hle: kernel: Allocate a dummy KThread for each host thread, and use it for scheduling.

master
bunnei 2021-01-21 13:00:16 +07:00
parent 37f74d8741
commit 6e953f7f02
8 changed files with 45 additions and 43 deletions

@ -9,12 +9,6 @@
namespace Kernel { namespace Kernel {
static KThread* ToThread(uintptr_t thread_) {
ASSERT((thread_ & EmuThreadHandleReserved) == 0);
ASSERT((thread_ & 1) == 0);
return reinterpret_cast<KThread*>(thread_);
}
void KLightLock::Lock() { void KLightLock::Lock() {
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)); const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
const uintptr_t cur_thread_tag = (cur_thread | 1); const uintptr_t cur_thread_tag = (cur_thread | 1);
@ -48,7 +42,7 @@ void KLightLock::Unlock() {
} }
void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) { void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
KThread* cur_thread = ToThread(_cur_thread); KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
// Pend the current thread waiting on the owner thread. // Pend the current thread waiting on the owner thread.
{ {
@ -60,7 +54,7 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
} }
// Add the current thread as a waiter on the owner. // Add the current thread as a waiter on the owner.
KThread* owner_thread = ToThread(_owner & ~1ul); KThread* owner_thread = reinterpret_cast<KThread*>(_owner & ~1ul);
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag))); cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
owner_thread->AddWaiter(cur_thread); owner_thread->AddWaiter(cur_thread);
@ -88,7 +82,7 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
} }
void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) { void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
KThread* owner_thread = ToThread(_cur_thread); KThread* owner_thread = reinterpret_cast<KThread*>(_cur_thread);
// Unlock. // Unlock.
{ {

@ -623,7 +623,7 @@ KThread* KScheduler::GetCurrentThread() const {
if (auto result = current_thread.load(); result) { if (auto result = current_thread.load(); result) {
return result; return result;
} }
return idle_thread.get(); return idle_thread;
} }
u64 KScheduler::GetLastContextSwitchTicks() const { u64 KScheduler::GetLastContextSwitchTicks() const {
@ -708,7 +708,7 @@ void KScheduler::ScheduleImpl() {
// We never want to schedule a null thread, so use the idle thread if we don't have a next. // We never want to schedule a null thread, so use the idle thread if we don't have a next.
if (next_thread == nullptr) { if (next_thread == nullptr) {
next_thread = idle_thread.get(); next_thread = idle_thread;
} }
// If we're not actually switching thread, there's nothing to do. // If we're not actually switching thread, there's nothing to do.
@ -803,7 +803,7 @@ void KScheduler::Initialize() {
auto thread_res = KThread::Create(system, ThreadType::Main, name, 0, auto thread_res = KThread::Create(system, ThreadType::Main, name, 0,
KThread::IdleThreadPriority, 0, static_cast<u32>(core_id), 0, KThread::IdleThreadPriority, 0, static_cast<u32>(core_id), 0,
nullptr, std::move(init_func), init_func_parameter); nullptr, std::move(init_func), init_func_parameter);
idle_thread = thread_res.Unwrap(); idle_thread = thread_res.Unwrap().get();
} }
KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel) KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)

@ -54,7 +54,7 @@ public:
/// Returns true if the scheduler is idle /// Returns true if the scheduler is idle
[[nodiscard]] bool IsIdle() const { [[nodiscard]] bool IsIdle() const {
return GetCurrentThread() == idle_thread.get(); return GetCurrentThread() == idle_thread;
} }
/// Gets the timestamp for the last context switch in ticks. /// Gets the timestamp for the last context switch in ticks.
@ -176,7 +176,7 @@ private:
KThread* prev_thread{}; KThread* prev_thread{};
std::atomic<KThread*> current_thread{}; std::atomic<KThread*> current_thread{};
std::shared_ptr<KThread> idle_thread; KThread* idle_thread;
std::shared_ptr<Common::Fiber> switch_fiber{}; std::shared_ptr<Common::Fiber> switch_fiber{};

@ -10,6 +10,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/spin_lock.h" #include "common/spin_lock.h"
#include "core/hardware_properties.h" #include "core/hardware_properties.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
namespace Kernel { namespace Kernel {
@ -22,42 +23,42 @@ public:
explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {} explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {}
bool IsLockedByCurrentThread() const { bool IsLockedByCurrentThread() const {
return this->owner_thread == kernel.GetCurrentEmuThreadID(); return this->owner_thread == GetCurrentThreadPointer(kernel);
} }
void Lock() { void Lock() {
if (this->IsLockedByCurrentThread()) { if (this->IsLockedByCurrentThread()) {
// If we already own the lock, we can just increment the count. // If we already own the lock, we can just increment the count.
ASSERT(this->lock_count > 0); ASSERT(lock_count > 0);
this->lock_count++; lock_count++;
} else { } else {
// Otherwise, we want to disable scheduling and acquire the spinlock. // Otherwise, we want to disable scheduling and acquire the spinlock.
SchedulerType::DisableScheduling(kernel); SchedulerType::DisableScheduling(kernel);
this->spin_lock.lock(); spin_lock.lock();
// For debug, ensure that our state is valid. // For debug, ensure that our state is valid.
ASSERT(this->lock_count == 0); ASSERT(lock_count == 0);
ASSERT(this->owner_thread == EmuThreadHandleInvalid); ASSERT(owner_thread == nullptr);
// Increment count, take ownership. // Increment count, take ownership.
this->lock_count = 1; lock_count = 1;
this->owner_thread = kernel.GetCurrentEmuThreadID(); owner_thread = GetCurrentThreadPointer(kernel);
} }
} }
void Unlock() { void Unlock() {
ASSERT(this->IsLockedByCurrentThread()); ASSERT(this->IsLockedByCurrentThread());
ASSERT(this->lock_count > 0); ASSERT(lock_count > 0);
// Release an instance of the lock. // Release an instance of the lock.
if ((--this->lock_count) == 0) { if ((--lock_count) == 0) {
// We're no longer going to hold the lock. Take note of what cores need scheduling. // We're no longer going to hold the lock. Take note of what cores need scheduling.
const u64 cores_needing_scheduling = const u64 cores_needing_scheduling =
SchedulerType::UpdateHighestPriorityThreads(kernel); SchedulerType::UpdateHighestPriorityThreads(kernel);
// Note that we no longer hold the lock, and unlock the spinlock. // Note that we no longer hold the lock, and unlock the spinlock.
this->owner_thread = EmuThreadHandleInvalid; owner_thread = nullptr;
this->spin_lock.unlock(); spin_lock.unlock();
// Enable scheduling, and perform a rescheduling operation. // Enable scheduling, and perform a rescheduling operation.
SchedulerType::EnableScheduling(kernel, cores_needing_scheduling); SchedulerType::EnableScheduling(kernel, cores_needing_scheduling);
@ -68,7 +69,7 @@ private:
KernelCore& kernel; KernelCore& kernel;
Common::SpinLock spin_lock{}; Common::SpinLock spin_lock{};
s32 lock_count{}; s32 lock_count{};
EmuThreadHandle owner_thread{EmuThreadHandleInvalid}; KThread* owner_thread{};
}; };
} // namespace Kernel } // namespace Kernel

@ -1034,11 +1034,7 @@ ResultVal<std::shared_ptr<KThread>> KThread::Create(Core::System& system, Thread
} }
KThread* GetCurrentThreadPointer(KernelCore& kernel) { KThread* GetCurrentThreadPointer(KernelCore& kernel) {
if (!kernel.CurrentScheduler()) { return kernel.GetCurrentEmuThread();
// We are not called from a core thread
return {};
}
return kernel.CurrentScheduler()->GetCurrentThread();
} }
KThread& GetCurrentThread(KernelCore& kernel) { KThread& GetCurrentThread(KernelCore& kernel) {

@ -57,9 +57,10 @@ struct KernelCore::Impl {
} }
void Initialize(KernelCore& kernel) { void Initialize(KernelCore& kernel) {
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
RegisterHostThread(); RegisterHostThread();
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
service_thread_manager = service_thread_manager =
std::make_unique<Common::ThreadWorker>(1, "yuzu:ServiceThreadManager"); std::make_unique<Common::ThreadWorker>(1, "yuzu:ServiceThreadManager");
is_phantom_mode_for_singlecore = false; is_phantom_mode_for_singlecore = false;
@ -206,6 +207,18 @@ struct KernelCore::Impl {
return host_thread_id; return host_thread_id;
} }
// Gets the dummy KThread for the caller, allocating a new one if this is the first time
KThread* GetHostDummyThread() {
const thread_local auto thread =
KThread::Create(
system, ThreadType::Main,
std::string{"DummyThread:" + GetHostThreadId()}, 0, KThread::DefaultThreadPriority,
0, static_cast<u32>(3), 0, nullptr,
[]([[maybe_unused]] void* arg) { UNREACHABLE(); }, nullptr)
.Unwrap();
return thread.get();
}
/// Registers a CPU core thread by allocating a host thread ID for it /// Registers a CPU core thread by allocating a host thread ID for it
void RegisterCoreThread(std::size_t core_id) { void RegisterCoreThread(std::size_t core_id) {
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
@ -218,6 +231,7 @@ struct KernelCore::Impl {
/// Registers a new host thread by allocating a host thread ID for it /// Registers a new host thread by allocating a host thread ID for it
void RegisterHostThread() { void RegisterHostThread() {
[[maybe_unused]] const auto this_id = GetHostThreadId(); [[maybe_unused]] const auto this_id = GetHostThreadId();
[[maybe_unused]] const auto dummy_thread = GetHostDummyThread();
} }
[[nodiscard]] u32 GetCurrentHostThreadID() { [[nodiscard]] u32 GetCurrentHostThreadID() {
@ -237,13 +251,12 @@ struct KernelCore::Impl {
is_phantom_mode_for_singlecore = value; is_phantom_mode_for_singlecore = value;
} }
[[nodiscard]] EmuThreadHandle GetCurrentEmuThreadID() { KThread* GetCurrentEmuThread() {
const auto thread_id = GetCurrentHostThreadID(); const auto thread_id = GetCurrentHostThreadID();
if (thread_id >= Core::Hardware::NUM_CPU_CORES) { if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
// Reserved value for HLE threads return GetHostDummyThread();
return EmuThreadHandleReserved + (static_cast<u64>(thread_id) << 1);
} }
return reinterpret_cast<uintptr_t>(schedulers[thread_id].get()); return schedulers[thread_id]->GetCurrentThread();
} }
void InitializeMemoryLayout() { void InitializeMemoryLayout() {
@ -548,8 +561,8 @@ u32 KernelCore::GetCurrentHostThreadID() const {
return impl->GetCurrentHostThreadID(); return impl->GetCurrentHostThreadID();
} }
EmuThreadHandle KernelCore::GetCurrentEmuThreadID() const { KThread* KernelCore::GetCurrentEmuThread() const {
return impl->GetCurrentEmuThreadID(); return impl->GetCurrentEmuThread();
} }
Memory::MemoryManager& KernelCore::MemoryManager() { Memory::MemoryManager& KernelCore::MemoryManager() {

@ -165,8 +165,8 @@ public:
/// Determines whether or not the given port is a valid named port. /// Determines whether or not the given port is a valid named port.
bool IsValidNamedPort(NamedPortTable::const_iterator port) const; bool IsValidNamedPort(NamedPortTable::const_iterator port) const;
/// Gets the current host_thread/guest_thread handle. /// Gets the current host_thread/guest_thread pointer.
EmuThreadHandle GetCurrentEmuThreadID() const; KThread* GetCurrentEmuThread() const;
/// Gets the current host_thread handle. /// Gets the current host_thread handle.
u32 GetCurrentHostThreadID() const; u32 GetCurrentHostThreadID() const;

@ -1039,8 +1039,6 @@ bool GMainWindow::LoadROM(const QString& filename, std::size_t program_index) {
std::make_unique<QtWebBrowser>(*this), // Web Browser std::make_unique<QtWebBrowser>(*this), // Web Browser
}); });
system.RegisterHostThread();
const Core::System::ResultStatus result{ const Core::System::ResultStatus result{
system.Load(*render_window, filename.toStdString(), program_index)}; system.Load(*render_window, filename.toStdString(), program_index)};