Merge pull request #10731 from german77/misc_fixes

service: nfc: Accuracy fixes
master
liamwhite 2023-06-16 18:18:24 +07:00 committed by GitHub
commit a1adcc31d3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 199 additions and 116 deletions

@ -36,12 +36,12 @@ bool IsAmiiboValid(const EncryptedNTAG215File& ntag_file) {
// Validate UUID // Validate UUID
constexpr u8 CT = 0x88; // As defined in `ISO / IEC 14443 - 3` constexpr u8 CT = 0x88; // As defined in `ISO / IEC 14443 - 3`
if ((CT ^ ntag_file.uuid.uid[0] ^ ntag_file.uuid.uid[1] ^ ntag_file.uuid.uid[2]) != if ((CT ^ ntag_file.uuid.part1[0] ^ ntag_file.uuid.part1[1] ^ ntag_file.uuid.part1[2]) !=
ntag_file.uuid.uid[3]) { ntag_file.uuid.crc_check1) {
return false; return false;
} }
if ((ntag_file.uuid.uid[4] ^ ntag_file.uuid.uid[5] ^ ntag_file.uuid.uid[6] ^ if ((ntag_file.uuid.part2[0] ^ ntag_file.uuid.part2[1] ^ ntag_file.uuid.part2[2] ^
ntag_file.uuid.nintendo_id) != ntag_file.uuid.lock_bytes[0]) { ntag_file.uuid.nintendo_id) != ntag_file.uuid_crc_check2) {
return false; return false;
} }
@ -74,8 +74,9 @@ bool IsAmiiboValid(const NTAG215File& ntag_file) {
NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data) { NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data) {
NTAG215File encoded_data{}; NTAG215File encoded_data{};
encoded_data.uid = nfc_data.uuid.uid; encoded_data.uid = nfc_data.uuid;
encoded_data.nintendo_id = nfc_data.uuid.nintendo_id; encoded_data.uid_crc_check2 = nfc_data.uuid_crc_check2;
encoded_data.internal_number = nfc_data.internal_number;
encoded_data.static_lock = nfc_data.static_lock; encoded_data.static_lock = nfc_data.static_lock;
encoded_data.compability_container = nfc_data.compability_container; encoded_data.compability_container = nfc_data.compability_container;
encoded_data.hmac_data = nfc_data.user_memory.hmac_data; encoded_data.hmac_data = nfc_data.user_memory.hmac_data;
@ -94,7 +95,6 @@ NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data) {
encoded_data.register_info_crc = nfc_data.user_memory.register_info_crc; encoded_data.register_info_crc = nfc_data.user_memory.register_info_crc;
encoded_data.application_area = nfc_data.user_memory.application_area; encoded_data.application_area = nfc_data.user_memory.application_area;
encoded_data.hmac_tag = nfc_data.user_memory.hmac_tag; encoded_data.hmac_tag = nfc_data.user_memory.hmac_tag;
encoded_data.lock_bytes = nfc_data.uuid.lock_bytes;
encoded_data.model_info = nfc_data.user_memory.model_info; encoded_data.model_info = nfc_data.user_memory.model_info;
encoded_data.keygen_salt = nfc_data.user_memory.keygen_salt; encoded_data.keygen_salt = nfc_data.user_memory.keygen_salt;
encoded_data.dynamic_lock = nfc_data.dynamic_lock; encoded_data.dynamic_lock = nfc_data.dynamic_lock;
@ -108,9 +108,9 @@ NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data) {
EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data) { EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data) {
EncryptedNTAG215File nfc_data{}; EncryptedNTAG215File nfc_data{};
nfc_data.uuid.uid = encoded_data.uid; nfc_data.uuid = encoded_data.uid;
nfc_data.uuid.nintendo_id = encoded_data.nintendo_id; nfc_data.uuid_crc_check2 = encoded_data.uid_crc_check2;
nfc_data.uuid.lock_bytes = encoded_data.lock_bytes; nfc_data.internal_number = encoded_data.internal_number;
nfc_data.static_lock = encoded_data.static_lock; nfc_data.static_lock = encoded_data.static_lock;
nfc_data.compability_container = encoded_data.compability_container; nfc_data.compability_container = encoded_data.compability_container;
nfc_data.user_memory.hmac_data = encoded_data.hmac_data; nfc_data.user_memory.hmac_data = encoded_data.hmac_data;
@ -139,23 +139,12 @@ EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data) {
return nfc_data; return nfc_data;
} }
u32 GetTagPassword(const TagUuid& uuid) {
// Verify that the generated password is correct
u32 password = 0xAA ^ (uuid.uid[1] ^ uuid.uid[3]);
password &= (0x55 ^ (uuid.uid[2] ^ uuid.uid[4])) << 8;
password &= (0xAA ^ (uuid.uid[3] ^ uuid.uid[5])) << 16;
password &= (0x55 ^ (uuid.uid[4] ^ uuid.uid[6])) << 24;
return password;
}
HashSeed GetSeed(const NTAG215File& data) { HashSeed GetSeed(const NTAG215File& data) {
HashSeed seed{ HashSeed seed{
.magic = data.write_counter, .magic = data.write_counter,
.padding = {}, .padding = {},
.uid_1 = data.uid, .uid_1 = data.uid,
.nintendo_id_1 = data.nintendo_id,
.uid_2 = data.uid, .uid_2 = data.uid,
.nintendo_id_2 = data.nintendo_id,
.keygen_salt = data.keygen_salt, .keygen_salt = data.keygen_salt,
}; };
@ -177,10 +166,11 @@ std::vector<u8> GenerateInternalKey(const InternalKey& key, const HashSeed& seed
output.insert(output.end(), key.magic_bytes.begin(), output.insert(output.end(), key.magic_bytes.begin(),
key.magic_bytes.begin() + key.magic_length); key.magic_bytes.begin() + key.magic_length);
output.insert(output.end(), seed.uid_1.begin(), seed.uid_1.end()); std::array<u8, sizeof(NFP::TagUuid)> seed_uuid{};
output.emplace_back(seed.nintendo_id_1); memcpy(seed_uuid.data(), &seed.uid_1, sizeof(NFP::TagUuid));
output.insert(output.end(), seed.uid_2.begin(), seed.uid_2.end()); output.insert(output.end(), seed_uuid.begin(), seed_uuid.end());
output.emplace_back(seed.nintendo_id_2); memcpy(seed_uuid.data(), &seed.uid_2, sizeof(NFP::TagUuid));
output.insert(output.end(), seed_uuid.begin(), seed_uuid.end());
for (std::size_t i = 0; i < sizeof(seed.keygen_salt); i++) { for (std::size_t i = 0; i < sizeof(seed.keygen_salt); i++) {
output.emplace_back(static_cast<u8>(seed.keygen_salt[i] ^ key.xor_pad[i])); output.emplace_back(static_cast<u8>(seed.keygen_salt[i] ^ key.xor_pad[i]));
@ -264,8 +254,8 @@ void Cipher(const DerivedKeys& keys, const NTAG215File& in_data, NTAG215File& ou
// Copy the rest of the data directly // Copy the rest of the data directly
out_data.uid = in_data.uid; out_data.uid = in_data.uid;
out_data.nintendo_id = in_data.nintendo_id; out_data.uid_crc_check2 = in_data.uid_crc_check2;
out_data.lock_bytes = in_data.lock_bytes; out_data.internal_number = in_data.internal_number;
out_data.static_lock = in_data.static_lock; out_data.static_lock = in_data.static_lock;
out_data.compability_container = in_data.compability_container; out_data.compability_container = in_data.compability_container;

@ -24,10 +24,8 @@ using DrgbOutput = std::array<u8, 0x20>;
struct HashSeed { struct HashSeed {
u16_be magic; u16_be magic;
std::array<u8, 0xE> padding; std::array<u8, 0xE> padding;
NFC::UniqueSerialNumber uid_1; TagUuid uid_1;
u8 nintendo_id_1; TagUuid uid_2;
NFC::UniqueSerialNumber uid_2;
u8 nintendo_id_2;
std::array<u8, 0x20> keygen_salt; std::array<u8, 0x20> keygen_salt;
}; };
static_assert(sizeof(HashSeed) == 0x40, "HashSeed is an invalid size"); static_assert(sizeof(HashSeed) == 0x40, "HashSeed is an invalid size");
@ -69,9 +67,6 @@ NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data);
/// Converts from encoded file format to encrypted file format /// Converts from encoded file format to encrypted file format
EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data); EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data);
/// Returns password needed to allow write access to protected memory
u32 GetTagPassword(const TagUuid& uuid);
// Generates Seed needed for key derivation // Generates Seed needed for key derivation
HashSeed GetSeed(const NTAG215File& data); HashSeed GetSeed(const NTAG215File& data);

@ -242,34 +242,39 @@ Result NfcDevice::GetTagInfo(NFP::TagInfo& tag_info, bool is_mifare) const {
return ResultWrongDeviceState; return ResultWrongDeviceState;
} }
UniqueSerialNumber uuid = encrypted_tag_data.uuid.uid; UniqueSerialNumber uuid{};
u8 uuid_length{};
// Generate random UUID to bypass amiibo load limits NfcProtocol protocol{NfcProtocol::TypeA};
if (Settings::values.random_amiibo_id) { TagType tag_type{TagType::Type2};
Common::TinyMT rng{};
rng.Initialize(static_cast<u32>(GetCurrentPosixTime()));
rng.GenerateRandomBytes(uuid.data(), sizeof(UniqueSerialNumber));
uuid[3] = 0x88 ^ uuid[0] ^ uuid[1] ^ uuid[2];
}
if (is_mifare) { if (is_mifare) {
tag_info = { tag_type = TagType::Mifare;
.uuid = uuid, uuid_length = sizeof(NFP::NtagTagUuid);
.uuid_extension = {}, memcpy(uuid.data(), mifare_data.data(), uuid_length);
.uuid_length = static_cast<u8>(uuid.size()), } else {
.protocol = NfcProtocol::TypeA, tag_type = TagType::Type2;
.tag_type = TagType::Type4, uuid_length = sizeof(NFP::NtagTagUuid);
NFP::NtagTagUuid nUuid{
.part1 = encrypted_tag_data.uuid.part1,
.part2 = encrypted_tag_data.uuid.part2,
.nintendo_id = encrypted_tag_data.uuid.nintendo_id,
}; };
return ResultSuccess; memcpy(uuid.data(), &nUuid, uuid_length);
// Generate random UUID to bypass amiibo load limits
if (Settings::values.random_amiibo_id) {
Common::TinyMT rng{};
rng.Initialize(static_cast<u32>(GetCurrentPosixTime()));
rng.GenerateRandomBytes(uuid.data(), uuid_length);
}
} }
// Protocol and tag type may change here // Protocol and tag type may change here
tag_info = { tag_info = {
.uuid = uuid, .uuid = uuid,
.uuid_extension = {}, .uuid_length = uuid_length,
.uuid_length = static_cast<u8>(uuid.size()), .protocol = protocol,
.protocol = NfcProtocol::TypeA, .tag_type = tag_type,
.tag_type = TagType::Type2,
}; };
return ResultSuccess; return ResultSuccess;
@ -277,8 +282,38 @@ Result NfcDevice::GetTagInfo(NFP::TagInfo& tag_info, bool is_mifare) const {
Result NfcDevice::ReadMifare(std::span<const MifareReadBlockParameter> parameters, Result NfcDevice::ReadMifare(std::span<const MifareReadBlockParameter> parameters,
std::span<MifareReadBlockData> read_block_data) const { std::span<MifareReadBlockData> read_block_data) const {
if (device_state != DeviceState::TagFound && device_state != DeviceState::TagMounted) {
LOG_ERROR(Service_NFC, "Wrong device state {}", device_state);
if (device_state == DeviceState::TagRemoved) {
return ResultTagRemoved;
}
return ResultWrongDeviceState;
}
Result result = ResultSuccess; Result result = ResultSuccess;
TagInfo tag_info{};
result = GetTagInfo(tag_info, true);
if (result.IsError()) {
return result;
}
if (tag_info.protocol != NfcProtocol::TypeA || tag_info.tag_type != TagType::Mifare) {
return ResultInvalidTagType;
}
if (parameters.size() == 0) {
return ResultInvalidArgument;
}
const auto unknown = parameters[0].sector_key.unknown;
for (std::size_t i = 0; i < parameters.size(); i++) {
if (unknown != parameters[i].sector_key.unknown) {
return ResultInvalidArgument;
}
}
for (std::size_t i = 0; i < parameters.size(); i++) { for (std::size_t i = 0; i < parameters.size(); i++) {
result = ReadMifare(parameters[i], read_block_data[i]); result = ReadMifare(parameters[i], read_block_data[i]);
if (result.IsError()) { if (result.IsError()) {
@ -293,17 +328,8 @@ Result NfcDevice::ReadMifare(const MifareReadBlockParameter& parameter,
MifareReadBlockData& read_block_data) const { MifareReadBlockData& read_block_data) const {
const std::size_t sector_index = parameter.sector_number * sizeof(DataBlock); const std::size_t sector_index = parameter.sector_number * sizeof(DataBlock);
read_block_data.sector_number = parameter.sector_number; read_block_data.sector_number = parameter.sector_number;
if (device_state != DeviceState::TagFound && device_state != DeviceState::TagMounted) {
LOG_ERROR(Service_NFC, "Wrong device state {}", device_state);
if (device_state == DeviceState::TagRemoved) {
return ResultTagRemoved;
}
return ResultWrongDeviceState;
}
if (mifare_data.size() < sector_index + sizeof(DataBlock)) { if (mifare_data.size() < sector_index + sizeof(DataBlock)) {
return Mifare::ResultReadError; return ResultMifareError288;
} }
// TODO: Use parameter.sector_key to read encrypted data // TODO: Use parameter.sector_key to read encrypted data
@ -315,6 +341,28 @@ Result NfcDevice::ReadMifare(const MifareReadBlockParameter& parameter,
Result NfcDevice::WriteMifare(std::span<const MifareWriteBlockParameter> parameters) { Result NfcDevice::WriteMifare(std::span<const MifareWriteBlockParameter> parameters) {
Result result = ResultSuccess; Result result = ResultSuccess;
TagInfo tag_info{};
result = GetTagInfo(tag_info, true);
if (result.IsError()) {
return result;
}
if (tag_info.protocol != NfcProtocol::TypeA || tag_info.tag_type != TagType::Mifare) {
return ResultInvalidTagType;
}
if (parameters.size() == 0) {
return ResultInvalidArgument;
}
const auto unknown = parameters[0].sector_key.unknown;
for (std::size_t i = 0; i < parameters.size(); i++) {
if (unknown != parameters[i].sector_key.unknown) {
return ResultInvalidArgument;
}
}
for (std::size_t i = 0; i < parameters.size(); i++) { for (std::size_t i = 0; i < parameters.size(); i++) {
result = WriteMifare(parameters[i]); result = WriteMifare(parameters[i]);
if (result.IsError()) { if (result.IsError()) {
@ -324,7 +372,7 @@ Result NfcDevice::WriteMifare(std::span<const MifareWriteBlockParameter> paramet
if (!npad_device->WriteNfc(mifare_data)) { if (!npad_device->WriteNfc(mifare_data)) {
LOG_ERROR(Service_NFP, "Error writing to file"); LOG_ERROR(Service_NFP, "Error writing to file");
return Mifare::ResultReadError; return ResultMifareError288;
} }
return result; return result;
@ -342,7 +390,7 @@ Result NfcDevice::WriteMifare(const MifareWriteBlockParameter& parameter) {
} }
if (mifare_data.size() < sector_index + sizeof(DataBlock)) { if (mifare_data.size() < sector_index + sizeof(DataBlock)) {
return Mifare::ResultReadError; return ResultMifareError288;
} }
// TODO: Use parameter.sector_key to encrypt the data // TODO: Use parameter.sector_key to encrypt the data
@ -366,7 +414,7 @@ Result NfcDevice::Mount(NFP::ModelType model_type, NFP::MountTarget mount_target
if (!NFP::AmiiboCrypto::IsAmiiboValid(encrypted_tag_data)) { if (!NFP::AmiiboCrypto::IsAmiiboValid(encrypted_tag_data)) {
LOG_ERROR(Service_NFP, "Not an amiibo"); LOG_ERROR(Service_NFP, "Not an amiibo");
return ResultNotAnAmiibo; return ResultInvalidTagType;
} }
// The loaded amiibo is not encrypted // The loaded amiibo is not encrypted
@ -381,14 +429,14 @@ Result NfcDevice::Mount(NFP::ModelType model_type, NFP::MountTarget mount_target
} }
if (!NFP::AmiiboCrypto::DecodeAmiibo(encrypted_tag_data, tag_data)) { if (!NFP::AmiiboCrypto::DecodeAmiibo(encrypted_tag_data, tag_data)) {
bool has_backup = HasBackup(encrypted_tag_data.uuid.uid).IsSuccess(); bool has_backup = HasBackup(encrypted_tag_data.uuid).IsSuccess();
LOG_ERROR(Service_NFP, "Can't decode amiibo, has_backup= {}", has_backup); LOG_ERROR(Service_NFP, "Can't decode amiibo, has_backup= {}", has_backup);
return has_backup ? ResultCorruptedDataWithBackup : ResultCorruptedData; return has_backup ? ResultCorruptedDataWithBackup : ResultCorruptedData;
} }
std::vector<u8> data(sizeof(NFP::EncryptedNTAG215File)); std::vector<u8> data(sizeof(NFP::EncryptedNTAG215File));
memcpy(data.data(), &encrypted_tag_data, sizeof(encrypted_tag_data)); memcpy(data.data(), &encrypted_tag_data, sizeof(encrypted_tag_data));
WriteBackupData(encrypted_tag_data.uuid.uid, data); WriteBackupData(encrypted_tag_data.uuid, data);
device_state = DeviceState::TagMounted; device_state = DeviceState::TagMounted;
mount_target = mount_target_; mount_target = mount_target_;
@ -492,7 +540,7 @@ Result NfcDevice::FlushWithBreak(NFP::BreakType break_type) {
} }
memcpy(data.data(), &encrypted_tag_data, sizeof(encrypted_tag_data)); memcpy(data.data(), &encrypted_tag_data, sizeof(encrypted_tag_data));
WriteBackupData(encrypted_tag_data.uuid.uid, data); WriteBackupData(encrypted_tag_data.uuid, data);
} }
if (!npad_device->WriteNfc(data)) { if (!npad_device->WriteNfc(data)) {
@ -520,7 +568,7 @@ Result NfcDevice::Restore() {
return result; return result;
} }
result = ReadBackupData(tag_info.uuid, data); result = ReadBackupData(tag_info.uuid, tag_info.uuid_length, data);
if (result.IsError()) { if (result.IsError()) {
return result; return result;
@ -548,7 +596,7 @@ Result NfcDevice::Restore() {
} }
if (!NFP::AmiiboCrypto::IsAmiiboValid(temporary_encrypted_tag_data)) { if (!NFP::AmiiboCrypto::IsAmiiboValid(temporary_encrypted_tag_data)) {
return ResultNotAnAmiibo; return ResultInvalidTagType;
} }
if (!is_plain_amiibo) { if (!is_plain_amiibo) {
@ -1194,10 +1242,12 @@ Result NfcDevice::BreakTag(NFP::BreakType break_type) {
return FlushWithBreak(break_type); return FlushWithBreak(break_type);
} }
Result NfcDevice::HasBackup(const NFC::UniqueSerialNumber& uid) const { Result NfcDevice::HasBackup(const UniqueSerialNumber& uid, std::size_t uuid_size) const {
ASSERT_MSG(uuid_size < sizeof(UniqueSerialNumber), "Invalid UUID size");
constexpr auto backup_dir = "backup"; constexpr auto backup_dir = "backup";
const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir); const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir);
const auto file_name = fmt::format("{0:02x}.bin", fmt::join(uid, "")); const auto file_name =
fmt::format("{0:02x}.bin", fmt::join(uid.begin(), uid.begin() + uuid_size, ""));
if (!Common::FS::Exists(yuzu_amiibo_dir / backup_dir / file_name)) { if (!Common::FS::Exists(yuzu_amiibo_dir / backup_dir / file_name)) {
return ResultUnableToAccessBackupFile; return ResultUnableToAccessBackupFile;
@ -1206,10 +1256,19 @@ Result NfcDevice::HasBackup(const NFC::UniqueSerialNumber& uid) const {
return ResultSuccess; return ResultSuccess;
} }
Result NfcDevice::ReadBackupData(const NFC::UniqueSerialNumber& uid, std::span<u8> data) const { Result NfcDevice::HasBackup(const NFP::TagUuid& tag_uid) const {
UniqueSerialNumber uuid{};
memcpy(uuid.data(), &tag_uid, sizeof(NFP::TagUuid));
return HasBackup(uuid, sizeof(NFP::TagUuid));
}
Result NfcDevice::ReadBackupData(const UniqueSerialNumber& uid, std::size_t uuid_size,
std::span<u8> data) const {
ASSERT_MSG(uuid_size < sizeof(UniqueSerialNumber), "Invalid UUID size");
constexpr auto backup_dir = "backup"; constexpr auto backup_dir = "backup";
const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir); const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir);
const auto file_name = fmt::format("{0:02x}.bin", fmt::join(uid, "")); const auto file_name =
fmt::format("{0:02x}.bin", fmt::join(uid.begin(), uid.begin() + uuid_size, ""));
const Common::FS::IOFile keys_file{yuzu_amiibo_dir / backup_dir / file_name, const Common::FS::IOFile keys_file{yuzu_amiibo_dir / backup_dir / file_name,
Common::FS::FileAccessMode::Read, Common::FS::FileAccessMode::Read,
@ -1228,12 +1287,21 @@ Result NfcDevice::ReadBackupData(const NFC::UniqueSerialNumber& uid, std::span<u
return ResultSuccess; return ResultSuccess;
} }
Result NfcDevice::WriteBackupData(const NFC::UniqueSerialNumber& uid, std::span<const u8> data) { Result NfcDevice::ReadBackupData(const NFP::TagUuid& tag_uid, std::span<u8> data) const {
UniqueSerialNumber uuid{};
memcpy(uuid.data(), &tag_uid, sizeof(NFP::TagUuid));
return ReadBackupData(uuid, sizeof(NFP::TagUuid), data);
}
Result NfcDevice::WriteBackupData(const UniqueSerialNumber& uid, std::size_t uuid_size,
std::span<const u8> data) {
ASSERT_MSG(uuid_size < sizeof(UniqueSerialNumber), "Invalid UUID size");
constexpr auto backup_dir = "backup"; constexpr auto backup_dir = "backup";
const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir); const auto yuzu_amiibo_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::AmiiboDir);
const auto file_name = fmt::format("{0:02x}.bin", fmt::join(uid, "")); const auto file_name =
fmt::format("{0:02x}.bin", fmt::join(uid.begin(), uid.begin() + uuid_size, ""));
if (HasBackup(uid).IsError()) { if (HasBackup(uid, uuid_size).IsError()) {
if (!Common::FS::CreateDir(yuzu_amiibo_dir / backup_dir)) { if (!Common::FS::CreateDir(yuzu_amiibo_dir / backup_dir)) {
return ResultBackupPathAlreadyExist; return ResultBackupPathAlreadyExist;
} }
@ -1260,6 +1328,12 @@ Result NfcDevice::WriteBackupData(const NFC::UniqueSerialNumber& uid, std::span<
return ResultSuccess; return ResultSuccess;
} }
Result NfcDevice::WriteBackupData(const NFP::TagUuid& tag_uid, std::span<const u8> data) {
UniqueSerialNumber uuid{};
memcpy(uuid.data(), &tag_uid, sizeof(NFP::TagUuid));
return WriteBackupData(uuid, sizeof(NFP::TagUuid), data);
}
Result NfcDevice::WriteNtf(std::span<const u8> data) { Result NfcDevice::WriteNtf(std::span<const u8> data) {
if (device_state != DeviceState::TagMounted) { if (device_state != DeviceState::TagMounted) {
LOG_ERROR(Service_NFC, "Wrong device state {}", device_state); LOG_ERROR(Service_NFC, "Wrong device state {}", device_state);

@ -86,9 +86,14 @@ public:
Result GetAll(NFP::NfpData& data) const; Result GetAll(NFP::NfpData& data) const;
Result SetAll(const NFP::NfpData& data); Result SetAll(const NFP::NfpData& data);
Result BreakTag(NFP::BreakType break_type); Result BreakTag(NFP::BreakType break_type);
Result HasBackup(const NFC::UniqueSerialNumber& uid) const; Result HasBackup(const UniqueSerialNumber& uid, std::size_t uuid_size) const;
Result ReadBackupData(const NFC::UniqueSerialNumber& uid, std::span<u8> data) const; Result HasBackup(const NFP::TagUuid& tag_uid) const;
Result WriteBackupData(const NFC::UniqueSerialNumber& uid, std::span<const u8> data); Result ReadBackupData(const UniqueSerialNumber& uid, std::size_t uuid_size,
std::span<u8> data) const;
Result ReadBackupData(const NFP::TagUuid& tag_uid, std::span<u8> data) const;
Result WriteBackupData(const UniqueSerialNumber& uid, std::size_t uuid_size,
std::span<const u8> data);
Result WriteBackupData(const NFP::TagUuid& tag_uid, std::span<const u8> data);
Result WriteNtf(std::span<const u8> data); Result WriteNtf(std::span<const u8> data);
u64 GetHandle() const; u64 GetHandle() const;

@ -550,7 +550,7 @@ Result DeviceManager::ReadBackupData(u64 device_handle, std::span<u8> data) cons
} }
if (result.IsSuccess()) { if (result.IsSuccess()) {
result = device->ReadBackupData(tag_info.uuid, data); result = device->ReadBackupData(tag_info.uuid, tag_info.uuid_length, data);
result = VerifyDeviceResult(device, result); result = VerifyDeviceResult(device, result);
} }
@ -569,7 +569,7 @@ Result DeviceManager::WriteBackupData(u64 device_handle, std::span<const u8> dat
} }
if (result.IsSuccess()) { if (result.IsSuccess()) {
result = device->WriteBackupData(tag_info.uuid, data); result = device->WriteBackupData(tag_info.uuid, tag_info.uuid_length, data);
result = VerifyDeviceResult(device, result); result = VerifyDeviceResult(device, result);
} }

@ -12,6 +12,6 @@ constexpr Result ResultInvalidArgument(ErrorModule::NFCMifare, 65);
constexpr Result ResultWrongDeviceState(ErrorModule::NFCMifare, 73); constexpr Result ResultWrongDeviceState(ErrorModule::NFCMifare, 73);
constexpr Result ResultNfcDisabled(ErrorModule::NFCMifare, 80); constexpr Result ResultNfcDisabled(ErrorModule::NFCMifare, 80);
constexpr Result ResultTagRemoved(ErrorModule::NFCMifare, 97); constexpr Result ResultTagRemoved(ErrorModule::NFCMifare, 97);
constexpr Result ResultReadError(ErrorModule::NFCMifare, 288); constexpr Result ResultNotAMifare(ErrorModule::NFCMifare, 288);
} // namespace Service::NFC::Mifare } // namespace Service::NFC::Mifare

@ -142,9 +142,13 @@ void NfcInterface::AttachAvailabilityChangeEvent(HLERequestContext& ctx) {
void NfcInterface::StartDetection(HLERequestContext& ctx) { void NfcInterface::StartDetection(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto device_handle{rp.Pop<u64>()}; const auto device_handle{rp.Pop<u64>()};
const auto tag_protocol{rp.PopEnum<NfcProtocol>()}; auto tag_protocol{NfcProtocol::All};
LOG_INFO(Service_NFC, "called, device_handle={}, nfp_protocol={}", device_handle, tag_protocol);
if (backend_type == BackendType::Nfc) {
tag_protocol = rp.PopEnum<NfcProtocol>();
}
LOG_INFO(Service_NFC, "called, device_handle={}, nfp_protocol={}", device_handle, tag_protocol);
auto result = GetManager()->StartDetection(device_handle, tag_protocol); auto result = GetManager()->StartDetection(device_handle, tag_protocol);
result = TranslateResultToServiceError(result); result = TranslateResultToServiceError(result);
@ -355,7 +359,7 @@ Result NfcInterface::TranslateResultToNfp(Result result) const {
if (result == ResultApplicationAreaExist) { if (result == ResultApplicationAreaExist) {
return NFP::ResultApplicationAreaExist; return NFP::ResultApplicationAreaExist;
} }
if (result == ResultNotAnAmiibo) { if (result == ResultInvalidTagType) {
return NFP::ResultNotAnAmiibo; return NFP::ResultNotAnAmiibo;
} }
if (result == ResultUnableToAccessBackupFile) { if (result == ResultUnableToAccessBackupFile) {
@ -381,6 +385,9 @@ Result NfcInterface::TranslateResultToMifare(Result result) const {
if (result == ResultTagRemoved) { if (result == ResultTagRemoved) {
return Mifare::ResultTagRemoved; return Mifare::ResultTagRemoved;
} }
if (result == ResultInvalidTagType) {
return Mifare::ResultNotAMifare;
}
LOG_WARNING(Service_NFC, "Result conversion not handled"); LOG_WARNING(Service_NFC, "Result conversion not handled");
return result; return result;
} }

@ -24,7 +24,8 @@ constexpr Result ResultCorruptedDataWithBackup(ErrorModule::NFC, 136);
constexpr Result ResultCorruptedData(ErrorModule::NFC, 144); constexpr Result ResultCorruptedData(ErrorModule::NFC, 144);
constexpr Result ResultWrongApplicationAreaId(ErrorModule::NFC, 152); constexpr Result ResultWrongApplicationAreaId(ErrorModule::NFC, 152);
constexpr Result ResultApplicationAreaExist(ErrorModule::NFC, 168); constexpr Result ResultApplicationAreaExist(ErrorModule::NFC, 168);
constexpr Result ResultNotAnAmiibo(ErrorModule::NFC, 178); constexpr Result ResultInvalidTagType(ErrorModule::NFC, 178);
constexpr Result ResultBackupPathAlreadyExist(ErrorModule::NFC, 216); constexpr Result ResultBackupPathAlreadyExist(ErrorModule::NFC, 216);
constexpr Result ResultMifareError288(ErrorModule::NFC, 288);
} // namespace Service::NFC } // namespace Service::NFC

@ -35,32 +35,35 @@ enum class State : u32 {
// This is nn::nfc::TagType // This is nn::nfc::TagType
enum class TagType : u32 { enum class TagType : u32 {
None, None = 0,
Type1, // ISO14443A RW 96-2k bytes 106kbit/s Type1 = 1U << 0, // ISO14443A RW. Topaz
Type2, // ISO14443A RW/RO 540 bytes 106kbit/s Type2 = 1U << 1, // ISO14443A RW. Ultralight, NTAGX, ST25TN
Type3, // Sony FeliCa RW/RO 2k bytes 212kbit/s Type3 = 1U << 2, // ISO14443A RW/RO. Sony FeliCa
Type4, // ISO14443A RW/RO 4k-32k bytes 424kbit/s Type4A = 1U << 3, // ISO14443A RW/RO. DESFire
Type5, // ISO15693 RW/RO 540 bytes 106kbit/s Type4B = 1U << 4, // ISO14443B RW/RO. DESFire
Type5 = 1U << 5, // ISO15693 RW/RO. SLI, SLIX, ST25TV
Mifare = 1U << 6, // Mifare classic. Skylanders
All = 0xFFFFFFFF,
}; };
enum class PackedTagType : u8 { enum class PackedTagType : u8 {
None, None = 0,
Type1, // ISO14443A RW 96-2k bytes 106kbit/s Type1 = 1U << 0, // ISO14443A RW. Topaz
Type2, // ISO14443A RW/RO 540 bytes 106kbit/s Type2 = 1U << 1, // ISO14443A RW. Ultralight, NTAGX, ST25TN
Type3, // Sony FeliCa RW/RO 2k bytes 212kbit/s Type3 = 1U << 2, // ISO14443A RW/RO. Sony FeliCa
Type4, // ISO14443A RW/RO 4k-32k bytes 424kbit/s Type4A = 1U << 3, // ISO14443A RW/RO. DESFire
Type5, // ISO15693 RW/RO 540 bytes 106kbit/s Type4B = 1U << 4, // ISO14443B RW/RO. DESFire
Type5 = 1U << 5, // ISO15693 RW/RO. SLI, SLIX, ST25TV
Mifare = 1U << 6, // Mifare classic. Skylanders
All = 0xFF,
}; };
// This is nn::nfc::NfcProtocol // This is nn::nfc::NfcProtocol
// Verify this enum. It might be completely wrong default protocol is 0x48
enum class NfcProtocol : u32 { enum class NfcProtocol : u32 {
None, None,
TypeA = 1U << 0, // ISO14443A TypeA = 1U << 0, // ISO14443A
TypeB = 1U << 1, // ISO14443B TypeB = 1U << 1, // ISO14443B
TypeF = 1U << 2, // Sony FeliCa TypeF = 1U << 2, // Sony FeliCa
Unknown1 = 1U << 3,
Unknown2 = 1U << 5,
All = 0xFFFFFFFFU, All = 0xFFFFFFFFU,
}; };
@ -69,8 +72,7 @@ enum class TestWaveType : u32 {
Unknown, Unknown,
}; };
using UniqueSerialNumber = std::array<u8, 7>; using UniqueSerialNumber = std::array<u8, 10>;
using UniqueSerialNumberExtension = std::array<u8, 3>;
// This is nn::nfc::DeviceHandle // This is nn::nfc::DeviceHandle
using DeviceHandle = u64; using DeviceHandle = u64;
@ -78,7 +80,6 @@ using DeviceHandle = u64;
// This is nn::nfc::TagInfo // This is nn::nfc::TagInfo
struct TagInfo { struct TagInfo {
UniqueSerialNumber uuid; UniqueSerialNumber uuid;
UniqueSerialNumberExtension uuid_extension;
u8 uuid_length; u8 uuid_length;
INSERT_PADDING_BYTES(0x15); INSERT_PADDING_BYTES(0x15);
NfcProtocol protocol; NfcProtocol protocol;

@ -85,7 +85,7 @@ enum class CabinetMode : u8 {
StartFormatter, StartFormatter,
}; };
using LockBytes = std::array<u8, 2>; using UuidPart = std::array<u8, 3>;
using HashData = std::array<u8, 0x20>; using HashData = std::array<u8, 0x20>;
using ApplicationArea = std::array<u8, 0xD8>; using ApplicationArea = std::array<u8, 0xD8>;
using AmiiboName = std::array<char, (amiibo_name_length * 4) + 1>; using AmiiboName = std::array<char, (amiibo_name_length * 4) + 1>;
@ -93,12 +93,20 @@ using AmiiboName = std::array<char, (amiibo_name_length * 4) + 1>;
// This is nn::nfp::TagInfo // This is nn::nfp::TagInfo
using TagInfo = NFC::TagInfo; using TagInfo = NFC::TagInfo;
struct TagUuid { struct NtagTagUuid {
NFC::UniqueSerialNumber uid; UuidPart part1;
UuidPart part2;
u8 nintendo_id; u8 nintendo_id;
LockBytes lock_bytes;
}; };
static_assert(sizeof(TagUuid) == 10, "TagUuid is an invalid size"); static_assert(sizeof(NtagTagUuid) == 7, "NtagTagUuid is an invalid size");
struct TagUuid {
UuidPart part1;
u8 crc_check1;
UuidPart part2;
u8 nintendo_id;
};
static_assert(sizeof(TagUuid) == 8, "TagUuid is an invalid size");
struct WriteDate { struct WriteDate {
u16 year; u16 year;
@ -231,7 +239,8 @@ struct EncryptedAmiiboFile {
static_assert(sizeof(EncryptedAmiiboFile) == 0x1F8, "AmiiboFile is an invalid size"); static_assert(sizeof(EncryptedAmiiboFile) == 0x1F8, "AmiiboFile is an invalid size");
struct NTAG215File { struct NTAG215File {
LockBytes lock_bytes; // Tag UUID u8 uid_crc_check2;
u8 internal_number;
u16 static_lock; // Set defined pages as read only u16 static_lock; // Set defined pages as read only
u32 compability_container; // Defines available memory u32 compability_container; // Defines available memory
HashData hmac_data; // Hash HashData hmac_data; // Hash
@ -250,8 +259,7 @@ struct NTAG215File {
u32_be register_info_crc; u32_be register_info_crc;
ApplicationArea application_area; // Encrypted Game data ApplicationArea application_area; // Encrypted Game data
HashData hmac_tag; // Hash HashData hmac_tag; // Hash
NFC::UniqueSerialNumber uid; // Unique serial number TagUuid uid;
u8 nintendo_id; // Tag UUID
AmiiboModelInfo model_info; AmiiboModelInfo model_info;
HashData keygen_salt; // Salt HashData keygen_salt; // Salt
u32 dynamic_lock; // Dynamic lock u32 dynamic_lock; // Dynamic lock
@ -264,7 +272,9 @@ static_assert(std::is_trivially_copyable_v<NTAG215File>, "NTAG215File must be tr
#pragma pack() #pragma pack()
struct EncryptedNTAG215File { struct EncryptedNTAG215File {
TagUuid uuid; // Unique serial number TagUuid uuid;
u8 uuid_crc_check2;
u8 internal_number;
u16 static_lock; // Set defined pages as read only u16 static_lock; // Set defined pages as read only
u32 compability_container; // Defines available memory u32 compability_container; // Defines available memory
EncryptedAmiiboFile user_memory; // Writable data EncryptedAmiiboFile user_memory; // Writable data