|
|
|
@ -15,7 +15,7 @@
|
|
|
|
|
|
|
|
|
|
namespace Core::Timing {
|
|
|
|
|
|
|
|
|
|
constexpr int MAX_SLICE_LENGTH = 20000;
|
|
|
|
|
constexpr int MAX_SLICE_LENGTH = 10000;
|
|
|
|
|
|
|
|
|
|
struct CoreTiming::Event {
|
|
|
|
|
s64 time;
|
|
|
|
@ -38,10 +38,14 @@ CoreTiming::CoreTiming() = default;
|
|
|
|
|
CoreTiming::~CoreTiming() = default;
|
|
|
|
|
|
|
|
|
|
void CoreTiming::Initialize() {
|
|
|
|
|
downcount = MAX_SLICE_LENGTH;
|
|
|
|
|
for (std::size_t core = 0; core < num_cpu_cores; core++) {
|
|
|
|
|
downcounts[core] = MAX_SLICE_LENGTH;
|
|
|
|
|
time_slice[core] = MAX_SLICE_LENGTH;
|
|
|
|
|
}
|
|
|
|
|
slice_length = MAX_SLICE_LENGTH;
|
|
|
|
|
global_timer = 0;
|
|
|
|
|
idled_cycles = 0;
|
|
|
|
|
current_context = 0;
|
|
|
|
|
|
|
|
|
|
// The time between CoreTiming being initialized and the first call to Advance() is considered
|
|
|
|
|
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
|
|
|
@ -110,7 +114,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
|
|
|
|
|
u64 CoreTiming::GetTicks() const {
|
|
|
|
|
u64 ticks = static_cast<u64>(global_timer);
|
|
|
|
|
if (!is_global_timer_sane) {
|
|
|
|
|
ticks += slice_length - downcount;
|
|
|
|
|
ticks += time_slice[current_context] - downcounts[current_context];
|
|
|
|
|
}
|
|
|
|
|
return ticks;
|
|
|
|
|
}
|
|
|
|
@ -120,7 +124,7 @@ u64 CoreTiming::GetIdleTicks() const {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::AddTicks(u64 ticks) {
|
|
|
|
|
downcount -= static_cast<int>(ticks);
|
|
|
|
|
downcounts[current_context] -= static_cast<s64>(ticks);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ClearPendingEvents() {
|
|
|
|
@ -141,22 +145,36 @@ void CoreTiming::RemoveEvent(const EventType* event_type) {
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ForceExceptionCheck(s64 cycles) {
|
|
|
|
|
cycles = std::max<s64>(0, cycles);
|
|
|
|
|
if (downcount <= cycles) {
|
|
|
|
|
if (downcounts[current_context] <= cycles) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
|
|
|
|
// here. Account for cycles already executed by adjusting the g.slice_length
|
|
|
|
|
slice_length -= downcount - static_cast<int>(cycles);
|
|
|
|
|
downcount = static_cast<int>(cycles);
|
|
|
|
|
slice_length -= downcounts[current_context] - static_cast<int>(cycles);
|
|
|
|
|
downcounts[current_context] = static_cast<int>(cycles);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
|
|
|
|
|
const u64 original_context = current_context;
|
|
|
|
|
u64 next_context = (original_context + 1) % num_cpu_cores;
|
|
|
|
|
while (next_context != original_context) {
|
|
|
|
|
if (time_slice[next_context] >= needed_ticks) {
|
|
|
|
|
return {next_context};
|
|
|
|
|
} else if (time_slice[next_context] >= 0) {
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
next_context = (next_context + 1) % num_cpu_cores;
|
|
|
|
|
}
|
|
|
|
|
return {};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::Advance() {
|
|
|
|
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
|
|
|
|
|
|
|
|
|
const int cycles_executed = slice_length - downcount;
|
|
|
|
|
const int cycles_executed = time_slice[current_context] - downcounts[current_context];
|
|
|
|
|
time_slice[current_context] = std::max<s64>(0, downcounts[current_context]);
|
|
|
|
|
global_timer += cycles_executed;
|
|
|
|
|
slice_length = MAX_SLICE_LENGTH;
|
|
|
|
|
|
|
|
|
|
is_global_timer_sane = true;
|
|
|
|
|
|
|
|
|
@ -173,24 +191,40 @@ void CoreTiming::Advance() {
|
|
|
|
|
|
|
|
|
|
// Still events left (scheduled in the future)
|
|
|
|
|
if (!event_queue.empty()) {
|
|
|
|
|
slice_length = static_cast<int>(
|
|
|
|
|
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH));
|
|
|
|
|
s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
|
|
|
|
const auto next_core = NextAvailableCore(needed_ticks);
|
|
|
|
|
if (next_core) {
|
|
|
|
|
downcounts[*next_core] = needed_ticks;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
downcount = slice_length;
|
|
|
|
|
downcounts[current_context] = time_slice[current_context];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::ResetRun() {
|
|
|
|
|
for (std::size_t core = 0; core < num_cpu_cores; core++) {
|
|
|
|
|
downcounts[core] = MAX_SLICE_LENGTH;
|
|
|
|
|
time_slice[core] = MAX_SLICE_LENGTH;
|
|
|
|
|
}
|
|
|
|
|
current_context = 0;
|
|
|
|
|
// Still events left (scheduled in the future)
|
|
|
|
|
if (!event_queue.empty()) {
|
|
|
|
|
s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
|
|
|
|
downcounts[current_context] = needed_ticks;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void CoreTiming::Idle() {
|
|
|
|
|
idled_cycles += downcount;
|
|
|
|
|
downcount = 0;
|
|
|
|
|
idled_cycles += downcounts[current_context];
|
|
|
|
|
downcounts[current_context] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
|
|
|
|
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int CoreTiming::GetDowncount() const {
|
|
|
|
|
return downcount;
|
|
|
|
|
s64 CoreTiming::GetDowncount() const {
|
|
|
|
|
return downcounts[current_context];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Core::Timing
|
|
|
|
|