Merge pull request #4996 from bunnei/use-4jits

Kernel: Refactor to use 4-instances of Dynarmic & various cleanups and improvements
merge-requests/60/head
bunnei 2020-12-03 15:32:45 +07:00 committed by GitHub
commit 69aaad9b96
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 214 additions and 271 deletions

@ -5,18 +5,20 @@
#include "common/assert.h"
#include "common/fiber.h"
#include "common/spin_lock.h"
#include "common/virtual_buffer.h"
#if defined(_WIN32) || defined(WIN32)
#include <windows.h>
#else
#include <boost/context/detail/fcontext.hpp>
#endif
namespace Common {
constexpr std::size_t default_stack_size = 256 * 1024; // 256kb
constexpr std::size_t default_stack_size = 256 * 1024;
struct Fiber::FiberImpl {
FiberImpl() : stack{default_stack_size}, rewind_stack{default_stack_size} {}
VirtualBuffer<u8> stack;
VirtualBuffer<u8> rewind_stack;
SpinLock guard{};
std::function<void(void*)> entry_point;
std::function<void(void*)> rewind_point;
@ -26,17 +28,10 @@ struct Fiber::FiberImpl {
bool is_thread_fiber{};
bool released{};
#if defined(_WIN32) || defined(WIN32)
LPVOID handle = nullptr;
LPVOID rewind_handle = nullptr;
#else
alignas(64) std::array<u8, default_stack_size> stack;
alignas(64) std::array<u8, default_stack_size> rewind_stack;
u8* stack_limit;
u8* rewind_stack_limit;
boost::context::detail::fcontext_t context;
boost::context::detail::fcontext_t rewind_context;
#endif
u8* stack_limit{};
u8* rewind_stack_limit{};
boost::context::detail::fcontext_t context{};
boost::context::detail::fcontext_t rewind_context{};
};
void Fiber::SetStartParameter(void* new_parameter) {
@ -48,95 +43,6 @@ void Fiber::SetRewindPoint(std::function<void(void*)>&& rewind_func, void* rewin
impl->rewind_parameter = rewind_param;
}
#if defined(_WIN32) || defined(WIN32)
void Fiber::Start() {
ASSERT(impl->previous_fiber != nullptr);
impl->previous_fiber->impl->guard.unlock();
impl->previous_fiber.reset();
impl->entry_point(impl->start_parameter);
UNREACHABLE();
}
void Fiber::OnRewind() {
ASSERT(impl->handle != nullptr);
DeleteFiber(impl->handle);
impl->handle = impl->rewind_handle;
impl->rewind_handle = nullptr;
impl->rewind_point(impl->rewind_parameter);
UNREACHABLE();
}
void Fiber::FiberStartFunc(void* fiber_parameter) {
auto* fiber = static_cast<Fiber*>(fiber_parameter);
fiber->Start();
}
void Fiber::RewindStartFunc(void* fiber_parameter) {
auto* fiber = static_cast<Fiber*>(fiber_parameter);
fiber->OnRewind();
}
Fiber::Fiber(std::function<void(void*)>&& entry_point_func, void* start_parameter)
: impl{std::make_unique<FiberImpl>()} {
impl->entry_point = std::move(entry_point_func);
impl->start_parameter = start_parameter;
impl->handle = CreateFiber(default_stack_size, &FiberStartFunc, this);
}
Fiber::Fiber() : impl{std::make_unique<FiberImpl>()} {}
Fiber::~Fiber() {
if (impl->released) {
return;
}
// Make sure the Fiber is not being used
const bool locked = impl->guard.try_lock();
ASSERT_MSG(locked, "Destroying a fiber that's still running");
if (locked) {
impl->guard.unlock();
}
DeleteFiber(impl->handle);
}
void Fiber::Exit() {
ASSERT_MSG(impl->is_thread_fiber, "Exitting non main thread fiber");
if (!impl->is_thread_fiber) {
return;
}
ConvertFiberToThread();
impl->guard.unlock();
impl->released = true;
}
void Fiber::Rewind() {
ASSERT(impl->rewind_point);
ASSERT(impl->rewind_handle == nullptr);
impl->rewind_handle = CreateFiber(default_stack_size, &RewindStartFunc, this);
SwitchToFiber(impl->rewind_handle);
}
void Fiber::YieldTo(std::shared_ptr<Fiber> from, std::shared_ptr<Fiber> to) {
ASSERT_MSG(from != nullptr, "Yielding fiber is null!");
ASSERT_MSG(to != nullptr, "Next fiber is null!");
to->impl->guard.lock();
to->impl->previous_fiber = from;
SwitchToFiber(to->impl->handle);
ASSERT(from->impl->previous_fiber != nullptr);
from->impl->previous_fiber->impl->guard.unlock();
from->impl->previous_fiber.reset();
}
std::shared_ptr<Fiber> Fiber::ThreadToFiber() {
std::shared_ptr<Fiber> fiber = std::shared_ptr<Fiber>{new Fiber()};
fiber->impl->guard.lock();
fiber->impl->handle = ConvertThreadToFiber(nullptr);
fiber->impl->is_thread_fiber = true;
return fiber;
}
#else
void Fiber::Start(boost::context::detail::transfer_t& transfer) {
ASSERT(impl->previous_fiber != nullptr);
impl->previous_fiber->impl->context = transfer.fctx;
@ -229,5 +135,4 @@ std::shared_ptr<Fiber> Fiber::ThreadToFiber() {
return fiber;
}
#endif
} // namespace Common

@ -7,11 +7,9 @@
#include <functional>
#include <memory>
#if !defined(_WIN32) && !defined(WIN32)
namespace boost::context::detail {
struct transfer_t;
}
#endif
namespace Common {
@ -59,17 +57,10 @@ public:
private:
Fiber();
#if defined(_WIN32) || defined(WIN32)
void OnRewind();
void Start();
static void FiberStartFunc(void* fiber_parameter);
static void RewindStartFunc(void* fiber_parameter);
#else
void OnRewind(boost::context::detail::transfer_t& transfer);
void Start(boost::context::detail::transfer_t& transfer);
static void FiberStartFunc(boost::context::detail::transfer_t transfer);
static void RewindStartFunc(boost::context::detail::transfer_t transfer);
#endif
struct FiberImpl;
std::unique_ptr<FiberImpl> impl;

@ -64,15 +64,25 @@ public:
/// Step CPU by one instruction
virtual void Step() = 0;
/// Exits execution from a callback, the callback must rewind the stack
virtual void ExceptionalExit() = 0;
/// Clear all instruction cache
virtual void ClearInstructionCache() = 0;
/// Notifies CPU emulation that the current page table has changed.
///
/// @param new_page_table The new page table.
/// @param new_address_space_size_in_bits The new usable size of the address space in bits.
/// This can be either 32, 36, or 39 on official software.
///
/**
* Clear instruction cache range
* @param addr Start address of the cache range to clear
* @param size Size of the cache range to clear, starting at addr
*/
virtual void InvalidateCacheRange(VAddr addr, std::size_t size) = 0;
/**
* Notifies CPU emulation that the current page table has changed.
* @param new_page_table The new page table.
* @param new_address_space_size_in_bits The new usable size of the address space in bits.
* This can be either 32, 36, or 39 on official software.
*/
virtual void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) = 0;

@ -189,6 +189,10 @@ void ARM_Dynarmic_32::Run() {
jit->Run();
}
void ARM_Dynarmic_32::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_32::Step() {
jit->Step();
}
@ -282,6 +286,13 @@ void ARM_Dynarmic_32::ClearInstructionCache() {
jit->ClearCache();
}
void ARM_Dynarmic_32::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(static_cast<u32>(addr), size);
}
void ARM_Dynarmic_32::ClearExclusiveState() {
jit->ClearExclusiveState();
}

@ -42,6 +42,7 @@ public:
u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override;
void Run() override;
void ExceptionalExit() override;
void Step() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
@ -58,6 +59,7 @@ public:
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;

@ -220,6 +220,10 @@ void ARM_Dynarmic_64::Run() {
jit->Run();
}
void ARM_Dynarmic_64::ExceptionalExit() {
jit->ExceptionalExit();
}
void ARM_Dynarmic_64::Step() {
cb->InterpreterFallback(jit->GetPC(), 1);
}
@ -318,6 +322,13 @@ void ARM_Dynarmic_64::ClearInstructionCache() {
jit->ClearCache();
}
void ARM_Dynarmic_64::InvalidateCacheRange(VAddr addr, std::size_t size) {
if (!jit) {
return;
}
jit->InvalidateCacheRange(addr, size);
}
void ARM_Dynarmic_64::ClearExclusiveState() {
jit->ClearExclusiveState();
}

@ -40,6 +40,7 @@ public:
void SetPSTATE(u32 pstate) override;
void Run() override;
void Step() override;
void ExceptionalExit() override;
VAddr GetTlsAddress() const override;
void SetTlsAddress(VAddr address) override;
void SetTPIDR_EL0(u64 value) override;
@ -55,6 +56,7 @@ public:
void ClearExclusiveState() override;
void ClearInstructionCache() override;
void InvalidateCacheRange(VAddr addr, std::size_t size) override;
void PageTableChanged(Common::PageTable& new_page_table,
std::size_t new_address_space_size_in_bits) override;

@ -245,6 +245,7 @@ struct System::Impl {
}
AddGlueRegistrationForProcess(*app_loader, *main_process);
kernel.MakeCurrentProcess(main_process.get());
kernel.InitializeCores();
// Initialize cheat engine
if (cheat_engine) {
@ -456,6 +457,10 @@ void System::InvalidateCpuInstructionCaches() {
impl->kernel.InvalidateAllInstructionCaches();
}
void System::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) {
impl->kernel.InvalidateCpuInstructionCacheRange(addr, size);
}
void System::Shutdown() {
impl->Shutdown();
}
@ -490,11 +495,11 @@ const TelemetrySession& System::TelemetrySession() const {
}
ARM_Interface& System::CurrentArmInterface() {
return impl->kernel.CurrentScheduler().GetCurrentThread()->ArmInterface();
return impl->kernel.CurrentPhysicalCore().ArmInterface();
}
const ARM_Interface& System::CurrentArmInterface() const {
return impl->kernel.CurrentScheduler().GetCurrentThread()->ArmInterface();
return impl->kernel.CurrentPhysicalCore().ArmInterface();
}
std::size_t System::CurrentCoreIndex() const {
@ -554,15 +559,11 @@ const Kernel::Process* System::CurrentProcess() const {
}
ARM_Interface& System::ArmInterface(std::size_t core_index) {
auto* thread = impl->kernel.Scheduler(core_index).GetCurrentThread();
ASSERT(thread && !thread->IsHLEThread());
return thread->ArmInterface();
return impl->kernel.PhysicalCore(core_index).ArmInterface();
}
const ARM_Interface& System::ArmInterface(std::size_t core_index) const {
auto* thread = impl->kernel.Scheduler(core_index).GetCurrentThread();
ASSERT(thread && !thread->IsHLEThread());
return thread->ArmInterface();
return impl->kernel.PhysicalCore(core_index).ArmInterface();
}
ExclusiveMonitor& System::Monitor() {

@ -166,6 +166,8 @@ public:
*/
void InvalidateCpuInstructionCaches();
void InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size);
/// Shutdown the emulated system.
void Shutdown();

@ -113,22 +113,23 @@ void CpuManager::MultiCoreRunGuestThread() {
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto& host_context = thread->GetHostContext();
host_context->SetRewindPoint(GuestRewindFunction, this);
MultiCoreRunGuestLoop();
}
void CpuManager::MultiCoreRunGuestLoop() {
auto& kernel = system.Kernel();
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
while (true) {
auto* physical_core = &kernel.CurrentPhysicalCore();
auto& arm_interface = thread->ArmInterface();
system.EnterDynarmicProfile();
while (!physical_core->IsInterrupted()) {
arm_interface.Run();
physical_core->Run();
physical_core = &kernel.CurrentPhysicalCore();
}
system.ExitDynarmicProfile();
arm_interface.ClearExclusiveState();
auto& scheduler = kernel.CurrentScheduler();
scheduler.TryDoContextSwitch();
}
@ -209,6 +210,9 @@ void CpuManager::SingleCoreRunGuestThread() {
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto& host_context = thread->GetHostContext();
host_context->SetRewindPoint(GuestRewindFunction, this);
SingleCoreRunGuestLoop();
}
@ -217,17 +221,15 @@ void CpuManager::SingleCoreRunGuestLoop() {
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
while (true) {
auto* physical_core = &kernel.CurrentPhysicalCore();
auto& arm_interface = thread->ArmInterface();
system.EnterDynarmicProfile();
if (!physical_core->IsInterrupted()) {
arm_interface.Run();
physical_core->Run();
physical_core = &kernel.CurrentPhysicalCore();
}
system.ExitDynarmicProfile();
thread->SetPhantomMode(true);
system.CoreTiming().Advance();
thread->SetPhantomMode(false);
arm_interface.ClearExclusiveState();
PreemptSingleCore();
auto& scheduler = kernel.Scheduler(current_core);
scheduler.TryDoContextSwitch();

@ -275,12 +275,6 @@ ResultCode AddressArbiter::WaitForAddressIfEqual(VAddr address, s32 value, s64 t
return current_thread->GetSignalingResult();
}
void AddressArbiter::HandleWakeupThread(std::shared_ptr<Thread> thread) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitArb);
RemoveThread(thread);
thread->SetArbiterWaitAddress(0);
}
void AddressArbiter::InsertThread(std::shared_ptr<Thread> thread) {
const VAddr arb_addr = thread->GetArbiterWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = arb_threads[arb_addr];

@ -50,9 +50,6 @@ public:
/// Waits on an address with a particular arbitration type.
ResultCode WaitForAddress(VAddr address, ArbitrationType type, s32 value, s64 timeout_ns);
/// Removes a thread from the container and resets its address arbiter adress to 0
void HandleWakeupThread(std::shared_ptr<Thread> thread);
private:
/// Signals an address being waited on.
ResultCode SignalToAddressOnly(VAddr address, s32 num_to_wake);

@ -68,6 +68,12 @@ struct KernelCore::Impl {
InitializeSuspendThreads();
}
void InitializeCores() {
for (auto& core : cores) {
core.Initialize(current_process->Is64BitProcess());
}
}
void Shutdown() {
next_object_id = 0;
next_kernel_process_id = Process::InitialKIPIDMin;
@ -116,7 +122,7 @@ struct KernelCore::Impl {
Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
schedulers[i] = std::make_unique<Kernel::Scheduler>(system, i);
cores.emplace_back(system, i, *schedulers[i], interrupts[i]);
cores.emplace_back(i, system, *schedulers[i], interrupts);
}
}
@ -181,6 +187,7 @@ struct KernelCore::Impl {
if (process == nullptr) {
return;
}
const u32 core_id = GetCurrentHostThreadID();
if (core_id < Core::Hardware::NUM_CPU_CORES) {
system.Memory().SetCurrentPageTable(*process, core_id);
@ -372,6 +379,10 @@ void KernelCore::Initialize() {
impl->Initialize(*this);
}
void KernelCore::InitializeCores() {
impl->InitializeCores();
}
void KernelCore::Shutdown() {
impl->Shutdown();
}
@ -486,13 +497,18 @@ const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
}
void KernelCore::InvalidateAllInstructionCaches() {
auto& threads = GlobalScheduler().GetThreadList();
for (auto& thread : threads) {
if (!thread->IsHLEThread()) {
auto& arm_interface = thread->ArmInterface();
arm_interface.ClearInstructionCache();
for (auto& physical_core : impl->cores) {
physical_core.ArmInterface().ClearInstructionCache();
}
}
void KernelCore::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) {
for (auto& physical_core : impl->cores) {
if (!physical_core.IsInitialized()) {
continue;
}
physical_core.ArmInterface().InvalidateCacheRange(addr, size);
}
}
void KernelCore::PrepareReschedule(std::size_t id) {

@ -74,6 +74,9 @@ public:
/// Resets the kernel to a clean slate for use.
void Initialize();
/// Initializes the CPU cores.
void InitializeCores();
/// Clears all resources in use by the kernel instance.
void Shutdown();
@ -153,6 +156,8 @@ public:
void InvalidateAllInstructionCaches();
void InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size);
/// Adds a port to the named port table
void AddNamedPort(std::string name, std::shared_ptr<ClientPort> port);

@ -670,6 +670,11 @@ ResultCode PageTable::SetCodeMemoryPermission(VAddr addr, std::size_t size, Memo
return RESULT_SUCCESS;
}
if ((prev_perm & MemoryPermission::Execute) != (perm & MemoryPermission::Execute)) {
// Memory execution state is changing, invalidate CPU cache range
system.InvalidateCpuInstructionCacheRange(addr, size);
}
const std::size_t num_pages{size / PageSize};
const OperationType operation{(perm & MemoryPermission::Execute) != MemoryPermission::None
? OperationType::ChangePermissionsAndRefresh

@ -4,21 +4,43 @@
#include "common/spin_lock.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#include "core/core.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/scheduler.h"
namespace Kernel {
PhysicalCore::PhysicalCore(Core::System& system, std::size_t id, Kernel::Scheduler& scheduler,
Core::CPUInterruptHandler& interrupt_handler)
: interrupt_handler{interrupt_handler},
core_index{id}, scheduler{scheduler}, guard{std::make_unique<Common::SpinLock>()} {}
PhysicalCore::PhysicalCore(std::size_t core_index, Core::System& system,
Kernel::Scheduler& scheduler, Core::CPUInterrupts& interrupts)
: core_index{core_index}, system{system}, scheduler{scheduler},
interrupts{interrupts}, guard{std::make_unique<Common::SpinLock>()} {}
PhysicalCore::~PhysicalCore() = default;
void PhysicalCore::Initialize([[maybe_unused]] bool is_64_bit) {
#ifdef ARCHITECTURE_x86_64
auto& kernel = system.Kernel();
if (is_64_bit) {
arm_interface = std::make_unique<Core::ARM_Dynarmic_64>(
system, interrupts, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), core_index);
} else {
arm_interface = std::make_unique<Core::ARM_Dynarmic_32>(
system, interrupts, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), core_index);
}
#else
#error Platform not supported yet.
#endif
}
void PhysicalCore::Run() {
arm_interface->Run();
}
void PhysicalCore::Idle() {
interrupt_handler.AwaitInterrupt();
interrupts[core_index].AwaitInterrupt();
}
void PhysicalCore::Shutdown() {
@ -26,18 +48,18 @@ void PhysicalCore::Shutdown() {
}
bool PhysicalCore::IsInterrupted() const {
return interrupt_handler.IsInterrupted();
return interrupts[core_index].IsInterrupted();
}
void PhysicalCore::Interrupt() {
guard->lock();
interrupt_handler.SetInterrupt(true);
interrupts[core_index].SetInterrupt(true);
guard->unlock();
}
void PhysicalCore::ClearInterrupt() {
guard->lock();
interrupt_handler.SetInterrupt(false);
interrupts[core_index].SetInterrupt(false);
guard->unlock();
}

@ -4,9 +4,12 @@
#pragma once
#include <array>
#include <cstddef>
#include <memory>
#include "core/arm/arm_interface.h"
namespace Common {
class SpinLock;
}
@ -16,7 +19,6 @@ class Scheduler;
} // namespace Kernel
namespace Core {
class ARM_Interface;
class CPUInterruptHandler;
class ExclusiveMonitor;
class System;
@ -26,8 +28,8 @@ namespace Kernel {
class PhysicalCore {
public:
PhysicalCore(Core::System& system, std::size_t id, Kernel::Scheduler& scheduler,
Core::CPUInterruptHandler& interrupt_handler);
PhysicalCore(std::size_t core_index, Core::System& system, Kernel::Scheduler& scheduler,
Core::CPUInterrupts& interrupts);
~PhysicalCore();
PhysicalCore(const PhysicalCore&) = delete;
@ -36,7 +38,14 @@ public:
PhysicalCore(PhysicalCore&&) = default;
PhysicalCore& operator=(PhysicalCore&&) = default;
/// Initialize the core for the specified parameters.
void Initialize(bool is_64_bit);
/// Execute current jit state
void Run();
void Idle();
/// Interrupt this physical core.
void Interrupt();
@ -49,6 +58,18 @@ public:
// Shutdown this physical core.
void Shutdown();
bool IsInitialized() const {
return arm_interface != nullptr;
}
Core::ARM_Interface& ArmInterface() {
return *arm_interface;
}
const Core::ARM_Interface& ArmInterface() const {
return *arm_interface;
}
bool IsMainCore() const {
return core_index == 0;
}
@ -70,10 +91,12 @@ public:
}
private:
Core::CPUInterruptHandler& interrupt_handler;
std::size_t core_index;
const std::size_t core_index;
Core::System& system;
Kernel::Scheduler& scheduler;
Core::CPUInterrupts& interrupts;
std::unique_ptr<Common::SpinLock> guard;
std::unique_ptr<Core::ARM_Interface> arm_interface;
};
} // namespace Kernel

@ -618,14 +618,16 @@ void Scheduler::OnThreadStart() {
SwitchContextStep2();
}
void Scheduler::Unload() {
Thread* thread = current_thread.get();
void Scheduler::Unload(Thread* thread) {
if (thread) {
thread->SetContinuousOnSVC(false);
thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
thread->SetIsRunning(false);
if (thread->IsContinuousOnSVC() && !thread->IsHLEThread()) {
system.ArmInterface(core_id).ExceptionalExit();
thread->SetContinuousOnSVC(false);
}
if (!thread->IsHLEThread() && !thread->HasExited()) {
Core::ARM_Interface& cpu_core = thread->ArmInterface();
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
@ -636,8 +638,11 @@ void Scheduler::Unload() {
}
}
void Scheduler::Reload() {
Thread* thread = current_thread.get();
void Scheduler::Unload() {
Unload(current_thread.get());
}
void Scheduler::Reload(Thread* thread) {
if (thread) {
ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
"Thread must be runnable.");
@ -652,42 +657,23 @@ void Scheduler::Reload() {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
if (!thread->IsHLEThread()) {
Core::ARM_Interface& cpu_core = thread->ArmInterface();
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(thread->GetTLSAddress());
cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
cpu_core.ChangeProcessorID(this->core_id);
cpu_core.ClearExclusiveState();
}
}
}
void Scheduler::Reload() {
Reload(current_thread.get());
}
void Scheduler::SwitchContextStep2() {
// Load context of new thread
if (selected_thread) {
ASSERT_MSG(selected_thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
"Thread must be runnable.");
// Cancel any outstanding wakeup events for this thread
selected_thread->SetIsRunning(true);
selected_thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
selected_thread->SetWasRunning(false);
auto* const thread_owner_process = current_thread->GetOwnerProcess();
if (thread_owner_process != nullptr) {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
if (!selected_thread->IsHLEThread()) {
Core::ARM_Interface& cpu_core = selected_thread->ArmInterface();
cpu_core.LoadContext(selected_thread->GetContext32());
cpu_core.LoadContext(selected_thread->GetContext64());
cpu_core.SetTlsAddress(selected_thread->GetTLSAddress());
cpu_core.SetTPIDR_EL0(selected_thread->GetTPIDR_EL0());
cpu_core.ChangeProcessorID(this->core_id);
cpu_core.ClearExclusiveState();
}
}
Reload(selected_thread.get());
TryDoContextSwitch();
}
@ -711,23 +697,7 @@ void Scheduler::SwitchContext() {
UpdateLastContextSwitchTime(previous_thread, previous_process);
// Save context for previous thread
if (previous_thread) {
if (new_thread != nullptr && new_thread->IsSuspendThread()) {
previous_thread->SetWasRunning(true);
}
previous_thread->SetContinuousOnSVC(false);
previous_thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
previous_thread->SetIsRunning(false);
if (!previous_thread->IsHLEThread() && !previous_thread->HasExited()) {
Core::ARM_Interface& cpu_core = previous_thread->ArmInterface();
cpu_core.SaveContext(previous_thread->GetContext32());
cpu_core.SaveContext(previous_thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
previous_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
}
previous_thread->context_guard.unlock();
}
Unload(previous_thread);
std::shared_ptr<Common::Fiber>* old_context;
if (previous_thread != nullptr) {

@ -212,8 +212,10 @@ public:
/// The next two are for SingleCore Only.
/// Unload current thread before preempting core.
void Unload(Thread* thread);
void Unload();
/// Reload current thread after core preemption.
void Reload(Thread* thread);
void Reload();
/// Gets the current running thread

@ -2639,6 +2639,9 @@ void Call(Core::System& system, u32 immediate) {
auto& kernel = system.Kernel();
kernel.EnterSVCProfile();
auto* thread = system.CurrentScheduler().GetCurrentThread();
thread->SetContinuousOnSVC(true);
const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate)
: GetSVCInfo32(immediate);
if (info) {
@ -2652,6 +2655,12 @@ void Call(Core::System& system, u32 immediate) {
}
kernel.ExitSVCProfile();
if (!thread->IsContinuousOnSVC()) {
auto* host_context = thread->GetHostContext().get();
host_context->Rewind();
}
system.EnterDynarmicProfile();
}

@ -4,6 +4,7 @@
#pragma once
#include <atomic>
#include <memory>
#include <vector>
@ -56,7 +57,7 @@ public:
void ClearWaitingThreads();
protected:
bool is_signaled{}; // Tells if this sync object is signalled;
std::atomic_bool is_signaled{}; // Tells if this sync object is signaled
private:
/// Threads waiting for this object to become available

@ -12,7 +12,6 @@
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
@ -62,7 +61,6 @@ void Thread::Stop() {
// Mark the TLS slot in the thread's page as free.
owner_process->FreeTLSRegion(tls_address);
}
arm_interface.reset();
has_exited = true;
}
global_handle = 0;
@ -90,10 +88,6 @@ void Thread::ResumeFromWait() {
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Running:
DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
@ -217,22 +211,9 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadTy
thread->tls_address = 0;
}
thread->arm_interface.reset();
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
if ((type_flags & THREADTYPE_HLE) == 0) {
#ifdef ARCHITECTURE_x86_64
if (owner_process && !owner_process->Is64BitProcess()) {
thread->arm_interface = std::make_unique<Core::ARM_Dynarmic_32>(
system, kernel.Interrupts(), kernel.IsMulticore(), kernel.GetExclusiveMonitor(),
processor_id);
} else {
thread->arm_interface = std::make_unique<Core::ARM_Dynarmic_64>(
system, kernel.Interrupts(), kernel.IsMulticore(), kernel.GetExclusiveMonitor(),
processor_id);
}
#else
#error Platform not supported yet.
#endif
ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
static_cast<u32>(entry_point), static_cast<u32>(arg));
ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
@ -268,14 +249,6 @@ VAddr Thread::GetCommandBufferAddress() const {
return GetTLSAddress() + command_header_offset;
}
Core::ARM_Interface& Thread::ArmInterface() {
return *arm_interface;
}
const Core::ARM_Interface& Thread::ArmInterface() const {
return *arm_interface;
}
void Thread::SetStatus(ThreadStatus new_status) {
if (new_status == status) {
return;
@ -283,7 +256,6 @@ void Thread::SetStatus(ThreadStatus new_status) {
switch (new_status) {
case ThreadStatus::Ready:
case ThreadStatus::Running:
SetSchedulingStatus(ThreadSchedStatus::Runnable);
break;
case ThreadStatus::Dormant:

@ -72,7 +72,6 @@ enum ThreadProcessorId : s32 {
};
enum class ThreadStatus {
Running, ///< Currently running
Ready, ///< Ready to run
Paused, ///< Paused by SetThreadActivity or debug
WaitHLEEvent, ///< Waiting for hle event to finish
@ -248,10 +247,6 @@ public:
void SetSynchronizationResults(SynchronizationObject* object, ResultCode result);
Core::ARM_Interface& ArmInterface();
const Core::ARM_Interface& ArmInterface() const;
SynchronizationObject* GetSignalingObject() const {
return signaling_object;
}
@ -586,7 +581,6 @@ private:
Common::SpinLock context_guard{};
ThreadContext32 context_32{};
ThreadContext64 context_64{};
std::unique_ptr<Core::ARM_Interface> arm_interface{};
std::shared_ptr<Common::Fiber> host_context{};
u64 thread_id = 0;

@ -24,11 +24,15 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
return;
}
auto thread = this->system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
if (thread) {
// Thread can be null if process has exited
thread->OnWakeUp();
}
});
}
void TimeManager::ScheduleTimeEvent(Handle& event_handle, Thread* timetask, s64 nanoseconds) {
std::lock_guard lock{mutex};
event_handle = timetask->GetGlobalHandle();
if (nanoseconds > 0) {
ASSERT(timetask);
@ -43,6 +47,7 @@ void TimeManager::ScheduleTimeEvent(Handle& event_handle, Thread* timetask, s64
}
void TimeManager::UnscheduleTimeEvent(Handle event_handle) {
std::lock_guard lock{mutex};
if (event_handle == InvalidHandle) {
return;
}
@ -51,7 +56,7 @@ void TimeManager::UnscheduleTimeEvent(Handle event_handle) {
}
void TimeManager::CancelTimeEvent(Thread* time_task) {
Handle event_handle = time_task->GetGlobalHandle();
const Handle event_handle = time_task->GetGlobalHandle();
UnscheduleTimeEvent(event_handle);
}

@ -5,6 +5,7 @@
#pragma once
#include <memory>
#include <mutex>
#include <unordered_map>
#include "core/hle/kernel/object.h"
@ -42,6 +43,7 @@ private:
Core::System& system;
std::shared_ptr<Core::Timing::EventType> time_manager_event_type;
std::unordered_map<Handle, bool> cancelled_events;
std::mutex mutex;
};
} // namespace Kernel

@ -527,9 +527,6 @@ public:
header.segment_headers[RO_INDEX].memory_size,
header.segment_headers[DATA_INDEX].memory_size, nro_address});
// Invalidate JIT caches for the newly mapped process code
system.InvalidateCpuInstructionCaches();
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(RESULT_SUCCESS);
rb.Push(*map_result);
@ -590,8 +587,6 @@ public:
const auto result{UnmapNro(iter->second)};
system.InvalidateCpuInstructionCaches();
nro.erase(iter);
IPC::ResponseBuilder rb{ctx, 2};

@ -24,7 +24,6 @@
namespace {
constexpr std::array<std::array<Qt::GlobalColor, 2>, 10> WaitTreeColors{{
{Qt::GlobalColor::darkGreen, Qt::GlobalColor::green},
{Qt::GlobalColor::darkGreen, Qt::GlobalColor::green},
{Qt::GlobalColor::darkBlue, Qt::GlobalColor::cyan},
{Qt::GlobalColor::lightGray, Qt::GlobalColor::lightGray},
@ -239,9 +238,6 @@ QString WaitTreeThread::GetText() const {
const auto& thread = static_cast<const Kernel::Thread&>(object);
QString status;
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Running:
status = tr("running");
break;
case Kernel::ThreadStatus::Ready:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
@ -298,34 +294,32 @@ QColor WaitTreeThread::GetColor() const {
const auto& thread = static_cast<const Kernel::Thread&>(object);
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Running:
return QColor(WaitTreeColors[0][color_index]);
case Kernel::ThreadStatus::Ready:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
return QColor(WaitTreeColors[0][color_index]);
} else {
return QColor(WaitTreeColors[1][color_index]);
}
} else {
return QColor(WaitTreeColors[2][color_index]);
}
} else {
return QColor(WaitTreeColors[3][color_index]);
}
case Kernel::ThreadStatus::Paused:
return QColor(WaitTreeColors[4][color_index]);
return QColor(WaitTreeColors[3][color_index]);
case Kernel::ThreadStatus::WaitHLEEvent:
case Kernel::ThreadStatus::WaitIPC:
return QColor(WaitTreeColors[5][color_index]);
return QColor(WaitTreeColors[4][color_index]);
case Kernel::ThreadStatus::WaitSleep:
return QColor(WaitTreeColors[6][color_index]);
return QColor(WaitTreeColors[5][color_index]);
case Kernel::ThreadStatus::WaitSynch:
case Kernel::ThreadStatus::WaitMutex:
case Kernel::ThreadStatus::WaitCondVar:
case Kernel::ThreadStatus::WaitArb:
return QColor(WaitTreeColors[7][color_index]);
return QColor(WaitTreeColors[6][color_index]);
case Kernel::ThreadStatus::Dormant:
return QColor(WaitTreeColors[8][color_index]);
return QColor(WaitTreeColors[7][color_index]);
case Kernel::ThreadStatus::Dead:
return QColor(WaitTreeColors[9][color_index]);
return QColor(WaitTreeColors[8][color_index]);
default:
return WaitTreeItem::GetColor();
}