Accelerate DMA: Use texture cache async downloads to perform the copies

to host.

WIP
merge-requests/60/head
Fernando Sahmkow 2023-04-14 18:07:38 +07:00
parent 3fbee093b2
commit e3a2ca96bd
6 changed files with 123 additions and 53 deletions

@ -1287,8 +1287,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
} }
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height); const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize; static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto [buffer, offset] = const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op); buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -1299,7 +1298,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
if constexpr (IS_IMAGE_UPLOAD) { if constexpr (IS_IMAGE_UPLOAD) {
image->UploadMemory(buffer->Handle(), offset, copy_span); image->UploadMemory(buffer->Handle(), offset, copy_span);
} else { } else {
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span); texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
} }
return true; return true;
} }

@ -781,8 +781,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
} }
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height); const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize; static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto [buffer, offset] = const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op); buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -793,7 +792,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
if constexpr (IS_IMAGE_UPLOAD) { if constexpr (IS_IMAGE_UPLOAD) {
image->UploadMemory(buffer->Handle(), offset, copy_span); image->UploadMemory(buffer->Handle(), offset, copy_span);
} else { } else {
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span); texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
} }
return true; return true;
} }

@ -1342,17 +1342,19 @@ void Image::UploadMemory(const StagingBufferRef& map, std::span<const BufferImag
UploadMemory(map.buffer, map.offset, copies); UploadMemory(map.buffer, map.offset, copies);
} }
void Image::DownloadMemory(std::span<VkBuffer> buffers_span, VkDeviceSize offset, void Image::DownloadMemory(std::span<VkBuffer> buffers_span, std::span<VkDeviceSize> offsets_span,
std::span<const VideoCommon::BufferImageCopy> copies) { std::span<const VideoCommon::BufferImageCopy> copies) {
const bool is_rescaled = True(flags & ImageFlagBits::Rescaled); const bool is_rescaled = True(flags & ImageFlagBits::Rescaled);
if (is_rescaled) { if (is_rescaled) {
ScaleDown(); ScaleDown();
} }
boost::container::small_vector<VkBuffer, 1> buffers_vector{}; boost::container::small_vector<VkBuffer, 1> buffers_vector{};
for (auto& buffer : buffers_span) { boost::container::small_vector<std::vector<VkBufferImageCopy>, 1> vk_copies;
buffers_vector.push_back(buffer); for (size_t index = 0; index < buffers_span.size(); index++) {
buffers_vector.emplace_back(buffers_span[index]);
vk_copies.emplace_back(
TransformBufferImageCopies(copies, offsets_span[index], aspect_mask));
} }
std::vector vk_copies = TransformBufferImageCopies(copies, offset, aspect_mask);
scheduler->RequestOutsideRenderPassOperationContext(); scheduler->RequestOutsideRenderPassOperationContext();
scheduler->Record([buffers = std::move(buffers_vector), image = *original_image, scheduler->Record([buffers = std::move(buffers_vector), image = *original_image,
aspect_mask = aspect_mask, vk_copies](vk::CommandBuffer cmdbuf) { aspect_mask = aspect_mask, vk_copies](vk::CommandBuffer cmdbuf) {
@ -1377,9 +1379,9 @@ void Image::DownloadMemory(std::span<VkBuffer> buffers_span, VkDeviceSize offset
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, read_barrier); 0, read_barrier);
for (auto buffer : buffers) { for (size_t index = 0; index < buffers.size(); index++) {
cmdbuf.CopyImageToBuffer(image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer, cmdbuf.CopyImageToBuffer(image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffers[index],
vk_copies); vk_copies[index]);
} }
const VkMemoryBarrier memory_write_barrier{ const VkMemoryBarrier memory_write_barrier{
@ -1418,7 +1420,10 @@ void Image::DownloadMemory(const StagingBufferRef& map, std::span<const BufferIm
std::array buffers{ std::array buffers{
map.buffer, map.buffer,
}; };
DownloadMemory(buffers, map.offset, copies); std::array offsets{
map.offset,
};
DownloadMemory(buffers, offsets, copies);
} }
bool Image::IsRescaled() const noexcept { bool Image::IsRescaled() const noexcept {

@ -138,7 +138,7 @@ public:
void UploadMemory(const StagingBufferRef& map, void UploadMemory(const StagingBufferRef& map,
std::span<const VideoCommon::BufferImageCopy> copies); std::span<const VideoCommon::BufferImageCopy> copies);
void DownloadMemory(std::span<VkBuffer> buffers, VkDeviceSize offset, void DownloadMemory(std::span<VkBuffer> buffers, std::span<VkDeviceSize> offsets,
std::span<const VideoCommon::BufferImageCopy> copies); std::span<const VideoCommon::BufferImageCopy> copies);
void DownloadMemory(const StagingBufferRef& map, void DownloadMemory(const StagingBufferRef& map,

@ -661,27 +661,40 @@ template <class P>
void TextureCache<P>::CommitAsyncFlushes() { void TextureCache<P>::CommitAsyncFlushes() {
// This is intentionally passing the value by copy // This is intentionally passing the value by copy
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) { if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
const std::span<const ImageId> download_ids = uncommitted_downloads; auto& download_ids = uncommitted_downloads;
if (download_ids.empty()) { if (download_ids.empty()) {
committed_downloads.emplace_back(std::move(uncommitted_downloads)); committed_downloads.emplace_back(std::move(uncommitted_downloads));
uncommitted_downloads.clear(); uncommitted_downloads.clear();
async_buffers.emplace_back(std::optional<AsyncBuffer>{}); async_buffers.emplace_back(std::move(uncommitted_async_buffers));
uncommitted_async_buffers.clear();
return; return;
} }
size_t total_size_bytes = 0; size_t total_size_bytes = 0;
for (const ImageId image_id : download_ids) { size_t last_async_buffer_id = uncommitted_async_buffers.size();
total_size_bytes += slot_images[image_id].unswizzled_size_bytes; bool any_none_dma = false;
for (PendingDownload& download_info : download_ids) {
if (download_info.is_swizzle) {
total_size_bytes += slot_images[download_info.object_id].unswizzled_size_bytes;
any_none_dma = true;
download_info.async_buffer_id = last_async_buffer_id;
} }
}
if (any_none_dma) {
auto download_map = runtime.DownloadStagingBuffer(total_size_bytes, true); auto download_map = runtime.DownloadStagingBuffer(total_size_bytes, true);
for (const ImageId image_id : download_ids) { for (const PendingDownload& download_info : download_ids) {
Image& image = slot_images[image_id]; if (download_info.is_swizzle) {
Image& image = slot_images[download_info.object_id];
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
image.DownloadMemory(download_map, copies); image.DownloadMemory(download_map, copies);
download_map.offset += Common::AlignUp(image.unswizzled_size_bytes, 64); download_map.offset += Common::AlignUp(image.unswizzled_size_bytes, 64);
} }
async_buffers.emplace_back(download_map); }
uncommitted_async_buffers.emplace_back(download_map);
}
} }
committed_downloads.emplace_back(std::move(uncommitted_downloads)); committed_downloads.emplace_back(std::move(uncommitted_downloads));
async_buffers.emplace_back(std::move(uncommitted_async_buffers));
uncommitted_async_buffers.clear();
uncommitted_downloads.clear(); uncommitted_downloads.clear();
} }
@ -691,39 +704,57 @@ void TextureCache<P>::PopAsyncFlushes() {
return; return;
} }
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) { if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
const std::span<const ImageId> download_ids = committed_downloads.front(); const auto& download_ids = committed_downloads.front();
if (download_ids.empty()) { if (download_ids.empty()) {
committed_downloads.pop_front(); committed_downloads.pop_front();
async_buffers.pop_front(); async_buffers.pop_front();
return; return;
} }
auto download_map = *async_buffers.front(); auto download_map = std::move(async_buffers.front());
std::span<u8> download_span = download_map.mapped_span;
for (size_t i = download_ids.size(); i > 0; i--) { for (size_t i = download_ids.size(); i > 0; i--) {
const ImageBase& image = slot_images[download_ids[i - 1]]; auto& download_info = download_ids[i - 1];
auto& download_buffer = download_map[download_info.async_buffer_id];
if (download_info.is_swizzle) {
const ImageBase& image = slot_images[download_info.object_id];
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
download_map.offset -= Common::AlignUp(image.unswizzled_size_bytes, 64); download_buffer.offset -= Common::AlignUp(image.unswizzled_size_bytes, 64);
std::span<u8> download_span_alt = download_span.subspan(download_map.offset); std::span<u8> download_span =
SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, download_span_alt, download_buffer.mapped_span.subspan(download_buffer.offset);
SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, download_span,
swizzle_data_buffer); swizzle_data_buffer);
} else {
const BufferDownload& buffer_info = slot_buffer_downloads[download_info.object_id];
std::span<u8> download_span =
download_buffer.mapped_span.subspan(download_buffer.offset);
gpu_memory->WriteBlockUnsafe(buffer_info.address, download_span.data(),
buffer_info.size);
slot_buffer_downloads.erase(download_info.object_id);
}
}
for (auto& download_buffer : download_map) {
runtime.FreeDeferredStagingBuffer(download_buffer);
} }
runtime.FreeDeferredStagingBuffer(download_map);
committed_downloads.pop_front(); committed_downloads.pop_front();
async_buffers.pop_front(); async_buffers.pop_front();
} else { } else {
const std::span<const ImageId> download_ids = committed_downloads.front(); const auto& download_ids = committed_downloads.front();
if (download_ids.empty()) { if (download_ids.empty()) {
committed_downloads.pop_front(); committed_downloads.pop_front();
return; return;
} }
size_t total_size_bytes = 0; size_t total_size_bytes = 0;
for (const ImageId image_id : download_ids) { for (const PendingDownload& download_info : download_ids) {
total_size_bytes += slot_images[image_id].unswizzled_size_bytes; if (download_info.is_swizzle) {
total_size_bytes += slot_images[download_info.object_id].unswizzled_size_bytes;
}
} }
auto download_map = runtime.DownloadStagingBuffer(total_size_bytes); auto download_map = runtime.DownloadStagingBuffer(total_size_bytes);
const size_t original_offset = download_map.offset; const size_t original_offset = download_map.offset;
for (const ImageId image_id : download_ids) { for (const PendingDownload& download_info : download_ids) {
Image& image = slot_images[image_id]; if (download_info.is_swizzle) {
continue;
}
Image& image = slot_images[download_info.object_id];
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
image.DownloadMemory(download_map, copies); image.DownloadMemory(download_map, copies);
download_map.offset += image.unswizzled_size_bytes; download_map.offset += image.unswizzled_size_bytes;
@ -732,8 +763,11 @@ void TextureCache<P>::PopAsyncFlushes() {
runtime.Finish(); runtime.Finish();
download_map.offset = original_offset; download_map.offset = original_offset;
std::span<u8> download_span = download_map.mapped_span; std::span<u8> download_span = download_map.mapped_span;
for (const ImageId image_id : download_ids) { for (const PendingDownload& download_info : download_ids) {
const ImageBase& image = slot_images[image_id]; if (download_info.is_swizzle) {
continue;
}
const ImageBase& image = slot_images[download_info.object_id];
const auto copies = FullDownloadCopies(image.info); const auto copies = FullDownloadCopies(image.info);
SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, download_span, SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, download_span,
swizzle_data_buffer); swizzle_data_buffer);
@ -836,12 +870,28 @@ std::pair<typename TextureCache<P>::Image*, BufferImageCopy> TextureCache<P>::Dm
template <class P> template <class P>
void TextureCache<P>::DownloadImageIntoBuffer( void TextureCache<P>::DownloadImageIntoBuffer(
typename TextureCache<P>::Image* image, typename TextureCache<P>::BufferType buffer, typename TextureCache<P>::Image* image, typename TextureCache<P>::BufferType buffer,
size_t buffer_offset, std::span<const VideoCommon::BufferImageCopy> copies) { size_t buffer_offset, std::span<const VideoCommon::BufferImageCopy> copies, GPUVAddr address, size_t size) {
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
auto slot = slot_buffer_downloads.insert(address, size);
uncommitted_downloads.emplace_back(false, uncommitted_async_buffers.size(), slot);
auto download_map = runtime.DownloadStagingBuffer(size, true);
uncommitted_async_buffers.emplace_back(download_map);
std::array buffers{
buffer,
download_map.buffer,
};
std::array buffer_offsets{
buffer_offset,
download_map.offset,
};
image->DownloadMemory(buffers, buffer_offsets, copies);
} else {
std::array buffers{ std::array buffers{
buffer, buffer,
}; };
image->DownloadMemory(buffers, buffer_offset, copies); image->DownloadMemory(buffers, buffer_offset, copies);
} }
}
template <class P> template <class P>
void TextureCache<P>::RefreshContents(Image& image, ImageId image_id) { void TextureCache<P>::RefreshContents(Image& image, ImageId image_id) {
@ -2219,7 +2269,7 @@ void TextureCache<P>::BindRenderTarget(ImageViewId* old_id, ImageViewId new_id)
if (new_id) { if (new_id) {
const ImageViewBase& old_view = slot_image_views[new_id]; const ImageViewBase& old_view = slot_image_views[new_id];
if (True(old_view.flags & ImageViewFlagBits::PreemtiveDownload)) { if (True(old_view.flags & ImageViewFlagBits::PreemtiveDownload)) {
uncommitted_downloads.push_back(old_view.image_id); uncommitted_downloads.emplace_back(true, 0, old_view.image_id);
} }
} }
*old_id = new_id; *old_id = new_id;

@ -217,7 +217,8 @@ public:
const Tegra::DMA::ImageOperand& image_operand, ImageId image_id, bool modifies_image); const Tegra::DMA::ImageOperand& image_operand, ImageId image_id, bool modifies_image);
void DownloadImageIntoBuffer(Image* image, BufferType buffer, size_t buffer_offset, void DownloadImageIntoBuffer(Image* image, BufferType buffer, size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies); std::span<const VideoCommon::BufferImageCopy> copies,
GPUVAddr address = 0, size_t size = 0);
/// Return true when a CPU region is modified from the GPU /// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size); [[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
@ -428,17 +429,31 @@ private:
u64 critical_memory; u64 critical_memory;
size_t critical_gc; size_t critical_gc;
struct BufferDownload {
GPUVAddr address;
size_t size;
};
struct PendingDownload {
bool is_swizzle;
size_t async_buffer_id;
SlotId object_id;
};
SlotVector<Image> slot_images; SlotVector<Image> slot_images;
SlotVector<ImageMapView> slot_map_views; SlotVector<ImageMapView> slot_map_views;
SlotVector<ImageView> slot_image_views; SlotVector<ImageView> slot_image_views;
SlotVector<ImageAlloc> slot_image_allocs; SlotVector<ImageAlloc> slot_image_allocs;
SlotVector<Sampler> slot_samplers; SlotVector<Sampler> slot_samplers;
SlotVector<Framebuffer> slot_framebuffers; SlotVector<Framebuffer> slot_framebuffers;
SlotVector<BufferDownload> slot_buffer_downloads;
// TODO: This data structure is not optimal and it should be reworked // TODO: This data structure is not optimal and it should be reworked
std::vector<ImageId> uncommitted_downloads;
std::deque<std::vector<ImageId>> committed_downloads; std::vector<PendingDownload> uncommitted_downloads;
std::deque<std::optional<AsyncBuffer>> async_buffers; std::deque<std::vector<PendingDownload>> committed_downloads;
std::vector<AsyncBuffer> uncommitted_async_buffers;
std::deque<std::vector<AsyncBuffer>> async_buffers;
struct LRUItemParams { struct LRUItemParams {
using ObjectType = ImageId; using ObjectType = ImageId;