 @@ ScopeExitHelper<Func> ScopeExit(Func&& func) {
* \code
* const int saved_val = g_foo;
* g_foo = 55;
* SCOPE_EXIT({ g_foo = saved_val; });
* SCOPE_EXIT{ g_foo = saved_val; };
*
* if (Bar()) {
* return 0;
@ -47,10 +79,4 @@ ScopeExitHelper<Func> ScopeExit(Func&& func) {
* }
* \endcode
*/
#define SCOPE_EXIT(body) auto CONCAT2(scope_exit_helper_, __LINE__) = detail::ScopeExit([&]() body)
/**
* This macro is similar to SCOPE_EXIT, except the object is caller managed. This is intended to be
* used when the caller might want to cancel the ScopeExit.
*/
#define SCOPE_GUARD(body) detail::ScopeExit([&]() body)
#define SCOPE_EXIT auto ANONYMOUS_VARIABLE(SCOPE_EXIT_STATE_) = SCOPE_GUARD

@ -199,10 +199,10 @@ void CpuManager::RunThread(std::stop_token token, std::size_t core) {
data.host_context = Common::Fiber::ThreadToFiber();
// Cleanup
SCOPE_EXIT({
SCOPE_EXIT {
data.host_context->Exit();
MicroProfileOnThreadExit();
});
};
// Running
if (!gpu_barrier->Sync(token)) {

@ -391,12 +391,12 @@ void DeviceMemoryManager<Traits>::WalkBlock(DAddr addr, std::size_t size, auto o
std::min((next_pages << Memory::YUZU_PAGEBITS) - page_offset, remaining_size);
const auto current_vaddr =
static_cast<u64>((page_index << Memory::YUZU_PAGEBITS) + page_offset);
SCOPE_EXIT({
SCOPE_EXIT{
page_index += next_pages;
page_offset = 0;
increment(copy_amount);
remaining_size -= copy_amount;
});
};
auto phys_addr = compressed_physical_ptr[page_index];
if (phys_addr == 0) {

@ -3,6 +3,10 @@
#pragma once
#include <string_view>
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace FileSys {
constexpr inline size_t EntryNameLengthMax = 0x300;

@ -447,7 +447,7 @@ public:
char* replacement_path = nullptr;
size_t replacement_path_size = 0;
SCOPE_EXIT({
SCOPE_EXIT {
if (replacement_path != nullptr) {
if (std::is_constant_evaluated()) {
delete[] replacement_path;
@ -455,7 +455,7 @@ public:
Deallocate(replacement_path, replacement_path_size);
}
}
});
};
// Perform path replacement, if necessary
if (IsParentDirectoryPathReplacementNeeded(cur_path)) {
@ -1102,7 +1102,7 @@ public:
R_SUCCEED();
}
static Result Normalize(char* dst, size_t dst_size, const char* path, size_t path_len,
static constexpr Result Normalize(char* dst, size_t dst_size, const char* path, size_t path_len,
const PathFlags& flags) {
// Use StringTraits names for remainder of scope
using namespace StringTraits;
@ -1199,7 +1199,7 @@ public:
const size_t replaced_src_len = path_len - (src - path);
char* replaced_src = nullptr;
SCOPE_EXIT({
SCOPE_EXIT {
if (replaced_src != nullptr) {
if (std::is_constant_evaluated()) {
delete[] replaced_src;
@ -1207,7 +1207,7 @@ public:
Deallocate(replaced_src, replaced_src_len);
}
}
});
};
if (std::is_constant_evaluated()) {
replaced_src = new char[replaced_src_len];

@ -36,7 +36,9 @@ Result HierarchicalSha256Storage::Initialize(VirtualFile* base_storages, s32 lay
// Get the base storage size.
m_base_storage_size = base_storages[2]->GetSize();
{
auto size_guard = SCOPE_GUARD({ m_base_storage_size = 0; });
auto size_guard = SCOPE_GUARD {
m_base_storage_size = 0;
};
R_UNLESS(m_base_storage_size <= static_cast<s64>(HashSize)
<< m_log_size_ratio << m_log_size_ratio,
ResultHierarchicalSha256BaseStorageTooLarge);

@ -98,7 +98,9 @@ Loader::ResultStatus ProgramMetadata::Load(VirtualFile file) {
Loader::ResultStatus ProgramMetadata::Reload(VirtualFile file) {
const u64 original_program_id = aci_header.title_id;
SCOPE_EXIT({ aci_header.title_id = original_program_id; });
SCOPE_EXIT {
aci_header.title_id = original_program_id;
};
return this->Load(file);
}

@ -24,7 +24,9 @@ Result KClientSession::SendSyncRequest(uintptr_t address, size_t size) {
// Create a session request.
KSessionRequest* request = KSessionRequest::Create(m_kernel);
R_UNLESS(request != nullptr, ResultOutOfResource);
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// Initialize the request.
request->Initialize(nullptr, address, size);
@ -37,7 +39,9 @@ Result KClientSession::SendAsyncRequest(KEvent* event, uintptr_t address, size_t
// Create a session request.
KSessionRequest* request = KSessionRequest::Create(m_kernel);
R_UNLESS(request != nullptr, ResultOutOfResource);
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// Initialize the request.
request->Initialize(event, address, size);

@ -1305,11 +1305,11 @@ Result KPageTableBase::UnmapCodeMemory(KProcessAddress dst_address, KProcessAddr
// Ensure that we maintain the instruction cache.
bool reprotected_pages = false;
SCOPE_EXIT({
SCOPE_EXIT {
if (reprotected_pages && any_code_pages) {
InvalidateInstructionCache(m_kernel, this, dst_address, size);
}
});
};
// Unmap.
{
@ -1397,7 +1397,9 @@ Result KPageTableBase::MapInsecureMemory(KProcessAddress address, size_t size) {
// Close the opened pages when we're done with them.
// If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
// automatically.
SCOPE_EXIT({ pg.Close(); });
SCOPE_EXIT {
pg.Close();
};
// Clear all the newly allocated pages.
for (const auto& it : pg) {
@ -1603,7 +1605,9 @@ Result KPageTableBase::AllocateAndMapPagesImpl(PageLinkedList* page_list, KProce
m_kernel.MemoryManager().AllocateAndOpen(std::addressof(pg), num_pages, m_allocate_option));
// Ensure that the page group is closed when we're done working with it.
SCOPE_EXIT({ pg.Close(); });
SCOPE_EXIT {
pg.Close();
};
// Clear all pages.
for (const auto& it : pg) {
@ -2191,7 +2195,9 @@ Result KPageTableBase::SetHeapSize(KProcessAddress* out, size_t size) {
// Close the opened pages when we're done with them.
// If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
// automatically.
SCOPE_EXIT({ pg.Close(); });
SCOPE_EXIT {
pg.Close();
};
// Clear all the newly allocated pages.
for (const auto& it : pg) {
@ -2592,7 +2598,9 @@ Result KPageTableBase::UnmapIoRegion(KProcessAddress dst_address, KPhysicalAddre
// Temporarily unlock ourselves, so that other operations can occur while we flush the
// region.
m_general_lock.Unlock();
SCOPE_EXIT({ m_general_lock.Lock(); });
SCOPE_EXIT {
m_general_lock.Lock();
};
// Flush the region.
R_ASSERT(FlushDataCache(dst_address, size));
@ -3311,10 +3319,10 @@ Result KPageTableBase::ReadIoMemoryImpl(KProcessAddress dst_addr, KPhysicalAddre
// Ensure we unmap the io memory when we're done with it.
const KPageProperties unmap_properties =
KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
SCOPE_EXIT({
SCOPE_EXIT {
R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
});
};
// Read the memory.
const KProcessAddress read_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
@ -3347,10 +3355,10 @@ Result KPageTableBase::WriteIoMemoryImpl(KPhysicalAddress phys_addr, KProcessAdd
// Ensure we unmap the io memory when we're done with it.
const KPageProperties unmap_properties =
KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
SCOPE_EXIT({
SCOPE_EXIT {
R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
unmap_properties, OperationType::Unmap, true));
});
};
// Write the memory.
const KProcessAddress write_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
@ -4491,14 +4499,14 @@ Result KPageTableBase::SetupForIpcServer(KProcessAddress* out_addr, size_t size,
// If the partial pages are mapped, an extra reference will have been opened. Otherwise, they'll
// free on scope exit.
SCOPE_EXIT({
SCOPE_EXIT {
if (start_partial_page != 0) {
m_kernel.MemoryManager().Close(start_partial_page, 1);
}
if (end_partial_page != 0) {
m_kernel.MemoryManager().Close(end_partial_page, 1);
}
});
};
ON_RESULT_FAILURE {
if (cur_mapped_addr != dst_addr) {
@ -5166,10 +5174,10 @@ Result KPageTableBase::MapPhysicalMemory(KProcessAddress address, size_t size) {
GetCurrentProcess(m_kernel).GetId(), m_heap_fill_value));
// If we fail in the next bit (or retry), we need to cleanup the pages.
auto pg_guard = SCOPE_GUARD({
auto pg_guard = SCOPE_GUARD {
pg.OpenFirst();
pg.Close();
});
};
// Map the memory.
{
@ -5694,7 +5702,9 @@ Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_a
// Ensure that any pages we track are closed on exit.
KPageGroup pages_to_close(m_kernel, this->GetBlockInfoManager());
SCOPE_EXIT({ pages_to_close.CloseAndReset(); });
SCOPE_EXIT {
pages_to_close.CloseAndReset();
};
// Make a page group representing the region to unmap.
this->MakePageGroup(pages_to_close, virt_addr, num_pages);

@ -77,7 +77,9 @@ Result TerminateChildren(KernelCore& kernel, KProcess* process,
}
// Terminate and close the thread.
SCOPE_EXIT({ cur_child->Close(); });
SCOPE_EXIT {
cur_child->Close();
};
if (const Result terminate_result = cur_child->Terminate();
ResultTerminationRequested == terminate_result) {
@ -466,11 +468,11 @@ void KProcess::DoWorkerTaskImpl() {
Result KProcess::StartTermination() {
// Finalize the handle table when we're done, if the process isn't immortal.
SCOPE_EXIT({
SCOPE_EXIT {
if (!m_is_immortal) {
this->FinalizeHandleTable();
}
});
};
// Terminate child threads other than the current one.
R_RETURN(TerminateChildren(m_kernel, this, GetCurrentThreadPointer(m_kernel)));
@ -964,7 +966,9 @@ Result KProcess::Run(s32 priority, size_t stack_size) {
// Create a new thread for the process.
KThread* main_thread = KThread::Create(m_kernel);
R_UNLESS(main_thread != nullptr, ResultOutOfResource);
SCOPE_EXIT({ main_thread->Close(); });
SCOPE_EXIT {
main_thread->Close();
};
// Initialize the thread.
R_TRY(KThread::InitializeUserThread(m_kernel.System(), main_thread, this->GetEntryPoint(), 0,
@ -1155,7 +1159,9 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
// Ensure we maintain a clean state on exit.
SCOPE_EXIT({ res_limit->Close(); });
SCOPE_EXIT {
res_limit->Close();
};
// Declare flags and code address.
Svc::CreateProcessFlag flag{};

@ -651,11 +651,11 @@ Result ReceiveMessage(KernelCore& kernel, bool& recv_list_broken, uint64_t dst_m
// Process any special data.
if (src_header.GetHasSpecialHeader()) {
// After we process, make sure we track whether the receive list is broken.
SCOPE_EXIT({
SCOPE_EXIT {
if (offset > dst_recv_list_idx) {
recv_list_broken = true;
}
});
};
// Process special data.
R_TRY(ProcessMessageSpecialData<false>(offset, dst_process, src_process, src_thread,
@ -665,11 +665,11 @@ Result ReceiveMessage(KernelCore& kernel, bool& recv_list_broken, uint64_t dst_m
// Process any pointer buffers.
for (auto i = 0; i < src_header.GetPointerCount(); ++i) {
// After we process, make sure we track whether the receive list is broken.
SCOPE_EXIT({
SCOPE_EXIT {
if (offset > dst_recv_list_idx) {
recv_list_broken = true;
}
});
};
R_TRY(ProcessReceiveMessagePointerDescriptors(
offset, pointer_key, dst_page_table, src_page_table, dst_msg, src_msg, dst_recv_list,
@ -680,11 +680,11 @@ Result ReceiveMessage(KernelCore& kernel, bool& recv_list_broken, uint64_t dst_m
// Process any map alias buffers.
for (auto i = 0; i < src_header.GetMapAliasCount(); ++i) {
// After we process, make sure we track whether the receive list is broken.
SCOPE_EXIT({
SCOPE_EXIT {
if (offset > dst_recv_list_idx) {
recv_list_broken = true;
}
});
};
// We process in order send, recv, exch. Buffers after send (recv/exch) are ReadWrite.
const KMemoryPermission perm = (i >= src_header.GetSendCount())
@ -702,11 +702,11 @@ Result ReceiveMessage(KernelCore& kernel, bool& recv_list_broken, uint64_t dst_m
// Process any raw data.
if (const auto raw_count = src_header.GetRawCount(); raw_count != 0) {
// After we process, make sure we track whether the receive list is broken.
SCOPE_EXIT({
SCOPE_EXIT {
if (offset + raw_count > dst_recv_list_idx) {
recv_list_broken = true;
}
});
};
// Get the offset and size.
const size_t offset_words = offset * sizeof(u32);
@ -1124,7 +1124,9 @@ Result KServerSession::ReceiveRequest(uintptr_t server_message, uintptr_t server
client_thread->Open();
}
SCOPE_EXIT({ client_thread->Close(); });
SCOPE_EXIT {
client_thread->Close();
};
// Set the request as our current.
m_current_request = request;
@ -1174,7 +1176,9 @@ Result KServerSession::ReceiveRequest(uintptr_t server_message, uintptr_t server
// Reply to the client.
{
// After we reply, close our reference to the request.
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// Get the event to check whether the request is async.
if (KEvent* event = request->GetEvent(); event != nullptr) {
@ -1236,7 +1240,9 @@ Result KServerSession::SendReply(uintptr_t server_message, uintptr_t server_buff
}
// Close reference to the request once we're done processing it.
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// Extract relevant information from the request.
const uint64_t client_message = request->GetAddress();
@ -1394,7 +1400,9 @@ void KServerSession::CleanupRequests() {
}
// Close a reference to the request once it's cleaned up.
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// Extract relevant information from the request.
const uint64_t client_message = request->GetAddress();
@ -1491,7 +1499,9 @@ void KServerSession::OnClientClosed() {
ASSERT(thread != nullptr);
// Ensure that we close the request when done.
SCOPE_EXIT({ request->Close(); });
SCOPE_EXIT {
request->Close();
};
// If we're terminating, close a reference to the thread and event.
if (terminate) {

@ -21,7 +21,9 @@ Result KThreadLocalPage::Initialize(KernelCore& kernel, KProcess* process) {
// Allocate a new page.
KPageBuffer* page_buf = KPageBuffer::Allocate(kernel);
R_UNLESS(page_buf != nullptr, ResultOutOfMemory);
auto page_buf_guard = SCOPE_GUARD({ KPageBuffer::Free(kernel, page_buf); });
auto page_buf_guard = SCOPE_GUARD {
KPageBuffer::Free(kernel, page_buf);
};
// Map the address in.
const auto phys_addr = kernel.System().DeviceMemory().GetPhysicalAddr(page_buf);

@ -24,7 +24,9 @@ Result KTransferMemory::Initialize(KProcessAddress addr, std::size_t size,
// Construct the page group, guarding to make sure our state is valid on exit.
m_page_group.emplace(m_kernel, page_table.GetBlockInfoManager());
auto pg_guard = SCOPE_GUARD({ m_page_group.reset(); });
auto pg_guard = SCOPE_GUARD {
m_page_group.reset();
};
// Lock the memory.
R_TRY(page_table.LockForTransferMemory(std::addressof(*m_page_group), addr, size,

@ -109,7 +109,9 @@ struct KernelCore::Impl {
void Shutdown() {
is_shutting_down.store(true, std::memory_order_relaxed);
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
SCOPE_EXIT {
is_shutting_down.store(false, std::memory_order_relaxed);
};
CloseServices();
@ -1080,7 +1082,9 @@ std::jthread KernelCore::RunOnHostCoreProcess(std::string&& process_name,
process->Initialize(Svc::CreateProcessParameter{}, GetSystemResourceLimit(), false)));
// Ensure that we don't hold onto any extra references.
SCOPE_EXIT({ process->Close(); });
SCOPE_EXIT {
process->Close();
};
// Register the new process.
KProcess::Register(*this, process);
@ -1108,7 +1112,9 @@ void KernelCore::RunOnGuestCoreProcess(std::string&& process_name, std::function
process->Initialize(Svc::CreateProcessParameter{}, GetSystemResourceLimit(), false)));
// Ensure that we don't hold onto any extra references.
SCOPE_EXIT({ process->Close(); });
SCOPE_EXIT {
process->Close();
};
// Register the new process.
KProcess::Register(*this, process);

@ -45,7 +45,9 @@ Result CreateCodeMemory(Core::System& system, Handle* out, u64 address, uint64_t
KCodeMemory* code_mem = KCodeMemory::Create(kernel);
R_UNLESS(code_mem != nullptr, ResultOutOfResource);
SCOPE_EXIT({ code_mem->Close(); });
SCOPE_EXIT {
code_mem->Close();
};
// Verify that the region is in range.
R_UNLESS(GetCurrentProcess(system.Kernel()).GetPageTable().Contains(address, size),

@ -28,7 +28,9 @@ Result CreateDeviceAddressSpace(Core::System& system, Handle* out, uint64_t das_
// Create the device address space.
KDeviceAddressSpace* das = KDeviceAddressSpace::Create(system.Kernel());
R_UNLESS(das != nullptr, ResultOutOfResource);
SCOPE_EXIT({ das->Close(); });
SCOPE_EXIT {
das->Close();
};
// Initialize the device address space.
R_TRY(das->Initialize(das_address, das_size));

@ -72,10 +72,10 @@ Result CreateEvent(Core::System& system, Handle* out_write, Handle* out_read) {
event_reservation.Commit();
// Ensure that we clean up the event (and its only references are handle table) on function end.
SCOPE_EXIT({
SCOPE_EXIT {
event->GetReadableEvent().Close();
event->Close();
});
};
// Register the event.
KEvent::Register(kernel, event);

@ -129,11 +129,11 @@ Result ReplyAndReceiveImpl(KernelCore& kernel, int32_t* out_index, uintptr_t mes
}
// Ensure handles are closed when we're done.
SCOPE_EXIT({
SCOPE_EXIT {
for (auto i = 0; i < num_handles; ++i) {
objs[i]->Close();
}
});
};
R_RETURN(ReplyAndReceiveImpl(kernel, out_index, message, buffer_size, message_paddr, objs,
num_handles, reply_target, timeout_ns));
@ -208,10 +208,10 @@ Result SendAsyncRequestWithUserBuffer(Core::System& system, Handle* out_event_ha
event_reservation.Commit();
// At end of scope, kill the standing references to the sub events.
SCOPE_EXIT({
SCOPE_EXIT {
event->GetReadableEvent().Close();
event->Close();
});
};
// Register the event.
KEvent::Register(system.Kernel(), event);

@ -68,10 +68,10 @@ Result CreatePort(Core::System& system, Handle* out_server, Handle* out_client,
port->Initialize(max_sessions, is_light, name);
// Ensure that we clean up the port (and its only references are handle table) on function end.
SCOPE_EXIT({
SCOPE_EXIT {
port->GetServerPort().Close();
port->GetClientPort().Close();
});
};
// Register the port.
KPort::Register(kernel, port);
@ -150,10 +150,10 @@ Result ManageNamedPort(Core::System& system, Handle* out_server_handle, uint64_t
KPort::Register(system.Kernel(), port);
// Ensure that our only reference to the port is in the handle table when we're done.
SCOPE_EXIT({
SCOPE_EXIT {
port->GetClientPort().Close();
port->GetServerPort().Close();
});
};
// Register the handle in the table.
R_TRY(handle_table.Add(out_server_handle, std::addressof(port->GetServerPort())));

@ -18,7 +18,9 @@ Result CreateResourceLimit(Core::System& system, Handle* out_handle) {
R_UNLESS(resource_limit != nullptr, ResultOutOfResource);
// Ensure we don't leak a reference to the limit.
SCOPE_EXIT({ resource_limit->Close(); });
SCOPE_EXIT {
resource_limit->Close();
};
// Initialize the resource limit.
resource_limit->Initialize();

@ -69,10 +69,10 @@ Result CreateSession(Core::System& system, Handle* out_server, Handle* out_clien
// Ensure that we clean up the session (and its only references are handle table) on function
// end.
SCOPE_EXIT({
SCOPE_EXIT {
session->GetClientSession().Close();
session->GetServerSession().Close();
});
};
// Register the session.
T::Register(system.Kernel(), session);

@ -78,11 +78,11 @@ Result WaitSynchronization(Core::System& system, int32_t* out_index, u64 user_ha
}
// Ensure handles are closed when we're done.
SCOPE_EXIT({
SCOPE_EXIT {
for (auto i = 0; i < num_handles; ++i) {
objs[i]->Close();
}
});
};
// Convert the timeout from nanoseconds to ticks.
s64 timeout;

@ -51,7 +51,9 @@ Result CreateThread(Core::System& system, Handle* out_handle, u64 entry_point, u
// Create the thread.
KThread* thread = KThread::Create(kernel);
R_UNLESS(thread != nullptr, ResultOutOfResource)
SCOPE_EXIT({ thread->Close(); });
SCOPE_EXIT {
thread->Close();
};
// Initialize the thread.
{

@ -52,7 +52,9 @@ Result CreateTransferMemory(Core::System& system, Handle* out, u64 address, u64
R_UNLESS(trmem != nullptr, ResultOutOfResource);
// Ensure the only reference is in the handle table when we're done.
SCOPE_EXIT({ trmem->Close(); });
SCOPE_EXIT {
trmem->Close();
};
// Ensure that the region is in range.
R_UNLESS(process.GetPageTable().Contains(address, size), ResultInvalidCurrentMemory);

@ -24,11 +24,11 @@ void AppletStorageChannel::Push(std::shared_ptr<IStorage> storage) {
Result AppletStorageChannel::Pop(std::shared_ptr<IStorage>* out_storage) {
std::scoped_lock lk{m_lock};
SCOPE_EXIT({
SCOPE_EXIT {
if (m_data.empty()) {
m_event.Clear();
}
});
};
R_UNLESS(!m_data.empty(), AM::ResultNoDataInChannel);

@ -68,7 +68,9 @@ bool Process::Initialize(u64 program_id, u8 minimum_key_generation, u8 maximum_k
Kernel::KProcess::Register(m_system.Kernel(), process);
// On exit, ensure we free the additional reference to the process.
SCOPE_EXIT({ process->Close(); });
SCOPE_EXIT {
process->Close();
};
// Insert process modules into memory.
const auto [load_result, load_parameters] = app_loader->Load(*process, m_system);

@ -142,16 +142,18 @@ Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
}
Result StaticService::GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value);
};
R_RETURN(m_standard_steady_clock_resource.GetRtcTimeInSeconds(*out_rtc_value));
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
Out<bool> out_automatic_correction) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_automatic_correction={}", *out_automatic_correction);
});
};
R_RETURN(m_wrapped_service->IsStandardUserSystemClockAutomaticCorrectionEnabled(
out_automatic_correction));
@ -166,21 +168,27 @@ Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
}
Result StaticService::GetStandardUserSystemClockInitialYear(Out<s32> out_year) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_year={}", *out_year); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_year={}", *out_year);
};
R_RETURN(m_set_sys->GetSettingsItemValueImpl<s32>(*out_year, "time",
"standard_user_clock_initial_year"));
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient);
};
R_RETURN(m_wrapped_service->IsStandardNetworkSystemClockAccuracySufficient(out_is_sufficient));
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point);
};
R_RETURN(m_wrapped_service->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
out_time_point));
@ -188,15 +196,18 @@ Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
Out<s64> out_time, const Service::PSC::Time::SystemClockContext& context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time);
};
R_RETURN(m_wrapped_service->CalculateMonotonicSystemClockBaseTimePoint(out_time, context));
}
Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot,
Service::PSC::Time::TimeType type) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot);
};
R_RETURN(m_wrapped_service->GetClockSnapshot(out_snapshot, type));
}
@ -205,11 +216,11 @@ Result StaticService::GetClockSnapshotFromSystemClockContext(
Service::PSC::Time::TimeType type, OutClockSnapshot out_snapshot,
const Service::PSC::Time::SystemClockContext& user_context,
const Service::PSC::Time::SystemClockContext& network_context) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. type={} out_snapshot={} user_context={} network_context={}", type,
*out_snapshot, user_context, network_context);
});
};
R_RETURN(m_wrapped_service->GetClockSnapshotFromSystemClockContext(
type, out_snapshot, user_context, network_context));
@ -218,14 +229,18 @@ Result StaticService::GetClockSnapshotFromSystemClockContext(
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_time,
InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time);
};
R_RETURN(m_wrapped_service->CalculateStandardUserSystemClockDifferenceByUser(out_time, a, b));
}
Result StaticService::CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time);
};
R_RETURN(m_wrapped_service->CalculateSpanBetween(out_time, a, b));
}

@ -57,7 +57,9 @@ TimeZoneService::~TimeZoneService() = default;
Result TimeZoneService::GetDeviceLocationName(
Out<Service::PSC::Time::LocationName> out_location_name) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name);
};
R_RETURN(m_wrapped_service->GetDeviceLocationName(out_location_name));
}
@ -94,7 +96,9 @@ Result TimeZoneService::SetDeviceLocationName(
}
Result TimeZoneService::GetTotalLocationNameCount(Out<u32> out_count) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_count={}", *out_count); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_count={}", *out_count);
};
R_RETURN(m_wrapped_service->GetTotalLocationNameCount(out_count));
}
@ -102,10 +106,10 @@ Result TimeZoneService::GetTotalLocationNameCount(Out<u32> out_count) {
Result TimeZoneService::LoadLocationNameList(
Out<u32> out_count,
OutArray<Service::PSC::Time::LocationName, BufferAttr_HipcMapAlias> out_names, u32 index) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. index={} out_count={} out_names[0]={} out_names[1]={}",
index, *out_count, out_names[0], out_names[1]);
});
};
std::scoped_lock l{m_mutex};
R_RETURN(GetTimeZoneLocationList(*out_count, out_names, out_names.size(), index));
@ -124,7 +128,9 @@ Result TimeZoneService::LoadTimeZoneRule(OutRule out_rule,
Result TimeZoneService::GetTimeZoneRuleVersion(
Out<Service::PSC::Time::RuleVersion> out_rule_version) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version);
};
R_RETURN(m_wrapped_service->GetTimeZoneRuleVersion(out_rule_version));
}
@ -132,10 +138,10 @@ Result TimeZoneService::GetTimeZoneRuleVersion(
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(
Out<Service::PSC::Time::LocationName> location_name,
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. location_name={} out_time_point={}", *location_name,
*out_time_point);
});
};
R_RETURN(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(location_name, out_time_point));
}
@ -178,10 +184,10 @@ Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
Result TimeZoneService::ToCalendarTime(
Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info, s64 time, InRule rule) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
};
R_RETURN(m_wrapped_service->ToCalendarTime(out_calendar_time, out_additional_info, time, rule));
}
@ -189,10 +195,10 @@ Result TimeZoneService::ToCalendarTime(
Result TimeZoneService::ToCalendarTimeWithMyRule(
Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info, s64 time) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
};
R_RETURN(
m_wrapped_service->ToCalendarTimeWithMyRule(out_calendar_time, out_additional_info, time));
@ -202,11 +208,11 @@ Result TimeZoneService::ToPosixTime(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
const Service::PSC::Time::CalendarTime& calendar_time,
InRule rule) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={}",
calendar_time, *out_count, out_times[0], out_times[1]);
});
};
R_RETURN(m_wrapped_service->ToPosixTime(out_count, out_times, calendar_time, rule));
}
@ -214,11 +220,11 @@ Result TimeZoneService::ToPosixTime(Out<u32> out_count,
Result TimeZoneService::ToPosixTimeWithMyRule(
Out<u32> out_count, OutArray<s64, BufferAttr_HipcPointer> out_times,
const Service::PSC::Time::CalendarTime& calendar_time) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={}",
calendar_time, *out_count, out_times[0], out_times[1]);
});
};
R_RETURN(m_wrapped_service->ToPosixTimeWithMyRule(out_count, out_times, calendar_time));
}

@ -92,11 +92,11 @@ NvResult nvhost_ctrl::IocCtrlEventWait(IocCtrlEventWaitParams& params, bool is_a
bool must_unmark_fail = !is_allocation;
const u32 event_id = params.value.raw;
SCOPE_EXIT({
SCOPE_EXIT {
if (must_unmark_fail) {
events[event_id].fails = 0;
}
});
};
const u32 fence_id = static_cast<u32>(params.fence.id);

@ -154,10 +154,10 @@ void NVDRV::Close(HLERequestContext& ctx) {
void NVDRV::Initialize(HLERequestContext& ctx) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
IPC::ResponseBuilder rb{ctx, 3};
SCOPE_EXIT({
SCOPE_EXIT {
rb.Push(ResultSuccess);
rb.PushEnum(NvResult::Success);
});
};
if (is_initialized) {
// No need to initialize again

@ -144,7 +144,9 @@ Result StaticService::GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value) {
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
Out<bool> out_is_enabled) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_enabled={}", *out_is_enabled); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_enabled={}", *out_is_enabled);
};
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
@ -180,7 +182,9 @@ Result StaticService::GetStandardUserSystemClockInitialYear(Out<s32> out_year) {
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient);
};
*out_is_sufficient = m_network_system_clock.IsAccuracySufficient();
@ -189,7 +193,9 @@ Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> o
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point);
};
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
@ -200,7 +206,9 @@ Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
Out<s64> out_time, const SystemClockContext& context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time);
};
R_UNLESS(m_time->m_standard_steady_clock.IsInitialized(), ResultClockUninitialized);
@ -219,8 +227,9 @@ Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
}
Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot, TimeType type) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot);
};
SystemClockContext user_context{};
R_TRY(m_user_system_clock.GetContext(user_context));
@ -234,11 +243,11 @@ Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot, TimeType t
Result StaticService::GetClockSnapshotFromSystemClockContext(
TimeType type, OutClockSnapshot out_snapshot, const SystemClockContext& user_context,
const SystemClockContext& network_context) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. type={} user_context={} network_context={} out_snapshot={}", type,
user_context, network_context, *out_snapshot);
});
};
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
@ -246,9 +255,9 @@ Result StaticService::GetClockSnapshotFromSystemClockContext(
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_difference,
InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_difference={}", *a, *b, *out_difference);
});
};
auto diff_s =
std::chrono::seconds(b->user_context.offset) - std::chrono::seconds(a->user_context.offset);
@ -276,7 +285,9 @@ Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64>
Result StaticService::CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time);
};
s64 time_s{};
auto res =

@ -29,7 +29,9 @@ SteadyClock::SteadyClock(Core::System& system_, std::shared_ptr<TimeManager> man
}
Result SteadyClock::GetCurrentTimePoint(Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -38,7 +40,9 @@ Result SteadyClock::GetCurrentTimePoint(Out<SteadyClockTimePoint> out_time_point
}
Result SteadyClock::GetTestOffset(Out<s64> out_test_offset) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_test_offset={}", *out_test_offset); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_test_offset={}", *out_test_offset);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -59,7 +63,9 @@ Result SteadyClock::SetTestOffset(s64 test_offset) {
}
Result SteadyClock::GetRtcValue(Out<s64> out_rtc_value) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -68,7 +74,9 @@ Result SteadyClock::GetRtcValue(Out<s64> out_rtc_value) {
}
Result SteadyClock::IsRtcResetDetected(Out<bool> out_is_detected) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_detected={}", *out_is_detected); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_detected={}", *out_is_detected);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -78,7 +86,9 @@ Result SteadyClock::IsRtcResetDetected(Out<bool> out_is_detected) {
}
Result SteadyClock::GetSetupResultValue(Out<Result> out_result) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_result=0x{:X}", out_result->raw); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_result=0x{:X}", out_result->raw);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -88,8 +98,9 @@ Result SteadyClock::GetSetupResultValue(Out<Result> out_result) {
}
Result SteadyClock::GetInternalOffset(Out<s64> out_internal_offset) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. out_internal_offset={}", *out_internal_offset); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_internal_offset={}", *out_internal_offset);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);

@ -26,7 +26,9 @@ SystemClock::SystemClock(Core::System& system_, SystemClockCore& clock_core, boo
}
Result SystemClock::GetCurrentTime(Out<s64> out_time) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time={}", *out_time); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_time={}", *out_time);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -45,7 +47,9 @@ Result SystemClock::SetCurrentTime(s64 time) {
}
Result SystemClock::GetSystemClockContext(Out<SystemClockContext> out_context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_context={}", *out_context); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_context={}", *out_context);
};
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);

@ -37,7 +37,9 @@ TimeZoneService::TimeZoneService(Core::System& system_, StandardSteadyClockCore&
}
Result TimeZoneService::GetDeviceLocationName(Out<LocationName> out_location_name) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name);
};
R_RETURN(m_time_zone.GetLocationName(*out_location_name));
}
@ -50,7 +52,9 @@ Result TimeZoneService::SetDeviceLocationName(const LocationName& location_name)
}
Result TimeZoneService::GetTotalLocationNameCount(Out<u32> out_count) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_count={}", *out_count); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_count={}", *out_count);
};
R_RETURN(m_time_zone.GetTotalLocationCount(*out_count));
}
@ -69,17 +73,19 @@ Result TimeZoneService::LoadTimeZoneRule(OutRule out_rule, const LocationName& l
}
Result TimeZoneService::GetTimeZoneRuleVersion(Out<RuleVersion> out_rule_version) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version); });
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version);
};
R_RETURN(m_time_zone.GetRuleVersion(*out_rule_version));
}
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(
Out<LocationName> out_location_name, Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_location_name={} out_time_point={}",
*out_location_name, *out_time_point);
});
};
R_TRY(m_time_zone.GetLocationName(*out_location_name));
R_RETURN(m_time_zone.GetTimePoint(*out_time_point));
@ -116,10 +122,10 @@ Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
Result TimeZoneService::ToCalendarTime(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info, s64 time,
InRule rule) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
};
R_RETURN(
m_time_zone.ToCalendarTime(*out_calendar_time, *out_additional_info, time, *rule.Get()));
@ -128,10 +134,10 @@ Result TimeZoneService::ToCalendarTime(Out<CalendarTime> out_calendar_time,
Result TimeZoneService::ToCalendarTimeWithMyRule(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info,
s64 time) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
};
R_RETURN(m_time_zone.ToCalendarTimeWithMyRule(*out_calendar_time, *out_additional_info, time));
}
@ -139,11 +145,11 @@ Result TimeZoneService::ToCalendarTimeWithMyRule(Out<CalendarTime> out_calendar_
Result TimeZoneService::ToPosixTime(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
const CalendarTime& calendar_time, InRule rule) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} ",
calendar_time, *out_count, out_times[0], out_times[1]);
});
};
R_RETURN(
m_time_zone.ToPosixTime(*out_count, out_times, out_times.size(), calendar_time, *rule));
@ -152,11 +158,11 @@ Result TimeZoneService::ToPosixTime(Out<u32> out_count,
Result TimeZoneService::ToPosixTimeWithMyRule(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
const CalendarTime& calendar_time) {
SCOPE_EXIT({
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} ",
calendar_time, *out_count, out_times[0], out_times[1]);
});
};
R_RETURN(
m_time_zone.ToPosixTimeWithMyRule(*out_count, out_times, out_times.size(), calendar_time));

@ -177,10 +177,10 @@ Result ServerManager::ManageNamedPort(const std::string& service_name,
Kernel::KPort::Register(m_system.Kernel(), port);
// Ensure that our reference to the port is closed if we fail to register it.
SCOPE_EXIT({
SCOPE_EXIT {
port->GetClientPort().Close();
port->GetServerPort().Close();
});
};
// Register the object name with the kernel.
R_TRY(Kernel::KObjectName::NewFromName(m_system.Kernel(), std::addressof(port->GetClientPort()),
@ -237,7 +237,9 @@ void ServerManager::StartAdditionalHostThreads(const char* name, size_t num_thre
}
Result ServerManager::LoopProcess() {
SCOPE_EXIT({ m_stopped.Set(); });
SCOPE_EXIT {
m_stopped.Set();
};
R_RETURN(this->LoopProcessImpl());
}

@ -118,7 +118,9 @@ ResultStatus AppLoader_NCA::VerifyIntegrity(std::function<bool(size_t, size_t)>
mbedtls_sha256_starts_ret(&ctx, 0);
// Ensure we maintain a clean state on exit.
SCOPE_EXIT({ mbedtls_sha256_free(&ctx); });
SCOPE_EXIT {
mbedtls_sha256_free(&ctx);
};
// Declare counters.
const size_t total_size = file->GetSize();

@ -831,11 +831,11 @@ struct Memory::Impl {
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
}
SCOPE_EXIT({
SCOPE_EXIT {
if (core == sys_core) [[unlikely]] {
sys_core_guard.unlock();
}
});
};
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
auto& current_area = rasterizer_write_areas[core];
PAddr subaddress = address >> YUZU_PAGEBITS;
@ -866,11 +866,11 @@ struct Memory::Impl {
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
}
SCOPE_EXIT({
SCOPE_EXIT {
if (core == sys_core) [[unlikely]] {
sys_core_guard.unlock();
}
});
};
auto& gpu = system.GPU();
gpu_device_memory->ApplyOpOnPointer(
p, scratch_buffers[core], [&](DAddr address) { gpu.InvalidateRegion(address, size); });

@ -224,12 +224,12 @@ bool DmntCheatVm::DecodeNextOpcode(CheatVmOpcode& out) {
// If we've ever seen a decode failure, return false.
bool valid = decode_success;
CheatVmOpcode opcode = {};
SCOPE_EXIT({
SCOPE_EXIT {
decode_success &= valid;
if (valid) {
out = opcode;
}
});
};
// Helper function for getting instruction dwords.
const auto GetNextDword = [&] {

@ -933,8 +933,9 @@ void EmulatedController::SetStick(const Common::Input::CallbackStatus& callback,
if (index >= controller.stick_values.size()) {
return;
}
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Stick, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Stick, !is_configuring);
};
std::scoped_lock lock{mutex};
const auto stick_value = TransformToStick(callback);
@ -989,8 +990,9 @@ void EmulatedController::SetTrigger(const Common::Input::CallbackStatus& callbac
if (index >= controller.trigger_values.size()) {
return;
}
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Trigger, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Trigger, !is_configuring);
};
std::scoped_lock lock{mutex};
const auto trigger_value = TransformToTrigger(callback);
@ -1036,7 +1038,9 @@ void EmulatedController::SetMotion(const Common::Input::CallbackStatus& callback
if (index >= controller.motion_values.size()) {
return;
}
SCOPE_EXIT({ TriggerOnChange(ControllerTriggerType::Motion, !is_configuring); });
SCOPE_EXIT {
TriggerOnChange(ControllerTriggerType::Motion, !is_configuring);
};
std::scoped_lock lock{mutex};
auto& raw_status = controller.motion_values[index].raw_status;
auto& emulated = controller.motion_values[index].emulated;
@ -1070,8 +1074,9 @@ void EmulatedController::SetColors(const Common::Input::CallbackStatus& callback
if (index >= controller.color_values.size()) {
return;
}
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Color, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Color, !is_configuring);
};
std::scoped_lock lock{mutex};
controller.color_values[index] = TransformToColor(callback);
@ -1120,7 +1125,9 @@ void EmulatedController::SetBattery(const Common::Input::CallbackStatus& callbac
if (index >= controller.battery_values.size()) {
return;
}
SCOPE_EXIT({ TriggerOnChange(ControllerTriggerType::Battery, !is_configuring); });
SCOPE_EXIT {
TriggerOnChange(ControllerTriggerType::Battery, !is_configuring);
};
std::scoped_lock lock{mutex};
controller.battery_values[index] = TransformToBattery(callback);
@ -1183,7 +1190,9 @@ void EmulatedController::SetBattery(const Common::Input::CallbackStatus& callbac
}
void EmulatedController::SetCamera(const Common::Input::CallbackStatus& callback) {
SCOPE_EXIT({ TriggerOnChange(ControllerTriggerType::IrSensor, !is_configuring); });
SCOPE_EXIT {
TriggerOnChange(ControllerTriggerType::IrSensor, !is_configuring);
};
std::scoped_lock lock{mutex};
controller.camera_values = TransformToCamera(callback);
@ -1198,7 +1207,9 @@ void EmulatedController::SetCamera(const Common::Input::CallbackStatus& callback
}
void EmulatedController::SetRingAnalog(const Common::Input::CallbackStatus& callback) {
SCOPE_EXIT({ TriggerOnChange(ControllerTriggerType::RingController, !is_configuring); });
SCOPE_EXIT {
TriggerOnChange(ControllerTriggerType::RingController, !is_configuring);
};
std::scoped_lock lock{mutex};
const auto force_value = TransformToStick(callback);
@ -1212,7 +1223,9 @@ void EmulatedController::SetRingAnalog(const Common::Input::CallbackStatus& call
}
void EmulatedController::SetNfc(const Common::Input::CallbackStatus& callback) {
SCOPE_EXIT({ TriggerOnChange(ControllerTriggerType::Nfc, !is_configuring); });
SCOPE_EXIT {
TriggerOnChange(ControllerTriggerType::Nfc, !is_configuring);
};
std::scoped_lock lock{mutex};
controller.nfc_values = TransformToNfc(callback);
@ -1685,8 +1698,9 @@ void EmulatedController::Connect(bool use_temporary_value) {
return;
}
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Connected, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Connected, !is_configuring);
};
std::scoped_lock lock{connect_mutex, mutex};
if (is_configuring) {
tmp_is_connected = true;
@ -1701,8 +1715,9 @@ void EmulatedController::Connect(bool use_temporary_value) {
}
void EmulatedController::Disconnect() {
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Disconnected, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Disconnected, !is_configuring);
};
std::scoped_lock lock{connect_mutex, mutex};
if (is_configuring) {
tmp_is_connected = false;
@ -1738,8 +1753,9 @@ NpadStyleIndex EmulatedController::GetNpadStyleIndex(bool get_temporary_value) c
}
void EmulatedController::SetNpadStyleIndex(NpadStyleIndex npad_type_) {
auto trigger_guard =
SCOPE_GUARD({ TriggerOnChange(ControllerTriggerType::Type, !is_configuring); });
auto trigger_guard = SCOPE_GUARD {
TriggerOnChange(ControllerTriggerType::Type, !is_configuring);
};
std::scoped_lock lock{mutex, npad_mutex};
if (is_configuring) {

@ -268,7 +268,9 @@ void JoyconDriver::OnNewData(std::span<u8> buffer) {
}
Common::Input::DriverResult JoyconDriver::SetPollingMode() {
SCOPE_EXIT({ disable_input_thread = false; });
SCOPE_EXIT {
disable_input_thread = false;
};
disable_input_thread = true;
rumble_protocol->EnableRumble(vibration_enabled && supported_features.vibration);

@ -291,7 +291,9 @@ u32 Maxwell3D::ProcessShadowRam(u32 method, u32 argument) {
}
void Maxwell3D::ConsumeSinkImpl() {
SCOPE_EXIT({ method_sink.clear(); });
SCOPE_EXIT {
method_sink.clear();
};
const auto control = shadow_state.shadow_ram_control;
if (control == Regs::ShadowRamControl::Track ||
control == Regs::ShadowRamControl::TrackWithFilter) {

@ -197,7 +197,9 @@ private:
MicroProfileOnThreadCreate(name.c_str());
// Cleanup
SCOPE_EXIT({ MicroProfileOnThreadExit(); });
SCOPE_EXIT {
MicroProfileOnThreadExit();
};
Common::SetCurrentThreadName(name.c_str());
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);

@ -22,7 +22,9 @@ static void RunThread(std::stop_token stop_token, Core::System& system,
Tegra::Control::Scheduler& scheduler, SynchState& state) {
std::string name = "GPU";
MicroProfileOnThreadCreate(name.c_str());
SCOPE_EXIT({ MicroProfileOnThreadExit(); });
SCOPE_EXIT {
MicroProfileOnThreadExit();
};
Common::SetCurrentThreadName(name.c_str());
Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);

@ -273,10 +273,10 @@ DeinterlaceFilter::DeinterlaceFilter(const Frame& frame) {
const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
AVFilterInOut* inputs = avfilter_inout_alloc();
AVFilterInOut* outputs = avfilter_inout_alloc();
SCOPE_EXIT({
SCOPE_EXIT {
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
});
};
// Don't know how to get the accurate time_base but it doesn't matter for yadif filter
// so just use 1/1 to make buffer filter happy

@ -92,12 +92,12 @@ public:
private:
void Fallback(const std::vector<u32>& parameters) {
SCOPE_EXIT({
SCOPE_EXIT {
if (extended) {
maxwell3d.engine_state = Maxwell3D::EngineHint::None;
maxwell3d.replace_table.clear();
}
});
};
maxwell3d.RefreshParameters();
const u32 instance_count = (maxwell3d.GetRegisterValue(0xD1B) & parameters[2]);
@ -281,12 +281,12 @@ public:
private:
void Fallback(const std::vector<u32>& parameters) {
SCOPE_EXIT({
SCOPE_EXIT {
// Clean everything.
maxwell3d.regs.vertex_id_base = 0x0;
maxwell3d.engine_state = Maxwell3D::EngineHint::None;
maxwell3d.replace_table.clear();
});
};
maxwell3d.RefreshParameters();
const u32 start_indirect = parameters[0];
const u32 end_indirect = parameters[1];

@ -230,7 +230,9 @@ template <typename Func>
void RasterizerOpenGL::PrepareDraw(bool is_indexed, Func&& draw_func) {
MICROPROFILE_SCOPE(OpenGL_Drawing);
SCOPE_EXIT({ gpu.TickWork(); });
SCOPE_EXIT {
gpu.TickWork();
};
gpu_memory->FlushCaching();
GraphicsPipeline* const pipeline{shader_cache.CurrentGraphicsPipeline()};
@ -355,7 +357,9 @@ void RasterizerOpenGL::DrawIndirect() {
void RasterizerOpenGL::DrawTexture() {
MICROPROFILE_SCOPE(OpenGL_Drawing);
SCOPE_EXIT({ gpu.TickWork(); });
SCOPE_EXIT {
gpu.TickWork();
};
texture_cache.SynchronizeGraphicsDescriptors();
texture_cache.UpdateRenderTargets(false);

@ -82,7 +82,9 @@ void Layer::ConfigureDraw(PresentPushConstants* out_push_constants,
// Finish any pending renderpass
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Wait(resource_ticks[image_index]);
SCOPE_EXIT({ resource_ticks[image_index] = scheduler.CurrentTick(); });
SCOPE_EXIT {
resource_ticks[image_index] = scheduler.CurrentTick();
};
if (!use_accelerated) {
UpdateRawImage(framebuffer, image_index);

@ -144,7 +144,9 @@ void RendererVulkan::Composite(std::span<const Tegra::FramebufferConfig> framebu
return;
}
SCOPE_EXIT({ render_window.OnFrameDisplayed(); });
SCOPE_EXIT {
render_window.OnFrameDisplayed();
};
RenderAppletCaptureLayer(framebuffers);

@ -196,7 +196,9 @@ template <typename Func>
void RasterizerVulkan::PrepareDraw(bool is_indexed, Func&& draw_func) {
MICROPROFILE_SCOPE(Vulkan_Drawing);
SCOPE_EXIT({ gpu.TickWork(); });
SCOPE_EXIT {
gpu.TickWork();
};
FlushWork();
gpu_memory->FlushCaching();
@ -288,7 +290,9 @@ void RasterizerVulkan::DrawIndirect() {
void RasterizerVulkan::DrawTexture() {
MICROPROFILE_SCOPE(Vulkan_Drawing);
SCOPE_EXIT({ gpu.TickWork(); });
SCOPE_EXIT {
gpu.TickWork();
};
FlushWork();
query_cache.NotifySegment(true);

@ -116,7 +116,9 @@ void NsightAftermathTracker::OnGpuCrashDumpCallback(const void* gpu_crash_dump,
LOG_ERROR(Render_Vulkan, "Failed to create decoder");
return;
}
SCOPE_EXIT({ GFSDK_Aftermath_GpuCrashDump_DestroyDecoder(decoder); });
SCOPE_EXIT {
GFSDK_Aftermath_GpuCrashDump_DestroyDecoder(decoder);
};
u32 json_size = 0;
if (!GFSDK_Aftermath_SUCCEED(GFSDK_Aftermath_GpuCrashDump_GenerateJSON(

@ -646,10 +646,10 @@ void GMainWindow::AmiiboSettingsShowDialog(const Core::Frontend::CabinetParamete
std::shared_ptr<Service::NFC::NfcDevice> nfp_device) {
cabinet_applet =
new QtAmiiboSettingsDialog(this, parameters, input_subsystem.get(), nfp_device);
SCOPE_EXIT({
SCOPE_EXIT {
cabinet_applet->deleteLater();
cabinet_applet = nullptr;
});
};
cabinet_applet->setWindowFlags(Qt::Dialog | Qt::CustomizeWindowHint | Qt::WindowStaysOnTopHint |
Qt::WindowTitleHint | Qt::WindowSystemMenuHint);
@ -673,10 +673,10 @@ void GMainWindow::ControllerSelectorReconfigureControllers(
const Core::Frontend::ControllerParameters& parameters) {
controller_applet =
new QtControllerSelectorDialog(this, parameters, input_subsystem.get(), *system);
SCOPE_EXIT({
SCOPE_EXIT {
controller_applet->deleteLater();
controller_applet = nullptr;
});
};
controller_applet->setWindowFlags(Qt::Dialog | Qt::CustomizeWindowHint |
Qt::WindowStaysOnTopHint | Qt::WindowTitleHint |
@ -703,10 +703,10 @@ void GMainWindow::ControllerSelectorRequestExit() {
void GMainWindow::ProfileSelectorSelectProfile(
const Core::Frontend::ProfileSelectParameters& parameters) {
profile_select_applet = new QtProfileSelectionDialog(*system, this, parameters);
SCOPE_EXIT({
SCOPE_EXIT {
profile_select_applet->deleteLater();
profile_select_applet = nullptr;
});
};
profile_select_applet->setWindowFlags(Qt::Dialog | Qt::CustomizeWindowHint |
Qt::WindowStaysOnTopHint | Qt::WindowTitleHint |
@ -2885,17 +2885,19 @@ bool GMainWindow::CreateShortcutLink(const std::filesystem::path& shortcut_path,
LOG_ERROR(Frontend, "CoInitialize failed");
return false;
}
SCOPE_EXIT({ CoUninitialize(); });
SCOPE_EXIT {
CoUninitialize();
};
IShellLinkW* ps1 = nullptr;
IPersistFile* persist_file = nullptr;
SCOPE_EXIT({
SCOPE_EXIT {
if (persist_file != nullptr) {
persist_file->Release();
}
if (ps1 != nullptr) {
ps1->Release();
}
});
};
HRESULT hres = CoCreateInstance(CLSID_ShellLink, nullptr, CLSCTX_INPROC_SERVER, IID_IShellLinkW,
reinterpret_cast<void**>(&ps1));
if (FAILED(hres)) {
@ -3520,10 +3522,10 @@ void GMainWindow::OnSaveConfig() {
void GMainWindow::ErrorDisplayDisplayError(QString error_code, QString error_text) {
error_applet = new OverlayDialog(render_window, *system, error_code, error_text, QString{},
tr("OK"), Qt::AlignLeft | Qt::AlignVCenter);
SCOPE_EXIT({
SCOPE_EXIT {
error_applet->deleteLater();
error_applet = nullptr;
});
};
error_applet->exec();
emit ErrorDisplayFinished();
@ -5192,7 +5194,9 @@ int main(int argc, char* argv[]) {
Common::DetachedTasks detached_tasks;
MicroProfileOnThreadCreate("Frontend");
SCOPE_EXIT({ MicroProfileShutdown(); });
SCOPE_EXIT {
MicroProfileShutdown();
};
Common::ConfigureNvidiaEnvironmentFlags();

@ -327,7 +327,9 @@ int main(int argc, char** argv) {
#endif
MicroProfileOnThreadCreate("EmuThread");
SCOPE_EXIT({ MicroProfileShutdown(); });
SCOPE_EXIT {
MicroProfileShutdown();
};
Common::ConfigureNvidiaEnvironmentFlags();