|
|
|
@ -29,22 +29,22 @@
|
|
|
|
|
namespace Memory {
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
u8 *GetPointer(const u32 address)
|
|
|
|
|
u8 *GetPointer(const u32 addr)
|
|
|
|
|
{
|
|
|
|
|
if ((address & 0x3E000000) == 0x08000000) {
|
|
|
|
|
return g_fcram + (address & MEM_FCRAM_MASK);
|
|
|
|
|
if ((addr & 0x3E000000) == 0x08000000) {
|
|
|
|
|
return g_fcram + (addr & MEM_FCRAM_MASK);
|
|
|
|
|
}
|
|
|
|
|
else if ((address & 0x3F800000) == 0x04000000) {
|
|
|
|
|
return m_pVRAM + (address & VRAM_MASK);
|
|
|
|
|
else if ((addr & 0x3F800000) == 0x04000000) {
|
|
|
|
|
return m_pVRAM + (addr & VRAM_MASK);
|
|
|
|
|
}
|
|
|
|
|
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
|
|
|
|
|
return m_pRAM + (address & g_MemoryMask);
|
|
|
|
|
else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) {
|
|
|
|
|
return m_pRAM + (addr & g_MemoryMask);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
static bool reported = false;
|
|
|
|
|
if (!reported) {
|
|
|
|
|
Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
reported = true;
|
|
|
|
|
}
|
|
|
|
|
if (!g_Config.bIgnoreBadMemAccess) {
|
|
|
|
@ -56,102 +56,121 @@ u8 *GetPointer(const u32 address)
|
|
|
|
|
}*/
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
inline void ReadFromHardware(T &var, const u32 address)
|
|
|
|
|
inline void ReadFromHardware(T &var, const u32 addr)
|
|
|
|
|
{
|
|
|
|
|
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
|
|
|
|
|
// TODO: Make sure this represents the mirrors in a correct way.
|
|
|
|
|
|
|
|
|
|
// Could just do a base-relative read, too.... TODO
|
|
|
|
|
|
|
|
|
|
if ((address & 0x3E000000) == 0x08000000) {
|
|
|
|
|
var = *((const T*)&g_fcram[address & MEM_FCRAM_MASK]);
|
|
|
|
|
if ((addr & 0x3E000000) == 0x08000000) {
|
|
|
|
|
var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]);
|
|
|
|
|
}
|
|
|
|
|
/*else if ((address & 0x3F800000) == 0x04000000) {
|
|
|
|
|
var = *((const T*)&m_pVRAM[address & VRAM_MASK]);
|
|
|
|
|
/*else if ((addr & 0x3F800000) == 0x04000000) {
|
|
|
|
|
var = *((const T*)&m_pVRAM[addr & VRAM_MASK]);
|
|
|
|
|
}*/
|
|
|
|
|
else {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "unknown hardware read");
|
|
|
|
|
// WARN_LOG(MEMMAP, "ReadFromHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
// WARN_LOG(MEMMAP, "ReadFromHardware: Invalid addr %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
inline void WriteToHardware(u32 address, const T data)
|
|
|
|
|
{
|
|
|
|
|
// Could just do a base-relative write, too.... TODO
|
|
|
|
|
|
|
|
|
|
if ((address & 0x3E000000) == 0x08000000) {
|
|
|
|
|
*(T*)&g_fcram[address & MEM_FCRAM_MASK] = data;
|
|
|
|
|
}
|
|
|
|
|
/*else if ((address & 0x3F800000) == 0x04000000) {
|
|
|
|
|
*(T*)&m_pVRAM[address & VRAM_MASK] = data;
|
|
|
|
|
}*/
|
|
|
|
|
else {
|
|
|
|
|
inline void WriteToHardware(u32 addr, const T data) {
|
|
|
|
|
NOTICE_LOG(MEMMAP, "Test1 %08X", addr);
|
|
|
|
|
// ExeFS:/.code is loaded here:
|
|
|
|
|
if ((addr & 0xFFF00000) == 0x00100000) {
|
|
|
|
|
// TODO(ShizZy): This is dumb... handle correctly. From 3DBrew:
|
|
|
|
|
// http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions
|
|
|
|
|
// The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when
|
|
|
|
|
// the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only
|
|
|
|
|
// applies when this flag is clear. Executables are usually loaded to 0x14000000 when the
|
|
|
|
|
// exheader "special memory" flag is set, however this address can be arbitrary.
|
|
|
|
|
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
|
|
|
|
|
NOTICE_LOG(MEMMAP, "Test2");
|
|
|
|
|
// Heap mapped by ControlMemory:
|
|
|
|
|
} else if ((addr & 0x3E000000) == 0x08000000) {
|
|
|
|
|
// TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP
|
|
|
|
|
// heap size... the following is writing to FCRAM + 0, which is actually supposed to be the
|
|
|
|
|
// application's GSP heap
|
|
|
|
|
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
|
|
|
|
|
} else if ((addr & 0xFF000000) == 0x14000000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
|
|
|
|
|
} else if ((addr & 0xFFF00000) == 0x1EC00000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
|
|
|
|
|
} else if ((addr & 0xFF000000) == 0x1F000000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
|
|
|
|
|
} else if ((addr & 0xFFF00000) == 0x1FF00000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
|
|
|
|
|
} else if ((addr & 0xFFFF0000) == 0x1FF80000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
|
|
|
|
|
} else if ((addr & 0xFFFFF000) == 0x1FF81000) {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to shared page");
|
|
|
|
|
} else {
|
|
|
|
|
_assert_msg_(MEMMAP, false, "unknown hardware write");
|
|
|
|
|
// WARN_LOG(MEMMAP, "WriteToHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool IsValidAddress(const u32 address) {
|
|
|
|
|
if ((address & 0x3E000000) == 0x08000000) {
|
|
|
|
|
bool IsValidAddress(const u32 addr) {
|
|
|
|
|
if ((addr & 0x3E000000) == 0x08000000) {
|
|
|
|
|
return true;
|
|
|
|
|
} else if ((address & 0x3F800000) == 0x04000000) {
|
|
|
|
|
} else if ((addr & 0x3F800000) == 0x04000000) {
|
|
|
|
|
return true;
|
|
|
|
|
} else if ((address & 0xBFFF0000) == 0x00010000) {
|
|
|
|
|
} else if ((addr & 0xBFFF0000) == 0x00010000) {
|
|
|
|
|
return true;
|
|
|
|
|
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) {
|
|
|
|
|
} else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) {
|
|
|
|
|
return true;
|
|
|
|
|
} else {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8 Read_U8(const u32 _Address) {
|
|
|
|
|
u8 Read8(const u32 addr) {
|
|
|
|
|
u8 _var = 0;
|
|
|
|
|
ReadFromHardware<u8>(_var, _Address);
|
|
|
|
|
ReadFromHardware<u8>(_var, addr);
|
|
|
|
|
return (u8)_var;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u16 Read_U16(const u32 _Address) {
|
|
|
|
|
u16 Read16(const u32 addr) {
|
|
|
|
|
u16_le _var = 0;
|
|
|
|
|
ReadFromHardware<u16_le>(_var, _Address);
|
|
|
|
|
ReadFromHardware<u16_le>(_var, addr);
|
|
|
|
|
return (u16)_var;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 Read_U32(const u32 _Address) {
|
|
|
|
|
u32 Read32(const u32 addr) {
|
|
|
|
|
u32_le _var = 0;
|
|
|
|
|
ReadFromHardware<u32_le>(_var, _Address);
|
|
|
|
|
ReadFromHardware<u32_le>(_var, addr);
|
|
|
|
|
return _var;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u64 Read_U64(const u32 _Address) {
|
|
|
|
|
u64 Read64(const u32 addr) {
|
|
|
|
|
u64_le _var = 0;
|
|
|
|
|
ReadFromHardware<u64_le>(_var, _Address);
|
|
|
|
|
ReadFromHardware<u64_le>(_var, addr);
|
|
|
|
|
return _var;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 Read_U8_ZX(const u32 _Address) {
|
|
|
|
|
return (u32)Read_U8(_Address);
|
|
|
|
|
u32 Read8_ZX(const u32 addr) {
|
|
|
|
|
return (u32)Read8(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 Read_U16_ZX(const u32 _Address) {
|
|
|
|
|
return (u32)Read_U16(_Address);
|
|
|
|
|
u32 Read16_ZX(const u32 addr) {
|
|
|
|
|
return (u32)Read16(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Write_U8(const u8 _Data, const u32 _Address) {
|
|
|
|
|
WriteToHardware<u8>(_Address, _Data);
|
|
|
|
|
void Write8(const u32 addr, const u8 data) {
|
|
|
|
|
WriteToHardware<u8>(addr, data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Write_U16(const u16 _Data, const u32 _Address) {
|
|
|
|
|
WriteToHardware<u16_le>(_Address, _Data);
|
|
|
|
|
void Write16(const u32 addr, const u16 data) {
|
|
|
|
|
WriteToHardware<u16_le>(addr, data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Write_U32(const u32 _Data, const u32 _Address) {
|
|
|
|
|
WriteToHardware<u32_le>(_Address, _Data);
|
|
|
|
|
void Write32(const u32 addr, const u32 data) {
|
|
|
|
|
WriteToHardware<u32_le>(addr, data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Write_U64(const u64 _Data, const u32 _Address) {
|
|
|
|
|
WriteToHardware<u64_le>(_Address, _Data);
|
|
|
|
|
void Write64(const u32 addr, const u64 data) {
|
|
|
|
|
WriteToHardware<u64_le>(addr, data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|