|
|
@ -40,7 +40,7 @@ GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
|
|
|
|
return gpu_addr;
|
|
|
|
return gpu_addr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) {
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
|
|
|
|
const GPUVAddr gpu_addr{
|
|
|
|
const GPUVAddr gpu_addr{
|
|
|
|
FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)};
|
|
|
|
FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)};
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
|
@ -48,7 +48,7 @@ GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) {
|
|
|
|
return gpu_addr;
|
|
|
|
return gpu_addr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
|
|
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
|
|
|
|
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
|
@ -74,20 +74,20 @@ GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size, u64 alig
|
|
|
|
align = (align + page_mask) & ~page_mask;
|
|
|
|
align = (align + page_mask) & ~page_mask;
|
|
|
|
|
|
|
|
|
|
|
|
// Find the first Free VMA.
|
|
|
|
// Find the first Free VMA.
|
|
|
|
const GPUVAddr base = region_start;
|
|
|
|
const VMAHandle vma_handle{std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
|
|
|
|
const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
|
|
|
|
if (vma.second.type != vma_type) {
|
|
|
|
if (vma.second.type != vma_type)
|
|
|
|
|
|
|
|
return false;
|
|
|
|
return false;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const VAddr vma_end = vma.second.base + vma.second.size;
|
|
|
|
const VAddr vma_end{vma.second.base + vma.second.size};
|
|
|
|
return vma_end > base && vma_end >= base + size;
|
|
|
|
return vma_end > region_start && vma_end >= region_start + size;
|
|
|
|
});
|
|
|
|
})};
|
|
|
|
|
|
|
|
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return std::max(base, vma_handle->second.base);
|
|
|
|
return std::max(region_start, vma_handle->second.base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
|
|
|
|
bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
|
|
|
@ -99,7 +99,7 @@ std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) {
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
VAddr cpu_addr = page_table.backing_addr[addr >> page_bits];
|
|
|
|
VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
|
|
|
|
if (cpu_addr) {
|
|
|
|
if (cpu_addr) {
|
|
|
|
return cpu_addr + (addr & page_mask);
|
|
|
|
return cpu_addr + (addr & page_mask);
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -113,7 +113,7 @@ T MemoryManager::Read(GPUVAddr addr) {
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const u8* page_pointer = page_table.pointers[addr >> page_bits];
|
|
|
|
const u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
if (page_pointer) {
|
|
|
|
if (page_pointer) {
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
T value;
|
|
|
|
T value;
|
|
|
@ -121,8 +121,7 @@ T MemoryManager::Read(GPUVAddr addr) {
|
|
|
|
return value;
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Common::PageType type = page_table.attributes[addr >> page_bits];
|
|
|
|
switch (page_table.attributes[addr >> page_bits]) {
|
|
|
|
switch (type) {
|
|
|
|
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr);
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, addr);
|
|
|
|
return 0;
|
|
|
|
return 0;
|
|
|
@ -141,15 +140,14 @@ void MemoryManager::Write(GPUVAddr addr, T data) {
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
u8* page_pointer = page_table.pointers[addr >> page_bits];
|
|
|
|
u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
if (page_pointer) {
|
|
|
|
if (page_pointer) {
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
|
|
std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T));
|
|
|
|
std::memcpy(&page_pointer[addr & page_mask], &data, sizeof(T));
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Common::PageType type = page_table.attributes[addr >> page_bits];
|
|
|
|
switch (page_table.attributes[addr >> page_bits]) {
|
|
|
|
switch (type) {
|
|
|
|
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
case Common::PageType::Unmapped:
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
|
|
|
|
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
|
|
|
|
static_cast<u32>(data), addr);
|
|
|
|
static_cast<u32>(data), addr);
|
|
|
@ -176,7 +174,7 @@ u8* MemoryManager::GetPointer(GPUVAddr addr) {
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
u8* page_pointer = page_table.pointers[addr >> page_bits];
|
|
|
|
u8* page_pointer{page_table.pointers[addr >> page_bits]};
|
|
|
|
if (page_pointer) {
|
|
|
|
if (page_pointer) {
|
|
|
|
return page_pointer + (addr & page_mask);
|
|
|
|
return page_pointer + (addr & page_mask);
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -201,7 +199,7 @@ void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageTy
|
|
|
|
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
|
|
|
|
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
|
|
|
|
(base + size) * page_size);
|
|
|
|
(base + size) * page_size);
|
|
|
|
|
|
|
|
|
|
|
|
VAddr end = base + size;
|
|
|
|
const VAddr end{base + size};
|
|
|
|
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
|
|
|
|
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
|
|
|
|
base + page_table.pointers.size());
|
|
|
|
base + page_table.pointers.size());
|
|
|
|
|
|
|
|
|
|
|
@ -257,56 +255,58 @@ MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
|
|
|
|
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vma.type = VirtualMemoryArea::Type::Allocated;
|
|
|
|
|
|
|
|
vma.backing_addr = 0;
|
|
|
|
|
|
|
|
vma.backing_memory = {};
|
|
|
|
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
|
|
|
|
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
|
|
|
|
u64 size) {
|
|
|
|
u64 size) {
|
|
|
|
|
|
|
|
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
VMAIter vma_handle = CarveVMA(target, size);
|
|
|
|
VMAIter vma_handle{CarveVMA(target, size)};
|
|
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
ASSERT(final_vma.size == size);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
final_vma.type = VirtualMemoryArea::Type::Allocated;
|
|
|
|
ASSERT(vma.size == size);
|
|
|
|
final_vma.offset = offset;
|
|
|
|
|
|
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
vma.offset = offset;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return Allocate(vma_handle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
|
|
|
|
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
|
|
|
|
VAddr backing_addr) {
|
|
|
|
VAddr backing_addr) {
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
|
|
VMAIter vma_handle = CarveVMA(target, size);
|
|
|
|
VMAIter vma_handle{CarveVMA(target, size)};
|
|
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
|
|
VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
ASSERT(final_vma.size == size);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
final_vma.type = VirtualMemoryArea::Type::Mapped;
|
|
|
|
ASSERT(vma.size == size);
|
|
|
|
final_vma.backing_memory = memory;
|
|
|
|
|
|
|
|
final_vma.backing_addr = backing_addr;
|
|
|
|
|
|
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::Unmap(VMAIter vma_handle) {
|
|
|
|
|
|
|
|
VirtualMemoryArea& vma = vma_handle->second;
|
|
|
|
|
|
|
|
vma.type = VirtualMemoryArea::Type::Allocated;
|
|
|
|
|
|
|
|
vma.offset = 0;
|
|
|
|
|
|
|
|
vma.backing_memory = nullptr;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vma.type = VirtualMemoryArea::Type::Mapped;
|
|
|
|
|
|
|
|
vma.backing_memory = memory;
|
|
|
|
|
|
|
|
vma.backing_addr = backing_addr;
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
|
|
|
|
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
|
|
|
|
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
|
|
|
|
VMAIter vma = CarveVMARange(target, size);
|
|
|
|
VMAIter vma{CarveVMARange(target, size)};
|
|
|
|
const VAddr target_end = target + size;
|
|
|
|
const VAddr target_end{target + size};
|
|
|
|
|
|
|
|
const VMAIter end{vma_map.end()};
|
|
|
|
|
|
|
|
|
|
|
|
const VMAIter end = vma_map.end();
|
|
|
|
|
|
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
|
|
// merged during this process, causing invalidation of the iterators.
|
|
|
|
// merged during this process, causing invalidation of the iterators.
|
|
|
|
while (vma != end && vma->second.base < target_end) {
|
|
|
|
while (vma != end && vma->second.base < target_end) {
|
|
|
|
vma = std::next(Unmap(vma));
|
|
|
|
// Unmapped ranges return to allocated state and can be reused
|
|
|
|
|
|
|
|
// This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
|
|
|
|
|
|
|
|
vma = std::next(Allocate(vma));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT(FindVMA(target)->second.size >= size);
|
|
|
|
ASSERT(FindVMA(target)->second.size >= size);
|
|
|
@ -319,25 +319,26 @@ MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
|
|
|
|
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
|
|
size);
|
|
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
|
|
|
|
ASSERT_MSG((base & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
|
|
|
|
|
|
|
|
base);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VMAIter vma_handle = StripIterConstness(FindVMA(base));
|
|
|
|
VMAIter vma_handle{StripIterConstness(FindVMA(base))};
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
|
|
// Target address is outside the range managed by the kernel
|
|
|
|
// Target address is outside the managed range
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const VirtualMemoryArea& vma = vma_handle->second;
|
|
|
|
const VirtualMemoryArea& vma{vma_handle->second};
|
|
|
|
if (vma.type == VirtualMemoryArea::Type::Mapped) {
|
|
|
|
if (vma.type == VirtualMemoryArea::Type::Mapped) {
|
|
|
|
// Region is already allocated
|
|
|
|
// Region is already allocated
|
|
|
|
return {};
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const VAddr start_in_vma = base - vma.base;
|
|
|
|
const VAddr start_in_vma{base - vma.base};
|
|
|
|
const VAddr end_in_vma = start_in_vma + size;
|
|
|
|
const VAddr end_in_vma{start_in_vma + size};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
|
|
|
|
|
|
|
|
vma.size, end_in_vma);
|
|
|
|
|
|
|
|
|
|
|
|
if (end_in_vma < vma.size) {
|
|
|
|
if (end_in_vma < vma.size) {
|
|
|
|
// Split VMA at the end of the allocated region
|
|
|
|
// Split VMA at the end of the allocated region
|
|
|
@ -352,17 +353,15 @@ MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
|
|
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
|
|
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
|
|
size);
|
|
|
|
ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
|
|
|
|
ASSERT_MSG((target & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
|
|
|
|
|
|
|
|
target);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const VAddr target_end = target + size;
|
|
|
|
const VAddr target_end{target + size};
|
|
|
|
ASSERT(target_end >= target);
|
|
|
|
ASSERT(target_end >= target);
|
|
|
|
ASSERT(size > 0);
|
|
|
|
ASSERT(size > 0);
|
|
|
|
|
|
|
|
|
|
|
|
VMAIter begin_vma = StripIterConstness(FindVMA(target));
|
|
|
|
VMAIter begin_vma{StripIterConstness(FindVMA(target))};
|
|
|
|
const VMAIter i_end = vma_map.lower_bound(target_end);
|
|
|
|
const VMAIter i_end{vma_map.lower_bound(target_end)};
|
|
|
|
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
|
|
|
|
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
|
|
|
|
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
|
|
|
|
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
|
|
|
|
})) {
|
|
|
|
})) {
|
|
|
@ -373,7 +372,7 @@ MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
|
|
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
|
|
|
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
|
|
|
|
VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
|
|
|
|
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
|
|
|
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
|
|
|
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
|
|
|
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -382,8 +381,8 @@ MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
|
|
|
|
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
|
|
|
|
VirtualMemoryArea& old_vma = vma_handle->second;
|
|
|
|
VirtualMemoryArea& old_vma{vma_handle->second};
|
|
|
|
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
|
|
|
|
VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
|
|
|
|
|
|
|
|
|
|
|
|
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
|
|
|
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
|
|
|
// a bug. This restriction might be removed later.
|
|
|
|
// a bug. This restriction might be removed later.
|
|
|
@ -411,14 +410,14 @@ MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
|
|
|
|
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
|
|
|
|
const VMAIter next_vma = std::next(iter);
|
|
|
|
const VMAIter next_vma{std::next(iter)};
|
|
|
|
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
|
|
|
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
|
|
|
iter->second.size += next_vma->second.size;
|
|
|
|
iter->second.size += next_vma->second.size;
|
|
|
|
vma_map.erase(next_vma);
|
|
|
|
vma_map.erase(next_vma);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (iter != vma_map.begin()) {
|
|
|
|
if (iter != vma_map.begin()) {
|
|
|
|
VMAIter prev_vma = std::prev(iter);
|
|
|
|
VMAIter prev_vma{std::prev(iter)};
|
|
|
|
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
|
|
|
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
|
|
|
prev_vma->second.size += iter->second.size;
|
|
|
|
prev_vma->second.size += iter->second.size;
|
|
|
|
vma_map.erase(iter);
|
|
|
|
vma_map.erase(iter);
|
|
|
|