|
|
|
@ -10,189 +10,412 @@
|
|
|
|
|
#include "common/scope_exit.h"
|
|
|
|
|
#include "core/core.h"
|
|
|
|
|
#include "core/device_memory.h"
|
|
|
|
|
#include "core/hle/kernel/initial_process.h"
|
|
|
|
|
#include "core/hle/kernel/k_memory_manager.h"
|
|
|
|
|
#include "core/hle/kernel/k_page_linked_list.h"
|
|
|
|
|
#include "core/hle/kernel/kernel.h"
|
|
|
|
|
#include "core/hle/kernel/svc_results.h"
|
|
|
|
|
#include "core/memory.h"
|
|
|
|
|
|
|
|
|
|
namespace Kernel {
|
|
|
|
|
|
|
|
|
|
KMemoryManager::KMemoryManager(Core::System& system_) : system{system_} {}
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
std::size_t KMemoryManager::Impl::Initialize(Pool new_pool, u64 start_address, u64 end_address) {
|
|
|
|
|
const auto size{end_address - start_address};
|
|
|
|
|
|
|
|
|
|
// Calculate metadata sizes
|
|
|
|
|
const auto ref_count_size{(size / PageSize) * sizeof(u16)};
|
|
|
|
|
const auto optimize_map_size{(Common::AlignUp((size / PageSize), 64) / 64) * sizeof(u64)};
|
|
|
|
|
const auto manager_size{Common::AlignUp(optimize_map_size + ref_count_size, PageSize)};
|
|
|
|
|
const auto page_heap_size{KPageHeap::CalculateManagementOverheadSize(size)};
|
|
|
|
|
const auto total_metadata_size{manager_size + page_heap_size};
|
|
|
|
|
ASSERT(manager_size <= total_metadata_size);
|
|
|
|
|
ASSERT(Common::IsAligned(total_metadata_size, PageSize));
|
|
|
|
|
|
|
|
|
|
// Setup region
|
|
|
|
|
pool = new_pool;
|
|
|
|
|
|
|
|
|
|
// Initialize the manager's KPageHeap
|
|
|
|
|
heap.Initialize(start_address, size, page_heap_size);
|
|
|
|
|
|
|
|
|
|
// Free the memory to the heap
|
|
|
|
|
heap.Free(start_address, size / PageSize);
|
|
|
|
|
|
|
|
|
|
// Update the heap's used size
|
|
|
|
|
heap.UpdateUsedSize();
|
|
|
|
|
|
|
|
|
|
return total_metadata_size;
|
|
|
|
|
constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
|
|
|
|
|
if ((type | KMemoryRegionType_DramApplicationPool) == type) {
|
|
|
|
|
return KMemoryManager::Pool::Application;
|
|
|
|
|
} else if ((type | KMemoryRegionType_DramAppletPool) == type) {
|
|
|
|
|
return KMemoryManager::Pool::Applet;
|
|
|
|
|
} else if ((type | KMemoryRegionType_DramSystemPool) == type) {
|
|
|
|
|
return KMemoryManager::Pool::System;
|
|
|
|
|
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
|
|
|
|
|
return KMemoryManager::Pool::SystemNonSecure;
|
|
|
|
|
} else {
|
|
|
|
|
UNREACHABLE_MSG("InvalidMemoryRegionType for conversion to Pool");
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void KMemoryManager::InitializeManager(Pool pool, u64 start_address, u64 end_address) {
|
|
|
|
|
ASSERT(pool < Pool::Count);
|
|
|
|
|
managers[static_cast<std::size_t>(pool)].Initialize(pool, start_address, end_address);
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
KMemoryManager::KMemoryManager(Core::System& system_)
|
|
|
|
|
: system{system_}, pool_locks{
|
|
|
|
|
KLightLock{system_.Kernel()},
|
|
|
|
|
KLightLock{system_.Kernel()},
|
|
|
|
|
KLightLock{system_.Kernel()},
|
|
|
|
|
KLightLock{system_.Kernel()},
|
|
|
|
|
} {}
|
|
|
|
|
|
|
|
|
|
void KMemoryManager::Initialize(VAddr management_region, size_t management_region_size) {
|
|
|
|
|
|
|
|
|
|
// Clear the management region to zero.
|
|
|
|
|
const VAddr management_region_end = management_region + management_region_size;
|
|
|
|
|
|
|
|
|
|
// Reset our manager count.
|
|
|
|
|
num_managers = 0;
|
|
|
|
|
|
|
|
|
|
// Traverse the virtual memory layout tree, initializing each manager as appropriate.
|
|
|
|
|
while (num_managers != MaxManagerCount) {
|
|
|
|
|
// Locate the region that should initialize the current manager.
|
|
|
|
|
PAddr region_address = 0;
|
|
|
|
|
size_t region_size = 0;
|
|
|
|
|
Pool region_pool = Pool::Count;
|
|
|
|
|
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
|
|
|
|
// We only care about regions that we need to create managers for.
|
|
|
|
|
if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// We want to initialize the managers in order.
|
|
|
|
|
if (it.GetAttributes() != num_managers) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const PAddr cur_start = it.GetAddress();
|
|
|
|
|
const PAddr cur_end = it.GetEndAddress();
|
|
|
|
|
|
|
|
|
|
// Validate the region.
|
|
|
|
|
ASSERT(cur_end != 0);
|
|
|
|
|
ASSERT(cur_start != 0);
|
|
|
|
|
ASSERT(it.GetSize() > 0);
|
|
|
|
|
|
|
|
|
|
// Update the region's extents.
|
|
|
|
|
if (region_address == 0) {
|
|
|
|
|
region_address = cur_start;
|
|
|
|
|
region_size = it.GetSize();
|
|
|
|
|
region_pool = GetPoolFromMemoryRegionType(it.GetType());
|
|
|
|
|
} else {
|
|
|
|
|
ASSERT(cur_start == region_address + region_size);
|
|
|
|
|
|
|
|
|
|
// Update the size.
|
|
|
|
|
region_size = cur_end - region_address;
|
|
|
|
|
ASSERT(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we didn't find a region, we're done.
|
|
|
|
|
if (region_size == 0) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Initialize a new manager for the region.
|
|
|
|
|
Impl* manager = std::addressof(managers[num_managers++]);
|
|
|
|
|
ASSERT(num_managers <= managers.size());
|
|
|
|
|
|
|
|
|
|
const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
|
|
|
|
|
management_region_end, region_pool);
|
|
|
|
|
management_region += cur_size;
|
|
|
|
|
ASSERT(management_region <= management_region_end);
|
|
|
|
|
|
|
|
|
|
// Insert the manager into the pool list.
|
|
|
|
|
const auto region_pool_index = static_cast<u32>(region_pool);
|
|
|
|
|
if (pool_managers_tail[region_pool_index] == nullptr) {
|
|
|
|
|
pool_managers_head[region_pool_index] = manager;
|
|
|
|
|
} else {
|
|
|
|
|
pool_managers_tail[region_pool_index]->SetNext(manager);
|
|
|
|
|
manager->SetPrev(pool_managers_tail[region_pool_index]);
|
|
|
|
|
}
|
|
|
|
|
pool_managers_tail[region_pool_index] = manager;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Free each region to its corresponding heap.
|
|
|
|
|
size_t reserved_sizes[MaxManagerCount] = {};
|
|
|
|
|
const PAddr ini_start = GetInitialProcessBinaryPhysicalAddress();
|
|
|
|
|
const PAddr ini_end = ini_start + InitialProcessBinarySizeMax;
|
|
|
|
|
const PAddr ini_last = ini_end - 1;
|
|
|
|
|
for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
|
|
|
|
|
if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
|
|
|
|
|
// Get the manager for the region.
|
|
|
|
|
auto index = it.GetAttributes();
|
|
|
|
|
auto& manager = managers[index];
|
|
|
|
|
|
|
|
|
|
const PAddr cur_start = it.GetAddress();
|
|
|
|
|
const PAddr cur_last = it.GetLastAddress();
|
|
|
|
|
const PAddr cur_end = it.GetEndAddress();
|
|
|
|
|
|
|
|
|
|
if (cur_start <= ini_start && ini_last <= cur_last) {
|
|
|
|
|
// Free memory before the ini to the heap.
|
|
|
|
|
if (cur_start != ini_start) {
|
|
|
|
|
manager.Free(cur_start, (ini_start - cur_start) / PageSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Open/reserve the ini memory.
|
|
|
|
|
manager.OpenFirst(ini_start, InitialProcessBinarySizeMax / PageSize);
|
|
|
|
|
reserved_sizes[it.GetAttributes()] += InitialProcessBinarySizeMax;
|
|
|
|
|
|
|
|
|
|
// Free memory after the ini to the heap.
|
|
|
|
|
if (ini_last != cur_last) {
|
|
|
|
|
ASSERT(cur_end != 0);
|
|
|
|
|
manager.Free(ini_end, cur_end - ini_end);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
// Ensure there's no partial overlap with the ini image.
|
|
|
|
|
if (cur_start <= ini_last) {
|
|
|
|
|
ASSERT(cur_last < ini_start);
|
|
|
|
|
} else {
|
|
|
|
|
// Otherwise, check the region for general validity.
|
|
|
|
|
ASSERT(cur_end != 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Free the memory to the heap.
|
|
|
|
|
manager.Free(cur_start, it.GetSize() / PageSize);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update the used size for all managers.
|
|
|
|
|
for (size_t i = 0; i < num_managers; ++i) {
|
|
|
|
|
managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VAddr KMemoryManager::AllocateAndOpenContinuous(std::size_t num_pages, std::size_t align_pages,
|
|
|
|
|
u32 option) {
|
|
|
|
|
// Early return if we're allocating no pages
|
|
|
|
|
PAddr KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
|
|
|
|
|
// Early return if we're allocating no pages.
|
|
|
|
|
if (num_pages == 0) {
|
|
|
|
|
return {};
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Lock the pool that we're allocating from
|
|
|
|
|
// Lock the pool that we're allocating from.
|
|
|
|
|
const auto [pool, dir] = DecodeOption(option);
|
|
|
|
|
const auto pool_index{static_cast<std::size_t>(pool)};
|
|
|
|
|
std::lock_guard lock{pool_locks[pool_index]};
|
|
|
|
|
KScopedLightLock lk(pool_locks[static_cast<std::size_t>(pool)]);
|
|
|
|
|
|
|
|
|
|
// Choose a heap based on our page size request
|
|
|
|
|
const s32 heap_index{KPageHeap::GetAlignedBlockIndex(num_pages, align_pages)};
|
|
|
|
|
// Choose a heap based on our page size request.
|
|
|
|
|
const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);
|
|
|
|
|
|
|
|
|
|
// Loop, trying to iterate from each block
|
|
|
|
|
// TODO (bunnei): Support multiple managers
|
|
|
|
|
Impl& chosen_manager{managers[pool_index]};
|
|
|
|
|
VAddr allocated_block{chosen_manager.AllocateBlock(heap_index, false)};
|
|
|
|
|
|
|
|
|
|
// If we failed to allocate, quit now
|
|
|
|
|
if (!allocated_block) {
|
|
|
|
|
return {};
|
|
|
|
|
// Loop, trying to iterate from each block.
|
|
|
|
|
Impl* chosen_manager = nullptr;
|
|
|
|
|
PAddr allocated_block = 0;
|
|
|
|
|
for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr;
|
|
|
|
|
chosen_manager = this->GetNextManager(chosen_manager, dir)) {
|
|
|
|
|
allocated_block = chosen_manager->AllocateBlock(heap_index, true);
|
|
|
|
|
if (allocated_block != 0) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we allocated more than we need, free some
|
|
|
|
|
const auto allocated_pages{KPageHeap::GetBlockNumPages(heap_index)};
|
|
|
|
|
// If we failed to allocate, quit now.
|
|
|
|
|
if (allocated_block == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we allocated more than we need, free some.
|
|
|
|
|
const size_t allocated_pages = KPageHeap::GetBlockNumPages(heap_index);
|
|
|
|
|
if (allocated_pages > num_pages) {
|
|
|
|
|
chosen_manager.Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
|
|
|
|
|
chosen_manager->Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Open the first reference to the pages.
|
|
|
|
|
chosen_manager->OpenFirst(allocated_block, num_pages);
|
|
|
|
|
|
|
|
|
|
return allocated_block;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ResultCode KMemoryManager::Allocate(KPageLinkedList& page_list, std::size_t num_pages, Pool pool,
|
|
|
|
|
Direction dir, u32 heap_fill_value) {
|
|
|
|
|
ASSERT(page_list.GetNumPages() == 0);
|
|
|
|
|
ResultCode KMemoryManager::AllocatePageGroupImpl(KPageLinkedList* out, size_t num_pages, Pool pool,
|
|
|
|
|
Direction dir, bool random) {
|
|
|
|
|
// Choose a heap based on our page size request.
|
|
|
|
|
const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
|
|
|
|
|
R_UNLESS(0 <= heap_index, ResultOutOfMemory);
|
|
|
|
|
|
|
|
|
|
// Early return if we're allocating no pages
|
|
|
|
|
if (num_pages == 0) {
|
|
|
|
|
return ResultSuccess;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Lock the pool that we're allocating from
|
|
|
|
|
const auto pool_index{static_cast<std::size_t>(pool)};
|
|
|
|
|
std::lock_guard lock{pool_locks[pool_index]};
|
|
|
|
|
|
|
|
|
|
// Choose a heap based on our page size request
|
|
|
|
|
const s32 heap_index{KPageHeap::GetBlockIndex(num_pages)};
|
|
|
|
|
if (heap_index < 0) {
|
|
|
|
|
return ResultOutOfMemory;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO (bunnei): Support multiple managers
|
|
|
|
|
Impl& chosen_manager{managers[pool_index]};
|
|
|
|
|
|
|
|
|
|
// Ensure that we don't leave anything un-freed
|
|
|
|
|
auto group_guard = detail::ScopeExit([&] {
|
|
|
|
|
for (const auto& it : page_list.Nodes()) {
|
|
|
|
|
const auto min_num_pages{std::min<size_t>(
|
|
|
|
|
it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
|
|
|
|
|
chosen_manager.Free(it.GetAddress(), min_num_pages);
|
|
|
|
|
// Ensure that we don't leave anything un-freed.
|
|
|
|
|
auto group_guard = SCOPE_GUARD({
|
|
|
|
|
for (const auto& it : out->Nodes()) {
|
|
|
|
|
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), it.GetAddress());
|
|
|
|
|
const size_t num_pages_to_free =
|
|
|
|
|
std::min(it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
|
|
|
|
|
manager.Free(it.GetAddress(), num_pages_to_free);
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// Keep allocating until we've allocated all our pages
|
|
|
|
|
for (s32 index{heap_index}; index >= 0 && num_pages > 0; index--) {
|
|
|
|
|
const auto pages_per_alloc{KPageHeap::GetBlockNumPages(index)};
|
|
|
|
|
|
|
|
|
|
while (num_pages >= pages_per_alloc) {
|
|
|
|
|
// Allocate a block
|
|
|
|
|
VAddr allocated_block{chosen_manager.AllocateBlock(index, false)};
|
|
|
|
|
if (!allocated_block) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Safely add it to our group
|
|
|
|
|
{
|
|
|
|
|
auto block_guard = detail::ScopeExit(
|
|
|
|
|
[&] { chosen_manager.Free(allocated_block, pages_per_alloc); });
|
|
|
|
|
|
|
|
|
|
if (const ResultCode result{page_list.AddBlock(allocated_block, pages_per_alloc)};
|
|
|
|
|
result.IsError()) {
|
|
|
|
|
return result;
|
|
|
|
|
// Keep allocating until we've allocated all our pages.
|
|
|
|
|
for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
|
|
|
|
|
const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
|
|
|
|
|
for (Impl* cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr;
|
|
|
|
|
cur_manager = this->GetNextManager(cur_manager, dir)) {
|
|
|
|
|
while (num_pages >= pages_per_alloc) {
|
|
|
|
|
// Allocate a block.
|
|
|
|
|
PAddr allocated_block = cur_manager->AllocateBlock(index, random);
|
|
|
|
|
if (allocated_block == 0) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
block_guard.Cancel();
|
|
|
|
|
}
|
|
|
|
|
// Safely add it to our group.
|
|
|
|
|
{
|
|
|
|
|
auto block_guard =
|
|
|
|
|
SCOPE_GUARD({ cur_manager->Free(allocated_block, pages_per_alloc); });
|
|
|
|
|
R_TRY(out->AddBlock(allocated_block, pages_per_alloc));
|
|
|
|
|
block_guard.Cancel();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
num_pages -= pages_per_alloc;
|
|
|
|
|
num_pages -= pages_per_alloc;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Clear allocated memory.
|
|
|
|
|
for (const auto& it : page_list.Nodes()) {
|
|
|
|
|
std::memset(system.DeviceMemory().GetPointer(it.GetAddress()), heap_fill_value,
|
|
|
|
|
it.GetSize());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Only succeed if we allocated as many pages as we wanted
|
|
|
|
|
if (num_pages) {
|
|
|
|
|
return ResultOutOfMemory;
|
|
|
|
|
}
|
|
|
|
|
// Only succeed if we allocated as many pages as we wanted.
|
|
|
|
|
R_UNLESS(num_pages == 0, ResultOutOfMemory);
|
|
|
|
|
|
|
|
|
|
// We succeeded!
|
|
|
|
|
group_guard.Cancel();
|
|
|
|
|
|
|
|
|
|
return ResultSuccess;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ResultCode KMemoryManager::Free(KPageLinkedList& page_list, std::size_t num_pages, Pool pool,
|
|
|
|
|
Direction dir, u32 heap_fill_value) {
|
|
|
|
|
// Early return if we're freeing no pages
|
|
|
|
|
if (!num_pages) {
|
|
|
|
|
return ResultSuccess;
|
|
|
|
|
}
|
|
|
|
|
ResultCode KMemoryManager::AllocateAndOpen(KPageLinkedList* out, size_t num_pages, u32 option) {
|
|
|
|
|
ASSERT(out != nullptr);
|
|
|
|
|
ASSERT(out->GetNumPages() == 0);
|
|
|
|
|
|
|
|
|
|
// Lock the pool that we're freeing from
|
|
|
|
|
const auto pool_index{static_cast<std::size_t>(pool)};
|
|
|
|
|
std::lock_guard lock{pool_locks[pool_index]};
|
|
|
|
|
// Early return if we're allocating no pages.
|
|
|
|
|
R_SUCCEED_IF(num_pages == 0);
|
|
|
|
|
|
|
|
|
|
// TODO (bunnei): Support multiple managers
|
|
|
|
|
Impl& chosen_manager{managers[pool_index]};
|
|
|
|
|
// Lock the pool that we're allocating from.
|
|
|
|
|
const auto [pool, dir] = DecodeOption(option);
|
|
|
|
|
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
|
|
|
|
|
|
|
|
|
// Free all of the pages
|
|
|
|
|
for (const auto& it : page_list.Nodes()) {
|
|
|
|
|
const auto min_num_pages{std::min<size_t>(
|
|
|
|
|
it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
|
|
|
|
|
chosen_manager.Free(it.GetAddress(), min_num_pages);
|
|
|
|
|
// Allocate the page group.
|
|
|
|
|
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
|
|
|
|
|
|
|
|
|
// Open the first reference to the pages.
|
|
|
|
|
for (const auto& block : out->Nodes()) {
|
|
|
|
|
PAddr cur_address = block.GetAddress();
|
|
|
|
|
size_t remaining_pages = block.GetNumPages();
|
|
|
|
|
while (remaining_pages > 0) {
|
|
|
|
|
// Get the manager for the current address.
|
|
|
|
|
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
|
|
|
|
|
|
|
|
|
// Process part or all of the block.
|
|
|
|
|
const size_t cur_pages =
|
|
|
|
|
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
|
|
|
|
manager.OpenFirst(cur_address, cur_pages);
|
|
|
|
|
|
|
|
|
|
// Advance.
|
|
|
|
|
cur_address += cur_pages * PageSize;
|
|
|
|
|
remaining_pages -= cur_pages;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ResultSuccess;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::size_t KMemoryManager::Impl::CalculateManagementOverheadSize(std::size_t region_size) {
|
|
|
|
|
const std::size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
|
|
|
|
|
const std::size_t optimize_map_size =
|
|
|
|
|
ResultCode KMemoryManager::AllocateAndOpenForProcess(KPageLinkedList* out, size_t num_pages,
|
|
|
|
|
u32 option, u64 process_id, u8 fill_pattern) {
|
|
|
|
|
ASSERT(out != nullptr);
|
|
|
|
|
ASSERT(out->GetNumPages() == 0);
|
|
|
|
|
|
|
|
|
|
// Decode the option.
|
|
|
|
|
const auto [pool, dir] = DecodeOption(option);
|
|
|
|
|
|
|
|
|
|
// Allocate the memory.
|
|
|
|
|
{
|
|
|
|
|
// Lock the pool that we're allocating from.
|
|
|
|
|
KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
|
|
|
|
|
|
|
|
|
|
// Allocate the page group.
|
|
|
|
|
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
|
|
|
|
|
|
|
|
|
|
// Open the first reference to the pages.
|
|
|
|
|
for (const auto& block : out->Nodes()) {
|
|
|
|
|
PAddr cur_address = block.GetAddress();
|
|
|
|
|
size_t remaining_pages = block.GetNumPages();
|
|
|
|
|
while (remaining_pages > 0) {
|
|
|
|
|
// Get the manager for the current address.
|
|
|
|
|
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
|
|
|
|
|
|
|
|
|
|
// Process part or all of the block.
|
|
|
|
|
const size_t cur_pages =
|
|
|
|
|
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
|
|
|
|
|
manager.OpenFirst(cur_address, cur_pages);
|
|
|
|
|
|
|
|
|
|
// Advance.
|
|
|
|
|
cur_address += cur_pages * PageSize;
|
|
|
|
|
remaining_pages -= cur_pages;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Set all the allocated memory.
|
|
|
|
|
for (const auto& block : out->Nodes()) {
|
|
|
|
|
std::memset(system.DeviceMemory().GetPointer(block.GetAddress()), fill_pattern,
|
|
|
|
|
block.GetSize());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ResultSuccess;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void KMemoryManager::Open(PAddr address, size_t num_pages) {
|
|
|
|
|
// Repeatedly open references until we've done so for all pages.
|
|
|
|
|
while (num_pages) {
|
|
|
|
|
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
|
|
|
|
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
|
|
|
|
manager.Open(address, cur_pages);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
num_pages -= cur_pages;
|
|
|
|
|
address += cur_pages * PageSize;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void KMemoryManager::Close(PAddr address, size_t num_pages) {
|
|
|
|
|
// Repeatedly close references until we've done so for all pages.
|
|
|
|
|
while (num_pages) {
|
|
|
|
|
auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
|
|
|
|
|
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
|
|
|
|
|
manager.Close(address, cur_pages);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
num_pages -= cur_pages;
|
|
|
|
|
address += cur_pages * PageSize;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void KMemoryManager::Close(const KPageLinkedList& pg) {
|
|
|
|
|
for (const auto& node : pg.Nodes()) {
|
|
|
|
|
Close(node.GetAddress(), node.GetNumPages());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
void KMemoryManager::Open(const KPageLinkedList& pg) {
|
|
|
|
|
for (const auto& node : pg.Nodes()) {
|
|
|
|
|
Open(node.GetAddress(), node.GetNumPages());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
|
|
|
|
|
VAddr management_end, Pool p) {
|
|
|
|
|
// Calculate management sizes.
|
|
|
|
|
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
|
|
|
|
|
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
|
|
|
|
|
const size_t manager_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
|
|
|
|
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
|
|
|
|
|
const size_t total_management_size = manager_size + page_heap_size;
|
|
|
|
|
ASSERT(manager_size <= total_management_size);
|
|
|
|
|
ASSERT(management + total_management_size <= management_end);
|
|
|
|
|
ASSERT(Common::IsAligned(total_management_size, PageSize));
|
|
|
|
|
|
|
|
|
|
// Setup region.
|
|
|
|
|
pool = p;
|
|
|
|
|
management_region = management;
|
|
|
|
|
page_reference_counts.resize(
|
|
|
|
|
Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetIntendedMemorySize() / PageSize);
|
|
|
|
|
ASSERT(Common::IsAligned(management_region, PageSize));
|
|
|
|
|
|
|
|
|
|
// Initialize the manager's KPageHeap.
|
|
|
|
|
heap.Initialize(address, size, management + manager_size, page_heap_size);
|
|
|
|
|
|
|
|
|
|
return total_management_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
|
|
|
|
|
const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
|
|
|
|
|
const size_t optimize_map_size =
|
|
|
|
|
(Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
|
|
|
|
|
Common::BitSize<u64>()) *
|
|
|
|
|
sizeof(u64);
|
|
|
|
|
const std::size_t manager_meta_size =
|
|
|
|
|
Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
|
|
|
|
const std::size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
|
|
|
|
|
const size_t manager_meta_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
|
|
|
|
|
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
|
|
|
|
|
return manager_meta_size + page_heap_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|