audio_core: Preserve front channel volume after 6 to 2 downmix

Many games report 6 channel output while only providing data for 2. We only output 2-channel audio regardless, and in the downmixing, front left/right only provide 36% of their volume. This is done assuming all of the other channels also contain valid data, but in many games they don't. This PR alters the downmixing to preserve front left/right, so volume is not lost.

This improves volume in Link's Awakening, New Super Mario Bros U, Disgaea 6, Super Kirby Clash.
master
Kelebek1 2021-07-07 14:56:23 +07:00
parent 2eb018c80f
commit 7636fefb71
5 changed files with 81 additions and 75 deletions

@ -29,10 +29,9 @@ namespace {
(static_cast<float>(r_channel) * r_mix_amount))); (static_cast<float>(r_channel) * r_mix_amount)));
} }
[[nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2(s16 fl_channel, s16 fr_channel, [[maybe_unused, nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2(
s16 fc_channel, s16 fl_channel, s16 fr_channel, s16 fc_channel, [[maybe_unused]] s16 lf_channel, s16 bl_channel,
[[maybe_unused]] s16 lf_channel, s16 br_channel) {
s16 bl_channel, s16 br_channel) {
// Front channels are mixed 36.94%, Center channels are mixed to be 26.12% & the back channels // Front channels are mixed 36.94%, Center channels are mixed to be 26.12% & the back channels
// are mixed to be 36.94% // are mixed to be 36.94%
@ -57,11 +56,11 @@ namespace {
const std::array<float_le, 4>& coeff) { const std::array<float_le, 4>& coeff) {
const auto left = const auto left =
static_cast<float>(fl_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] + static_cast<float>(fl_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(bl_channel) * coeff[0]; static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(bl_channel) * coeff[3];
const auto right = const auto right =
static_cast<float>(fr_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] + static_cast<float>(fr_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(br_channel) * coeff[0]; static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(br_channel) * coeff[3];
return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))}; return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))};
} }
@ -241,7 +240,7 @@ void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
const auto channel_count = buffer_offsets.size(); const auto channel_count = buffer_offsets.size();
const auto& final_mix = mix_context.GetFinalMixInfo(); const auto& final_mix = mix_context.GetFinalMixInfo();
const auto& in_params = final_mix.GetInParams(); const auto& in_params = final_mix.GetInParams();
std::vector<s32*> mix_buffers(channel_count); std::vector<std::span<s32>> mix_buffers(channel_count);
for (std::size_t i = 0; i < channel_count; i++) { for (std::size_t i = 0; i < channel_count; i++) {
mix_buffers[i] = mix_buffers[i] =
command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]); command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]);
@ -294,18 +293,11 @@ void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
buffer[i * stream_channel_count + 0] = Mix2To1(fl_sample, fr_sample); buffer[i * stream_channel_count + 0] = Mix2To1(fl_sample, fr_sample);
} else if (stream_channel_count == 2) { } else if (stream_channel_count == 2) {
// Mix all channels into 2 channels // Mix all channels into 2 channels
if (sink_context.HasDownMixingCoefficients()) {
const auto [left, right] = Mix6To2WithCoefficients( const auto [left, right] = Mix6To2WithCoefficients(
fl_sample, fr_sample, fc_sample, lf_sample, bl_sample, br_sample, fl_sample, fr_sample, fc_sample, lf_sample, bl_sample, br_sample,
sink_context.GetDownmixCoefficients()); sink_context.GetDownmixCoefficients());
buffer[i * stream_channel_count + 0] = left; buffer[i * stream_channel_count + 0] = left;
buffer[i * stream_channel_count + 1] = right; buffer[i * stream_channel_count + 1] = right;
} else {
const auto [left, right] = Mix6To2(fl_sample, fr_sample, fc_sample,
lf_sample, bl_sample, br_sample);
buffer[i * stream_channel_count + 0] = left;
buffer[i * stream_channel_count + 1] = right;
}
} else if (stream_channel_count == 6) { } else if (stream_channel_count == 6) {
// Pass through // Pass through
buffer[i * stream_channel_count + 0] = fl_sample; buffer[i * stream_channel_count + 0] = fl_sample;

@ -31,7 +31,7 @@ constexpr std::array<f32, AudioCommon::I3DL2REVERB_TAPS> EARLY_GAIN{
0.72867f, 0.69794f, 0.5464f, 0.24563f, 0.45214f, 0.44042f}; 0.72867f, 0.69794f, 0.5464f, 0.24563f, 0.45214f, 0.44042f};
template <std::size_t N> template <std::size_t N>
void ApplyMix(s32* output, const s32* input, s32 gain, s32 sample_count) { void ApplyMix(std::span<s32> output, std::span<const s32> input, s32 gain, s32 sample_count) {
for (std::size_t i = 0; i < static_cast<std::size_t>(sample_count); i += N) { for (std::size_t i = 0; i < static_cast<std::size_t>(sample_count); i += N) {
for (std::size_t j = 0; j < N; j++) { for (std::size_t j = 0; j < N; j++) {
output[i + j] += output[i + j] +=
@ -40,7 +40,8 @@ void ApplyMix(s32* output, const s32* input, s32 gain, s32 sample_count) {
} }
} }
s32 ApplyMixRamp(s32* output, const s32* input, float gain, float delta, s32 sample_count) { s32 ApplyMixRamp(std::span<s32> output, std::span<const s32> input, float gain, float delta,
s32 sample_count) {
s32 x = 0; s32 x = 0;
for (s32 i = 0; i < sample_count; i++) { for (s32 i = 0; i < sample_count; i++) {
x = static_cast<s32>(static_cast<float>(input[i]) * gain); x = static_cast<s32>(static_cast<float>(input[i]) * gain);
@ -50,20 +51,22 @@ s32 ApplyMixRamp(s32* output, const s32* input, float gain, float delta, s32 sam
return x; return x;
} }
void ApplyGain(s32* output, const s32* input, s32 gain, s32 delta, s32 sample_count) { void ApplyGain(std::span<s32> output, std::span<const s32> input, s32 gain, s32 delta,
s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) { for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15); output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
gain += delta; gain += delta;
} }
} }
void ApplyGainWithoutDelta(s32* output, const s32* input, s32 gain, s32 sample_count) { void ApplyGainWithoutDelta(std::span<s32> output, std::span<const s32> input, s32 gain,
s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) { for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15); output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
} }
} }
s32 ApplyMixDepop(s32* output, s32 first_sample, s32 delta, s32 sample_count) { s32 ApplyMixDepop(std::span<s32> output, s32 first_sample, s32 delta, s32 sample_count) {
const bool positive = first_sample > 0; const bool positive = first_sample > 0;
auto final_sample = std::abs(first_sample); auto final_sample = std::abs(first_sample);
for (s32 i = 0; i < sample_count; i++) { for (s32 i = 0; i < sample_count; i++) {
@ -128,10 +131,10 @@ constexpr std::array<std::size_t, 20> REVERB_TAP_INDEX_6CH{4, 0, 0, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 3, 3, 3}; 1, 1, 1, 0, 0, 0, 0, 3, 3, 3};
template <std::size_t CHANNEL_COUNT> template <std::size_t CHANNEL_COUNT>
void ApplyReverbGeneric(I3dl2ReverbState& state, void ApplyReverbGeneric(
const std::array<const s32*, AudioCommon::MAX_CHANNEL_COUNT>& input, I3dl2ReverbState& state,
const std::array<s32*, AudioCommon::MAX_CHANNEL_COUNT>& output, const std::array<std::span<const s32>, AudioCommon::MAX_CHANNEL_COUNT>& input,
s32 sample_count) { const std::array<std::span<s32>, AudioCommon::MAX_CHANNEL_COUNT>& output, s32 sample_count) {
auto GetTapLookup = []() { auto GetTapLookup = []() {
if constexpr (CHANNEL_COUNT == 1) { if constexpr (CHANNEL_COUNT == 1) {
@ -454,8 +457,8 @@ void CommandGenerator::GenerateBiquadFilterCommand([[maybe_unused]] s32 mix_buff
"input_mix_buffer={}, output_mix_buffer={}", "input_mix_buffer={}, output_mix_buffer={}",
node_id, input_offset, output_offset); node_id, input_offset, output_offset);
} }
const auto* input = GetMixBuffer(input_offset); std::span<const s32> input = GetMixBuffer(input_offset);
auto* output = GetMixBuffer(output_offset); std::span<s32> output = GetMixBuffer(output_offset);
// Biquad filter parameters // Biquad filter parameters
const auto [n0, n1, n2] = params.numerator; const auto [n0, n1, n2] = params.numerator;
@ -548,8 +551,8 @@ void CommandGenerator::GenerateI3dl2ReverbEffectCommand(s32 mix_buffer_offset, E
return; return;
} }
std::array<const s32*, AudioCommon::MAX_CHANNEL_COUNT> input{}; std::array<std::span<const s32>, AudioCommon::MAX_CHANNEL_COUNT> input{};
std::array<s32*, AudioCommon::MAX_CHANNEL_COUNT> output{}; std::array<std::span<s32>, AudioCommon::MAX_CHANNEL_COUNT> output{};
const auto status = params.status; const auto status = params.status;
for (s32 i = 0; i < channel_count; i++) { for (s32 i = 0; i < channel_count; i++) {
@ -584,7 +587,8 @@ void CommandGenerator::GenerateI3dl2ReverbEffectCommand(s32 mix_buffer_offset, E
for (s32 i = 0; i < channel_count; i++) { for (s32 i = 0; i < channel_count; i++) {
// Only copy if the buffer input and output do not match! // Only copy if the buffer input and output do not match!
if ((mix_buffer_offset + params.input[i]) != (mix_buffer_offset + params.output[i])) { if ((mix_buffer_offset + params.input[i]) != (mix_buffer_offset + params.output[i])) {
std::memcpy(output[i], input[i], worker_params.sample_count * sizeof(s32)); std::memcpy(output[i].data(), input[i].data(),
worker_params.sample_count * sizeof(s32));
} }
} }
} }
@ -600,8 +604,8 @@ void CommandGenerator::GenerateBiquadFilterEffectCommand(s32 mix_buffer_offset,
for (s32 i = 0; i < channel_count; i++) { for (s32 i = 0; i < channel_count; i++) {
// TODO(ogniK): Actually implement biquad filter // TODO(ogniK): Actually implement biquad filter
if (params.input[i] != params.output[i]) { if (params.input[i] != params.output[i]) {
const auto* input = GetMixBuffer(mix_buffer_offset + params.input[i]); std::span<const s32> input = GetMixBuffer(mix_buffer_offset + params.input[i]);
auto* output = GetMixBuffer(mix_buffer_offset + params.output[i]); std::span<s32> output = GetMixBuffer(mix_buffer_offset + params.output[i]);
ApplyMix<1>(output, input, 32768, worker_params.sample_count); ApplyMix<1>(output, input, 32768, worker_params.sample_count);
} }
} }
@ -640,14 +644,15 @@ void CommandGenerator::GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* inf
if (samples_read != static_cast<int>(worker_params.sample_count) && if (samples_read != static_cast<int>(worker_params.sample_count) &&
samples_read <= params.sample_count) { samples_read <= params.sample_count) {
std::memset(GetMixBuffer(output_index), 0, params.sample_count - samples_read); std::memset(GetMixBuffer(output_index).data(), 0,
params.sample_count - samples_read);
} }
} else { } else {
AuxInfoDSP empty{}; AuxInfoDSP empty{};
memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP));
memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP));
if (output_index != input_index) { if (output_index != input_index) {
std::memcpy(GetMixBuffer(output_index), GetMixBuffer(input_index), std::memcpy(GetMixBuffer(output_index).data(), GetMixBuffer(input_index).data(),
worker_params.sample_count * sizeof(s32)); worker_params.sample_count * sizeof(s32));
} }
} }
@ -665,7 +670,7 @@ ServerSplitterDestinationData* CommandGenerator::GetDestinationData(s32 splitter
} }
s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples, s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples,
const s32* data, u32 sample_count, u32 write_offset, std::span<const s32> data, u32 sample_count, u32 write_offset,
u32 write_count) { u32 write_count) {
if (max_samples == 0) { if (max_samples == 0) {
return 0; return 0;
@ -675,14 +680,14 @@ s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u3
return 0; return 0;
} }
std::size_t data_offset{}; s32 data_offset{};
u32 remaining = sample_count; u32 remaining = sample_count;
while (remaining > 0) { while (remaining > 0) {
// Get position in buffer // Get position in buffer
const auto base = send_buffer + (offset * sizeof(u32)); const auto base = send_buffer + (offset * sizeof(u32));
const auto samples_to_grab = std::min(max_samples - offset, remaining); const auto samples_to_grab = std::min(max_samples - offset, remaining);
// Write to output // Write to output
memory.WriteBlock(base, (data + data_offset), samples_to_grab * sizeof(u32)); memory.WriteBlock(base, (data.data() + data_offset), samples_to_grab * sizeof(u32));
offset = (offset + samples_to_grab) % max_samples; offset = (offset + samples_to_grab) % max_samples;
remaining -= samples_to_grab; remaining -= samples_to_grab;
data_offset += samples_to_grab; data_offset += samples_to_grab;
@ -695,7 +700,7 @@ s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u3
} }
s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples, s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples,
s32* out_data, u32 sample_count, u32 read_offset, std::span<s32> out_data, u32 sample_count, u32 read_offset,
u32 read_count) { u32 read_count) {
if (max_samples == 0) { if (max_samples == 0) {
return 0; return 0;
@ -707,15 +712,16 @@ s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u3
} }
u32 remaining = sample_count; u32 remaining = sample_count;
s32 data_offset{};
while (remaining > 0) { while (remaining > 0) {
const auto base = recv_buffer + (offset * sizeof(u32)); const auto base = recv_buffer + (offset * sizeof(u32));
const auto samples_to_grab = std::min(max_samples - offset, remaining); const auto samples_to_grab = std::min(max_samples - offset, remaining);
std::vector<s32> buffer(samples_to_grab); std::vector<s32> buffer(samples_to_grab);
memory.ReadBlock(base, buffer.data(), buffer.size() * sizeof(u32)); memory.ReadBlock(base, buffer.data(), buffer.size() * sizeof(u32));
std::memcpy(out_data, buffer.data(), buffer.size() * sizeof(u32)); std::memcpy(out_data.data() + data_offset, buffer.data(), buffer.size() * sizeof(u32));
out_data += samples_to_grab;
offset = (offset + samples_to_grab) % max_samples; offset = (offset + samples_to_grab) % max_samples;
remaining -= samples_to_grab; remaining -= samples_to_grab;
data_offset += samples_to_grab;
} }
if (read_count != 0) { if (read_count != 0) {
@ -962,8 +968,8 @@ void CommandGenerator::GenerateMixCommand(std::size_t output_offset, std::size_t
node_id, input_offset, output_offset, volume); node_id, input_offset, output_offset, volume);
} }
auto* output = GetMixBuffer(output_offset); std::span<s32> output = GetMixBuffer(output_offset);
const auto* input = GetMixBuffer(input_offset); std::span<const s32> input = GetMixBuffer(input_offset);
const s32 gain = static_cast<s32>(volume * 32768.0f); const s32 gain = static_cast<s32>(volume * 32768.0f);
// Mix with loop unrolling // Mix with loop unrolling
@ -1155,12 +1161,14 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
return samples_processed; return samples_processed;
} }
s32* CommandGenerator::GetMixBuffer(std::size_t index) { std::span<s32> CommandGenerator::GetMixBuffer(std::size_t index) {
return mix_buffer.data() + (index * worker_params.sample_count); return std::span<s32>(mix_buffer.data() + (index * worker_params.sample_count),
worker_params.sample_count);
} }
const s32* CommandGenerator::GetMixBuffer(std::size_t index) const { std::span<const s32> CommandGenerator::GetMixBuffer(std::size_t index) const {
return mix_buffer.data() + (index * worker_params.sample_count); return std::span<const s32>(mix_buffer.data() + (index * worker_params.sample_count),
worker_params.sample_count);
} }
std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const { std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const {
@ -1171,15 +1179,15 @@ std::size_t CommandGenerator::GetTotalMixBufferCount() const {
return worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT; return worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT;
} }
s32* CommandGenerator::GetChannelMixBuffer(s32 channel) { std::span<s32> CommandGenerator::GetChannelMixBuffer(s32 channel) {
return GetMixBuffer(worker_params.mix_buffer_count + channel); return GetMixBuffer(worker_params.mix_buffer_count + channel);
} }
const s32* CommandGenerator::GetChannelMixBuffer(s32 channel) const { std::span<const s32> CommandGenerator::GetChannelMixBuffer(s32 channel) const {
return GetMixBuffer(worker_params.mix_buffer_count + channel); return GetMixBuffer(worker_params.mix_buffer_count + channel);
} }
void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output, void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, std::span<s32> output,
VoiceState& dsp_state, s32 channel, VoiceState& dsp_state, s32 channel,
s32 target_sample_rate, s32 sample_count, s32 target_sample_rate, s32 sample_count,
s32 node_id) { s32 node_id) {
@ -1191,7 +1199,7 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
node_id, channel, in_params.sample_format, sample_count, in_params.sample_rate, node_id, channel, in_params.sample_format, sample_count, in_params.sample_rate,
in_params.mix_id, in_params.splitter_info_id); in_params.mix_id, in_params.splitter_info_id);
} }
ASSERT_OR_EXECUTE(output != nullptr, { return; }); ASSERT_OR_EXECUTE(output.data() != nullptr, { return; });
const auto resample_rate = static_cast<s32>( const auto resample_rate = static_cast<s32>(
static_cast<float>(in_params.sample_rate) / static_cast<float>(target_sample_rate) * static_cast<float>(in_params.sample_rate) / static_cast<float>(target_sample_rate) *
@ -1208,6 +1216,7 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
} }
std::size_t temp_mix_offset{}; std::size_t temp_mix_offset{};
s32 samples_output{};
auto samples_remaining = sample_count; auto samples_remaining = sample_count;
while (samples_remaining > 0) { while (samples_remaining > 0) {
const auto samples_to_output = std::min(samples_remaining, min_required_samples); const auto samples_to_output = std::min(samples_remaining, min_required_samples);
@ -1296,20 +1305,21 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) { if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) {
// No need to resample // No need to resample
std::memcpy(output, sample_buffer.data(), samples_read * sizeof(s32)); std::memcpy(output.data() + samples_output, sample_buffer.data(),
samples_read * sizeof(s32));
} else { } else {
std::fill(sample_buffer.begin() + temp_mix_offset, std::fill(sample_buffer.begin() + temp_mix_offset,
sample_buffer.begin() + temp_mix_offset + (samples_to_read - samples_read), sample_buffer.begin() + temp_mix_offset + (samples_to_read - samples_read),
0); 0);
AudioCore::Resample(output, sample_buffer.data(), resample_rate, dsp_state.fraction, AudioCore::Resample(output.data() + samples_output, sample_buffer.data(), resample_rate,
samples_to_output); dsp_state.fraction, samples_to_output);
// Resample // Resample
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) { for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
dsp_state.sample_history[i] = sample_buffer[samples_to_read + i]; dsp_state.sample_history[i] = sample_buffer[samples_to_read + i];
} }
} }
output += samples_to_output;
samples_remaining -= samples_to_output; samples_remaining -= samples_to_output;
samples_output += samples_to_output;
} }
} }

@ -5,6 +5,7 @@
#pragma once #pragma once
#include <array> #include <array>
#include <span>
#include "audio_core/common.h" #include "audio_core/common.h"
#include "audio_core/voice_context.h" #include "audio_core/voice_context.h"
#include "common/common_types.h" #include "common/common_types.h"
@ -41,10 +42,10 @@ public:
void PreCommand(); void PreCommand();
void PostCommand(); void PostCommand();
[[nodiscard]] s32* GetChannelMixBuffer(s32 channel); [[nodiscard]] std::span<s32> GetChannelMixBuffer(s32 channel);
[[nodiscard]] const s32* GetChannelMixBuffer(s32 channel) const; [[nodiscard]] std::span<const s32> GetChannelMixBuffer(s32 channel) const;
[[nodiscard]] s32* GetMixBuffer(std::size_t index); [[nodiscard]] std::span<s32> GetMixBuffer(std::size_t index);
[[nodiscard]] const s32* GetMixBuffer(std::size_t index) const; [[nodiscard]] std::span<const s32> GetMixBuffer(std::size_t index) const;
[[nodiscard]] std::size_t GetMixChannelBufferOffset(s32 channel) const; [[nodiscard]] std::size_t GetMixChannelBufferOffset(s32 channel) const;
[[nodiscard]] std::size_t GetTotalMixBufferCount() const; [[nodiscard]] std::size_t GetTotalMixBufferCount() const;
@ -77,10 +78,11 @@ private:
void GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled); void GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled);
[[nodiscard]] ServerSplitterDestinationData* GetDestinationData(s32 splitter_id, s32 index); [[nodiscard]] ServerSplitterDestinationData* GetDestinationData(s32 splitter_id, s32 index);
s32 WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples, const s32* data, s32 WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples,
u32 sample_count, u32 write_offset, u32 write_count); std::span<const s32> data, u32 sample_count, u32 write_offset,
s32 ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples, s32* out_data, u32 write_count);
u32 sample_count, u32 read_offset, u32 read_count); s32 ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples,
std::span<s32> out_data, u32 sample_count, u32 read_offset, u32 read_count);
void InitializeI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state, void InitializeI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state,
std::vector<u8>& work_buffer); std::vector<u8>& work_buffer);
@ -90,8 +92,9 @@ private:
s32 sample_end_offset, s32 sample_count, s32 channel, std::size_t mix_offset); s32 sample_end_offset, s32 sample_count, s32 channel, std::size_t mix_offset);
s32 DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_start_offset, s32 DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_start_offset,
s32 sample_end_offset, s32 sample_count, s32 channel, std::size_t mix_offset); s32 sample_end_offset, s32 sample_count, s32 channel, std::size_t mix_offset);
void DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output, VoiceState& dsp_state, void DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, std::span<s32> output,
s32 channel, s32 target_sample_rate, s32 sample_count, s32 node_id); VoiceState& dsp_state, s32 channel, s32 target_sample_rate,
s32 sample_count, s32 node_id);
AudioCommon::AudioRendererParameter& worker_params; AudioCommon::AudioRendererParameter& worker_params;
VoiceContext& voice_context; VoiceContext& voice_context;

@ -15,10 +15,17 @@ std::size_t SinkContext::GetCount() const {
void SinkContext::UpdateMainSink(const SinkInfo::InParams& in) { void SinkContext::UpdateMainSink(const SinkInfo::InParams& in) {
ASSERT(in.type == SinkTypes::Device); ASSERT(in.type == SinkTypes::Device);
has_downmix_coefs = in.device.down_matrix_enabled; if (in.device.down_matrix_enabled) {
if (has_downmix_coefs) {
downmix_coefficients = in.device.down_matrix_coef; downmix_coefficients = in.device.down_matrix_coef;
} else {
downmix_coefficients = {
1.0f, // front
0.707f, // center
0.0f, // lfe
0.707f, // back
};
} }
in_use = in.in_use; in_use = in.in_use;
use_count = in.device.input_count; use_count = in.device.input_count;
buffers = in.device.input; buffers = in.device.input;
@ -34,10 +41,6 @@ std::vector<u8> SinkContext::OutputBuffers() const {
return buffer_ret; return buffer_ret;
} }
bool SinkContext::HasDownMixingCoefficients() const {
return has_downmix_coefs;
}
const DownmixCoefficients& SinkContext::GetDownmixCoefficients() const { const DownmixCoefficients& SinkContext::GetDownmixCoefficients() const {
return downmix_coefficients; return downmix_coefficients;
} }

@ -84,7 +84,6 @@ public:
[[nodiscard]] bool InUse() const; [[nodiscard]] bool InUse() const;
[[nodiscard]] std::vector<u8> OutputBuffers() const; [[nodiscard]] std::vector<u8> OutputBuffers() const;
[[nodiscard]] bool HasDownMixingCoefficients() const;
[[nodiscard]] const DownmixCoefficients& GetDownmixCoefficients() const; [[nodiscard]] const DownmixCoefficients& GetDownmixCoefficients() const;
private: private:
@ -92,7 +91,6 @@ private:
s32 use_count{}; s32 use_count{};
std::array<u8, AudioCommon::MAX_CHANNEL_COUNT> buffers{}; std::array<u8, AudioCommon::MAX_CHANNEL_COUNT> buffers{};
std::size_t sink_count{}; std::size_t sink_count{};
bool has_downmix_coefs{false};
DownmixCoefficients downmix_coefficients{}; DownmixCoefficients downmix_coefficients{};
}; };
} // namespace AudioCore } // namespace AudioCore