Merge pull request #4353 from ameerj/gc-refactor

gc_adapter: Refactor code
master
bunnei 2020-07-23 18:44:39 +07:00 committed by GitHub
commit 5ac91a6c7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 45 additions and 182 deletions

@ -24,12 +24,9 @@ Adapter::Adapter() {
} }
LOG_INFO(Input, "GC Adapter Initialization started"); LOG_INFO(Input, "GC Adapter Initialization started");
current_status = NO_ADAPTER_DETECTED;
get_origin.fill(true);
const int init_res = libusb_init(&libusb_ctx); const int init_res = libusb_init(&libusb_ctx);
if (init_res == LIBUSB_SUCCESS) { if (init_res == LIBUSB_SUCCESS) {
StartScanThread(); Setup();
} else { } else {
LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res); LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res);
} }
@ -37,9 +34,9 @@ Adapter::Adapter() {
GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload) { GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload) {
GCPadStatus pad = {}; GCPadStatus pad = {};
const std::size_t offset = 1 + (9 * port);
ControllerTypes type = ControllerTypes(adapter_payload[1 + (9 * port)] >> 4); adapter_controllers_status[port] = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
adapter_controllers_status[port] = type;
static constexpr std::array<PadButton, 8> b1_buttons{ static constexpr std::array<PadButton, 8> b1_buttons{
PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X,
@ -54,14 +51,19 @@ GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& ad
PadButton::PAD_TRIGGER_L, PadButton::PAD_TRIGGER_L,
}; };
static constexpr std::array<PadAxes, 6> axes{
PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX,
PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight,
};
if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) { if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) {
// Controller may have been disconnected, recalibrate if reconnected. // Controller may have been disconnected, recalibrate if reconnected.
get_origin[port] = true; get_origin[port] = true;
} }
if (adapter_controllers_status[port] != ControllerTypes::None) { if (adapter_controllers_status[port] != ControllerTypes::None) {
const u8 b1 = adapter_payload[1 + (9 * port) + 1]; const u8 b1 = adapter_payload[offset + 1];
const u8 b2 = adapter_payload[1 + (9 * port) + 2]; const u8 b2 = adapter_payload[offset + 2];
for (std::size_t i = 0; i < b1_buttons.size(); ++i) { for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) { if ((b1 & (1U << i)) != 0) {
@ -74,21 +76,13 @@ GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& ad
pad.button |= static_cast<u16>(b2_buttons[j]); pad.button |= static_cast<u16>(b2_buttons[j]);
} }
} }
for (PadAxes axis : axes) {
pad.stick_x = adapter_payload[1 + (9 * port) + 3]; const std::size_t index = static_cast<std::size_t>(axis);
pad.stick_y = adapter_payload[1 + (9 * port) + 4]; pad.axis_values[index] = adapter_payload[offset + 3 + index];
pad.substick_x = adapter_payload[1 + (9 * port) + 5]; }
pad.substick_y = adapter_payload[1 + (9 * port) + 6];
pad.trigger_left = adapter_payload[1 + (9 * port) + 7];
pad.trigger_right = adapter_payload[1 + (9 * port) + 8];
if (get_origin[port]) { if (get_origin[port]) {
origin_status[port].stick_x = pad.stick_x; origin_status[port].axis_values = pad.axis_values;
origin_status[port].stick_y = pad.stick_y;
origin_status[port].substick_x = pad.substick_x;
origin_status[port].substick_y = pad.substick_y;
origin_status[port].trigger_left = pad.trigger_left;
origin_status[port].trigger_right = pad.trigger_right;
get_origin[port] = false; get_origin[port] = false;
} }
} }
@ -101,82 +95,47 @@ void Adapter::PadToState(const GCPadStatus& pad, GCState& state) {
state.buttons.insert_or_assign(button_value, pad.button & button_value); state.buttons.insert_or_assign(button_value, pad.button & button_value);
} }
state.axes.insert_or_assign(static_cast<u8>(PadAxes::StickX), pad.stick_x); for (size_t i = 0; i < pad.axis_values.size(); ++i) {
state.axes.insert_or_assign(static_cast<u8>(PadAxes::StickY), pad.stick_y); state.axes.insert_or_assign(static_cast<u8>(i), pad.axis_values[i]);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::SubstickX), pad.substick_x); }
state.axes.insert_or_assign(static_cast<u8>(PadAxes::SubstickY), pad.substick_y);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::TriggerLeft), pad.trigger_left);
state.axes.insert_or_assign(static_cast<u8>(PadAxes::TriggerRight), pad.trigger_right);
} }
void Adapter::Read() { void Adapter::Read() {
LOG_DEBUG(Input, "GC Adapter Read() thread started"); LOG_DEBUG(Input, "GC Adapter Read() thread started");
int payload_size_in, payload_size_copy; int payload_size;
std::array<u8, 37> adapter_payload; std::array<u8, 37> adapter_payload;
std::array<u8, 37> adapter_payload_copy;
std::array<GCPadStatus, 4> pads; std::array<GCPadStatus, 4> pads;
while (adapter_thread_running) { while (adapter_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(), libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
sizeof(adapter_payload), &payload_size_in, 16); sizeof(adapter_payload), &payload_size, 16);
payload_size_copy = 0;
// this mutex might be redundant?
{
std::lock_guard<std::mutex> lk(s_mutex);
std::copy(std::begin(adapter_payload), std::end(adapter_payload),
std::begin(adapter_payload_copy));
payload_size_copy = payload_size_in;
}
if (payload_size_copy != sizeof(adapter_payload_copy) || if (payload_size != sizeof(adapter_payload) || adapter_payload[0] != LIBUSB_DT_HID) {
adapter_payload_copy[0] != LIBUSB_DT_HID) { LOG_ERROR(Input,
LOG_ERROR(Input, "error reading payload (size: {}, type: {:02x})", payload_size_copy, "Error reading payload (size: {}, type: {:02x}) Is the adapter connected?",
adapter_payload_copy[0]); payload_size, adapter_payload[0]);
adapter_thread_running = false; // error reading from adapter, stop reading. adapter_thread_running = false; // error reading from adapter, stop reading.
break; break;
} }
for (std::size_t port = 0; port < pads.size(); ++port) { for (std::size_t port = 0; port < pads.size(); ++port) {
pads[port] = GetPadStatus(port, adapter_payload_copy); pads[port] = GetPadStatus(port, adapter_payload);
if (DeviceConnected(port) && configuring) { if (DeviceConnected(port) && configuring) {
if (pads[port].button != 0) { if (pads[port].button != 0) {
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
// Accounting for a threshold here because of some controller variance // Accounting for a threshold here to ensure an intentional press
if (pads[port].stick_x > origin_status[port].stick_x + pads[port].THRESHOLD || for (size_t i = 0; i < pads[port].axis_values.size(); ++i) {
pads[port].stick_x < origin_status[port].stick_x - pads[port].THRESHOLD) { const u8 value = pads[port].axis_values[i];
pads[port].axis = GCAdapter::PadAxes::StickX; const u8 origin = origin_status[port].axis_values[i];
pads[port].axis_value = pads[port].stick_x;
if (value > origin + pads[port].THRESHOLD ||
value < origin - pads[port].THRESHOLD) {
pads[port].axis = static_cast<PadAxes>(i);
pads[port].axis_value = pads[port].axis_values[i];
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
if (pads[port].stick_y > origin_status[port].stick_y + pads[port].THRESHOLD ||
pads[port].stick_y < origin_status[port].stick_y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::StickY;
pads[port].axis_value = pads[port].stick_y;
pad_queue[port].Push(pads[port]);
}
if (pads[port].substick_x > origin_status[port].substick_x + pads[port].THRESHOLD ||
pads[port].substick_x < origin_status[port].substick_x - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickX;
pads[port].axis_value = pads[port].substick_x;
pad_queue[port].Push(pads[port]);
}
if (pads[port].substick_y > origin_status[port].substick_y + pads[port].THRESHOLD ||
pads[port].substick_y < origin_status[port].substick_y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickY;
pads[port].axis_value = pads[port].substick_y;
pad_queue[port].Push(pads[port]);
}
if (pads[port].trigger_left > pads[port].TRIGGER_THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::TriggerLeft;
pads[port].axis_value = pads[port].trigger_left;
pad_queue[port].Push(pads[port]);
}
if (pads[port].trigger_right > pads[port].TRIGGER_THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::TriggerRight;
pads[port].axis_value = pads[port].trigger_right;
pad_queue[port].Push(pads[port]);
} }
} }
PadToState(pads[port], state[port]); PadToState(pads[port], state[port]);
@ -185,42 +144,11 @@ void Adapter::Read() {
} }
} }
void Adapter::ScanThreadFunc() {
LOG_INFO(Input, "GC Adapter scanning thread started");
while (detect_thread_running) {
if (usb_adapter_handle == nullptr) {
std::lock_guard<std::mutex> lk(initialization_mutex);
Setup();
}
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
void Adapter::StartScanThread() {
if (detect_thread_running) {
return;
}
if (!libusb_ctx) {
return;
}
detect_thread_running = true;
detect_thread = std::thread(&Adapter::ScanThreadFunc, this);
}
void Adapter::StopScanThread() {
detect_thread_running = false;
detect_thread.join();
}
void Adapter::Setup() { void Adapter::Setup() {
// Reset the error status in case the adapter gets unplugged // Initialize all controllers as unplugged
if (current_status < 0) {
current_status = NO_ADAPTER_DETECTED;
}
adapter_controllers_status.fill(ControllerTypes::None); adapter_controllers_status.fill(ControllerTypes::None);
// Initialize all ports to store axis origin values
get_origin.fill(true);
// pointer to list of connected usb devices // pointer to list of connected usb devices
libusb_device** devices{}; libusb_device** devices{};
@ -229,8 +157,6 @@ void Adapter::Setup() {
const ssize_t device_count = libusb_get_device_list(libusb_ctx, &devices); const ssize_t device_count = libusb_get_device_list(libusb_ctx, &devices);
if (device_count < 0) { if (device_count < 0) {
LOG_ERROR(Input, "libusb_get_device_list failed with error: {}", device_count); LOG_ERROR(Input, "libusb_get_device_list failed with error: {}", device_count);
detect_thread_running = false; // Stop the loop constantly checking for gc adapter
// TODO: For hotplug+gc adapter checkbox implementation, revert this.
return; return;
} }
@ -244,9 +170,6 @@ void Adapter::Setup() {
} }
libusb_free_device_list(devices, 1); libusb_free_device_list(devices, 1);
} }
// Break out of the ScanThreadFunc() loop that is constantly looking for the device
// Assumes user has GC adapter plugged in before launch to use the adapter
detect_thread_running = false;
} }
bool Adapter::CheckDeviceAccess(libusb_device* device) { bool Adapter::CheckDeviceAccess(libusb_device* device) {
@ -331,24 +254,14 @@ void Adapter::GetGCEndpoint(libusb_device* device) {
sizeof(clear_payload), nullptr, 16); sizeof(clear_payload), nullptr, 16);
adapter_thread_running = true; adapter_thread_running = true;
current_status = ADAPTER_DETECTED;
adapter_input_thread = std::thread([=] { Read(); }); // Read input adapter_input_thread = std::thread([=] { Read(); }); // Read input
} }
Adapter::~Adapter() { Adapter::~Adapter() {
StopScanThread();
Reset(); Reset();
} }
void Adapter::Reset() { void Adapter::Reset() {
std::unique_lock<std::mutex> lock(initialization_mutex, std::defer_lock);
if (!lock.try_lock()) {
return;
}
if (current_status != ADAPTER_DETECTED) {
return;
}
if (adapter_thread_running) { if (adapter_thread_running) {
adapter_thread_running = false; adapter_thread_running = false;
} }
@ -356,7 +269,6 @@ void Adapter::Reset() {
adapter_controllers_status.fill(ControllerTypes::None); adapter_controllers_status.fill(ControllerTypes::None);
get_origin.fill(true); get_origin.fill(true);
current_status = NO_ADAPTER_DETECTED;
if (usb_adapter_handle) { if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 1); libusb_release_interface(usb_adapter_handle, 1);
@ -409,24 +321,7 @@ const std::array<GCState, 4>& Adapter::GetPadState() const {
} }
int Adapter::GetOriginValue(int port, int axis) const { int Adapter::GetOriginValue(int port, int axis) const {
const auto& status = origin_status[port]; return origin_status[port].axis_values[axis];
switch (static_cast<PadAxes>(axis)) {
case PadAxes::StickX:
return status.stick_x;
case PadAxes::StickY:
return status.stick_y;
case PadAxes::SubstickX:
return status.substick_x;
case PadAxes::SubstickY:
return status.substick_y;
case PadAxes::TriggerLeft:
return status.trigger_left;
case PadAxes::TriggerRight:
return status.trigger_right;
default:
return 0;
}
} }
} // namespace GCAdapter } // namespace GCAdapter

@ -48,23 +48,9 @@ enum class PadAxes : u8 {
struct GCPadStatus { struct GCPadStatus {
u16 button{}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits u16 button{}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
u8 stick_x{}; // 0 <= stick_x <= 255
u8 stick_y{}; // 0 <= stick_y <= 255
u8 substick_x{}; // 0 <= substick_x <= 255
u8 substick_y{}; // 0 <= substick_y <= 255
u8 trigger_left{}; // 0 <= trigger_left <= 255
u8 trigger_right{}; // 0 <= trigger_right <= 255
static constexpr u8 MAIN_STICK_CENTER_X = 0x80; std::array<u8, 6> axis_values{}; // Triggers and sticks, following indices defined in PadAxes
static constexpr u8 MAIN_STICK_CENTER_Y = 0x80; static constexpr u8 THRESHOLD = 50; // Threshold for axis press for polling
static constexpr u8 MAIN_STICK_RADIUS = 0x7f;
static constexpr u8 C_STICK_CENTER_X = 0x80;
static constexpr u8 C_STICK_CENTER_Y = 0x80;
static constexpr u8 C_STICK_RADIUS = 0x7f;
static constexpr u8 THRESHOLD = 10;
// 256/4, at least a quarter press to count as a press. For polling mostly
static constexpr u8 TRIGGER_THRESHOLD = 64;
u8 port{}; u8 port{};
PadAxes axis{PadAxes::Undefined}; PadAxes axis{PadAxes::Undefined};
@ -78,11 +64,6 @@ struct GCState {
enum class ControllerTypes { None, Wired, Wireless }; enum class ControllerTypes { None, Wired, Wireless };
enum {
NO_ADAPTER_DETECTED = 0,
ADAPTER_DETECTED = 1,
};
class Adapter { class Adapter {
public: public:
/// Initialize the GC Adapter capture and read sequence /// Initialize the GC Adapter capture and read sequence
@ -111,12 +92,6 @@ private:
void PadToState(const GCPadStatus& pad, GCState& state); void PadToState(const GCPadStatus& pad, GCState& state);
void Read(); void Read();
void ScanThreadFunc();
/// Begin scanning for the GC Adapter.
void StartScanThread();
/// Stop scanning for the adapter
void StopScanThread();
/// Resets status of device connected to port /// Resets status of device connected to port
void ResetDeviceType(std::size_t port); void ResetDeviceType(std::size_t port);
@ -133,19 +108,11 @@ private:
/// For use in initialization, querying devices to find the adapter /// For use in initialization, querying devices to find the adapter
void Setup(); void Setup();
int current_status = NO_ADAPTER_DETECTED;
libusb_device_handle* usb_adapter_handle = nullptr; libusb_device_handle* usb_adapter_handle = nullptr;
std::array<ControllerTypes, 4> adapter_controllers_status{};
std::mutex s_mutex;
std::thread adapter_input_thread; std::thread adapter_input_thread;
bool adapter_thread_running; bool adapter_thread_running;
std::mutex initialization_mutex;
std::thread detect_thread;
bool detect_thread_running = false;
libusb_context* libusb_ctx; libusb_context* libusb_ctx;
u8 input_endpoint = 0; u8 input_endpoint = 0;
@ -153,10 +120,11 @@ private:
bool configuring = false; bool configuring = false;
std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue;
std::array<GCState, 4> state; std::array<GCState, 4> state;
std::array<bool, 4> get_origin; std::array<bool, 4> get_origin;
std::array<GCPadStatus, 4> origin_status; std::array<GCPadStatus, 4> origin_status;
std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue;
std::array<ControllerTypes, 4> adapter_controllers_status{};
}; };
} // namespace GCAdapter } // namespace GCAdapter