core: Fix clang build

Recent changes to the build system that made more warnings be flagged as
errors caused building via clang to break.

Fixes #4795
master
Lioncash 2020-10-15 14:49:45 +07:00
parent ca416a0fb8
commit be1954e04c
105 changed files with 906 additions and 667 deletions

@ -857,7 +857,7 @@ inline int64_t MicroProfileLogTickDifference(MicroProfileLogEntry Start, MicroPr
{ {
uint64_t nStart = Start; uint64_t nStart = Start;
uint64_t nEnd = End; uint64_t nEnd = End;
int64_t nDifference = ((nEnd<<16) - (nStart<<16)); auto nDifference = static_cast<int64_t>((nEnd << 16) - (nStart << 16));
return nDifference >> 16; return nDifference >> 16;
} }
@ -868,7 +868,7 @@ inline int64_t MicroProfileLogGetTick(MicroProfileLogEntry e)
inline int64_t MicroProfileLogSetTick(MicroProfileLogEntry e, int64_t nTick) inline int64_t MicroProfileLogSetTick(MicroProfileLogEntry e, int64_t nTick)
{ {
return (MP_LOG_TICK_MASK & nTick) | (e & ~MP_LOG_TICK_MASK); return static_cast<int64_t>((MP_LOG_TICK_MASK & static_cast<uint64_t>(nTick)) | (e & static_cast<uint64_t>(~MP_LOG_TICK_MASK)));
} }
template<typename T> template<typename T>

@ -51,8 +51,9 @@ if (NOT MSVC)
-Werror=implicit-fallthrough -Werror=implicit-fallthrough
-Werror=reorder -Werror=reorder
-Werror=sign-compare -Werror=sign-compare
-Werror=unused-but-set-parameter -Werror=sign-conversion
-Werror=unused-but-set-variable $<$<CXX_COMPILER_ID:GNU>:-Werror=unused-but-set-parameter>
$<$<CXX_COMPILER_ID:GNU>:-Werror=unused-but-set-variable>
-Werror=unused-variable -Werror=unused-variable
) )
endif() endif()

@ -167,8 +167,8 @@ std::vector<s16> Interpolate(InterpolationState& state, std::vector<s16> input,
output.reserve(static_cast<std::size_t>(static_cast<double>(input.size()) / ratio + output.reserve(static_cast<std::size_t>(static_cast<double>(input.size()) / ratio +
InterpolationState::taps)); InterpolationState::taps));
for (std::size_t frame{}; frame < num_frames; ++frame) { for (std::size_t frame = 0; frame < num_frames; ++frame) {
const std::size_t lut_index{(state.fraction >> 8) * InterpolationState::taps}; const auto lut_index{static_cast<size_t>(state.fraction >> 8) * InterpolationState::taps};
std::rotate(state.history.begin(), state.history.end() - 1, state.history.end()); std::rotate(state.history.begin(), state.history.end() - 1, state.history.end());
state.history[0][0] = input[frame * 2 + 0]; state.history[0][0] = input[frame * 2 + 0];
@ -225,7 +225,7 @@ void Resample(s32* output, const s32* input, s32 pitch, s32& fraction, std::size
output[i] = (l0 * s0 + l1 * s1 + l2 * s2 + l3 * s3) >> 15; output[i] = (l0 * s0 + l1 * s1 + l2 * s2 + l3 * s3) >> 15;
fraction += pitch; fraction += pitch;
index += (fraction >> 15); index += static_cast<size_t>(fraction >> 15);
fraction &= 0x7fff; fraction &= 0x7fff;
} }
} }

@ -187,8 +187,8 @@ void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
const auto& in_params = final_mix.GetInParams(); const auto& in_params = final_mix.GetInParams();
std::vector<s32*> mix_buffers(channel_count); std::vector<s32*> mix_buffers(channel_count);
for (std::size_t i = 0; i < channel_count; i++) { for (std::size_t i = 0; i < channel_count; i++) {
mix_buffers[i] = mix_buffers[i] = command_generator.GetMixBuffer(
command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]); static_cast<u32>(in_params.buffer_offset) + buffer_offsets[i]);
} }
for (std::size_t i = 0; i < BUFFER_SIZE; i++) { for (std::size_t i = 0; i < BUFFER_SIZE; i++) {

@ -32,7 +32,7 @@ std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM
for (std::size_t framei = 0; framei < NUM_FRAMES; framei++) { for (std::size_t framei = 0; framei < NUM_FRAMES; framei++) {
const int frame_header = data[framei * FRAME_LEN]; const int frame_header = data[framei * FRAME_LEN];
const int scale = 1 << (frame_header & 0xF); const int scale = 1 << (frame_header & 0xF);
const int idx = (frame_header >> 4) & 0x7; const auto idx = static_cast<size_t>((frame_header >> 4) & 0x7);
// Coefficients are fixed point with 11 bits fractional part. // Coefficients are fixed point with 11 bits fractional part.
const int coef1 = coeff[idx * 2 + 0]; const int coef1 = coeff[idx * 2 + 0];
@ -57,11 +57,11 @@ std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM
std::size_t outputi = framei * SAMPLES_PER_FRAME; std::size_t outputi = framei * SAMPLES_PER_FRAME;
std::size_t datai = framei * FRAME_LEN + 1; std::size_t datai = framei * FRAME_LEN + 1;
for (std::size_t i = 0; i < SAMPLES_PER_FRAME && outputi < sample_count; i += 2) { for (std::size_t i = 0; i < SAMPLES_PER_FRAME && outputi < sample_count; i += 2) {
const s16 sample1 = decode_sample(SIGNED_NIBBLES[data[datai] >> 4]); const s16 sample1 = decode_sample(SIGNED_NIBBLES[static_cast<u32>(data[datai] >> 4)]);
ret[outputi] = sample1; ret[outputi] = sample1;
outputi++; outputi++;
const s16 sample2 = decode_sample(SIGNED_NIBBLES[data[datai] & 0xF]); const s16 sample2 = decode_sample(SIGNED_NIBBLES[static_cast<u32>(data[datai] & 0xF)]);
ret[outputi] = sample2; ret[outputi] = sample2;
outputi++; outputi++;

@ -15,8 +15,8 @@ constexpr std::size_t MIX_BUFFER_SIZE = 0x3f00;
constexpr std::size_t SCALED_MIX_BUFFER_SIZE = MIX_BUFFER_SIZE << 15ULL; constexpr std::size_t SCALED_MIX_BUFFER_SIZE = MIX_BUFFER_SIZE << 15ULL;
template <std::size_t N> template <std::size_t N>
void ApplyMix(s32* output, const s32* input, s32 gain, s32 sample_count) { void ApplyMix(s32* output, const s32* input, s32 gain, std::size_t sample_count) {
for (std::size_t i = 0; i < static_cast<std::size_t>(sample_count); i += N) { for (std::size_t i = 0; i < sample_count; i += N) {
for (std::size_t j = 0; j < N; j++) { for (std::size_t j = 0; j < N; j++) {
output[i + j] += output[i + j] +=
static_cast<s32>((static_cast<s64>(input[i + j]) * gain + 0x4000) >> 15); static_cast<s32>((static_cast<s64>(input[i + j]) * gain + 0x4000) >> 15);
@ -111,7 +111,8 @@ void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) {
const auto channel_count = in_params.channel_count; const auto channel_count = in_params.channel_count;
for (s32 channel = 0; channel < channel_count; channel++) { for (s32 channel = 0; channel < channel_count; channel++) {
const auto resource_id = in_params.voice_channel_resource_id[channel]; const auto resource_id =
static_cast<u32>(in_params.voice_channel_resource_id[static_cast<u32>(channel)]);
auto& dsp_state = voice_context.GetDspSharedState(resource_id); auto& dsp_state = voice_context.GetDspSharedState(resource_id);
auto& channel_resource = voice_context.GetChannelResource(resource_id); auto& channel_resource = voice_context.GetChannelResource(resource_id);
@ -132,14 +133,15 @@ void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) {
if (in_params.mix_id != AudioCommon::NO_MIX) { if (in_params.mix_id != AudioCommon::NO_MIX) {
// If we're using a mix id // If we're using a mix id
auto& mix_info = mix_context.GetInfo(in_params.mix_id); auto& mix_info = mix_context.GetInfo(static_cast<u32>(in_params.mix_id));
const auto& dest_mix_params = mix_info.GetInParams(); const auto& dest_mix_params = mix_info.GetInParams();
// Voice Mixing // Voice Mixing
GenerateVoiceMixCommand( GenerateVoiceMixCommand(
channel_resource.GetCurrentMixVolume(), channel_resource.GetLastMixVolume(), channel_resource.GetCurrentMixVolume(), channel_resource.GetLastMixVolume(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count, dsp_state, static_cast<u32>(dest_mix_params.buffer_offset),
worker_params.mix_buffer_count + channel, in_params.node_id); static_cast<u32>(dest_mix_params.buffer_count),
worker_params.mix_buffer_count + static_cast<u32>(channel), in_params.node_id);
// Update last mix volumes // Update last mix volumes
channel_resource.UpdateLastMixVolumes(); channel_resource.UpdateLastMixVolumes();
@ -156,12 +158,15 @@ void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) {
continue; continue;
} }
const auto& mix_info = mix_context.GetInfo(destination_data->GetMixId()); const auto& mix_info =
mix_context.GetInfo(static_cast<u32>(destination_data->GetMixId()));
const auto& dest_mix_params = mix_info.GetInParams(); const auto& dest_mix_params = mix_info.GetInParams();
GenerateVoiceMixCommand( GenerateVoiceMixCommand(
destination_data->CurrentMixVolumes(), destination_data->LastMixVolumes(), destination_data->CurrentMixVolumes(), destination_data->LastMixVolumes(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count, dsp_state, static_cast<u32>(dest_mix_params.buffer_offset),
worker_params.mix_buffer_count + channel, in_params.node_id); static_cast<u32>(dest_mix_params.buffer_count),
worker_params.mix_buffer_count + static_cast<u32>(channel),
in_params.node_id);
destination_data->MarkDirty(); destination_data->MarkDirty();
} }
} }
@ -219,9 +224,10 @@ void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, Vo
if (depop) { if (depop) {
if (in_params.mix_id != AudioCommon::NO_MIX) { if (in_params.mix_id != AudioCommon::NO_MIX) {
auto& mix_info = mix_context.GetInfo(in_params.mix_id); auto& mix_info = mix_context.GetInfo(static_cast<u32>(in_params.mix_id));
const auto& mix_in = mix_info.GetInParams(); const auto& mix_in = mix_info.GetInParams();
GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset); GenerateDepopPrepareCommand(dsp_state, static_cast<u32>(mix_in.buffer_count),
static_cast<u32>(mix_in.buffer_offset));
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) { } else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) {
s32 index{}; s32 index{};
while (const auto* destination = while (const auto* destination =
@ -229,23 +235,24 @@ void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, Vo
if (!destination->IsConfigured()) { if (!destination->IsConfigured()) {
continue; continue;
} }
auto& mix_info = mix_context.GetInfo(destination->GetMixId()); auto& mix_info = mix_context.GetInfo(static_cast<u32>(destination->GetMixId()));
const auto& mix_in = mix_info.GetInParams(); const auto& mix_in = mix_info.GetInParams();
GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset); GenerateDepopPrepareCommand(dsp_state, static_cast<u32>(mix_in.buffer_count),
static_cast<u32>(mix_in.buffer_offset));
} }
} }
} else { } else {
switch (in_params.sample_format) { switch (in_params.sample_format) {
case SampleFormat::Pcm16: case SampleFormat::Pcm16:
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(channel), dsp_state, channel, DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(channel), dsp_state, channel,
worker_params.sample_rate, worker_params.sample_count, static_cast<s32>(worker_params.sample_rate),
in_params.node_id); static_cast<s32>(worker_params.sample_count), in_params.node_id);
break; break;
case SampleFormat::Adpcm: case SampleFormat::Adpcm:
ASSERT(channel == 0 && in_params.channel_count == 1); ASSERT(channel == 0 && in_params.channel_count == 1);
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(0), dsp_state, 0, DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(0), dsp_state, 0,
worker_params.sample_rate, worker_params.sample_count, static_cast<s32>(worker_params.sample_rate),
in_params.node_id); static_cast<s32>(worker_params.sample_count), in_params.node_id);
break; break;
default: default:
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format); UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
@ -255,7 +262,7 @@ void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, Vo
void CommandGenerator::GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info, void CommandGenerator::GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info,
VoiceState& dsp_state, VoiceState& dsp_state,
s32 mix_buffer_count, s32 channel) { u32 mix_buffer_count, s32 channel) {
for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) { for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) {
const auto& in_params = voice_info.GetInParams(); const auto& in_params = voice_info.GetInParams();
auto& biquad_filter = in_params.biquad_filter[i]; auto& biquad_filter = in_params.biquad_filter[i];
@ -335,8 +342,8 @@ void CommandGenerator::GenerateDepopForMixBuffersCommand(std::size_t mix_buffer_
continue; continue;
} }
depop_buffer[i] = depop_buffer[i] = ApplyMixDepop(GetMixBuffer(i), depop_buffer[i], delta,
ApplyMixDepop(GetMixBuffer(i), depop_buffer[i], delta, worker_params.sample_count); static_cast<s32>(worker_params.sample_count));
} }
} }
@ -348,7 +355,7 @@ void CommandGenerator::GenerateEffectCommand(ServerMixInfo& mix_info) {
if (index == AudioCommon::NO_EFFECT_ORDER) { if (index == AudioCommon::NO_EFFECT_ORDER) {
break; break;
} }
auto* info = effect_context.GetInfo(index); auto* info = effect_context.GetInfo(static_cast<u32>(index));
const auto type = info->GetType(); const auto type = info->GetType();
// TODO(ogniK): Finish remaining effects // TODO(ogniK): Finish remaining effects
@ -377,11 +384,11 @@ void CommandGenerator::GenerateI3dl2ReverbEffectCommand(s32 mix_buffer_offset, E
} }
const auto& params = dynamic_cast<EffectI3dl2Reverb*>(info)->GetParams(); const auto& params = dynamic_cast<EffectI3dl2Reverb*>(info)->GetParams();
const auto channel_count = params.channel_count; const auto channel_count = params.channel_count;
for (s32 i = 0; i < channel_count; i++) { for (size_t i = 0; i < channel_count; i++) {
// TODO(ogniK): Actually implement reverb // TODO(ogniK): Actually implement reverb
if (params.input[i] != params.output[i]) { if (params.input[i] != params.output[i]) {
const auto* input = GetMixBuffer(mix_buffer_offset + params.input[i]); const auto* input = GetMixBuffer(static_cast<u32>(mix_buffer_offset + params.input[i]));
auto* output = GetMixBuffer(mix_buffer_offset + params.output[i]); auto* output = GetMixBuffer(static_cast<u32>(mix_buffer_offset + params.output[i]));
ApplyMix<1>(output, input, 32768, worker_params.sample_count); ApplyMix<1>(output, input, 32768, worker_params.sample_count);
} }
} }
@ -392,13 +399,14 @@ void CommandGenerator::GenerateBiquadFilterEffectCommand(s32 mix_buffer_offset,
if (!enabled) { if (!enabled) {
return; return;
} }
const auto& params = dynamic_cast<EffectBiquadFilter*>(info)->GetParams(); const auto& params = dynamic_cast<EffectBiquadFilter*>(info)->GetParams();
const auto channel_count = params.channel_count; const auto channel_count = static_cast<u32>(params.channel_count);
for (s32 i = 0; i < channel_count; i++) { for (size_t i = 0; i < channel_count; i++) {
// TODO(ogniK): Actually implement biquad filter // TODO(ogniK): Actually implement biquad filter
if (params.input[i] != params.output[i]) { if (params.input[i] != params.output[i]) {
const auto* input = GetMixBuffer(mix_buffer_offset + params.input[i]); const auto* input = GetMixBuffer(static_cast<u32>(mix_buffer_offset + params.input[i]));
auto* output = GetMixBuffer(mix_buffer_offset + params.output[i]); auto* output = GetMixBuffer(static_cast<u32>(mix_buffer_offset + params.output[i]));
ApplyMix<1>(output, input, 32768, worker_params.sample_count); ApplyMix<1>(output, input, 32768, worker_params.sample_count);
} }
} }
@ -425,26 +433,30 @@ void CommandGenerator::GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* inf
memory.ReadBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP)); memory.ReadBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP));
memory.ReadBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP)); memory.ReadBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP));
WriteAuxBuffer(send_info, aux->GetSendBuffer(), params.sample_count, WriteAuxBuffer(send_info, aux->GetSendBuffer(),
GetMixBuffer(input_index), worker_params.sample_count, offset, static_cast<u32>(params.sample_count),
write_count); GetMixBuffer(static_cast<u32>(input_index)),
worker_params.sample_count, offset, write_count);
memory.WriteBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP));
const auto samples_read = ReadAuxBuffer( const auto samples_read = ReadAuxBuffer(
recv_info, aux->GetRecvBuffer(), params.sample_count, recv_info, aux->GetRecvBuffer(), static_cast<u32>(params.sample_count),
GetMixBuffer(output_index), worker_params.sample_count, offset, write_count); GetMixBuffer(static_cast<u32>(output_index)), worker_params.sample_count,
offset, write_count);
memory.WriteBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP));
if (samples_read != static_cast<int>(worker_params.sample_count) && if (samples_read != static_cast<int>(worker_params.sample_count) &&
samples_read <= params.sample_count) { samples_read <= params.sample_count) {
std::memset(GetMixBuffer(output_index), 0, params.sample_count - samples_read); std::memset(GetMixBuffer(static_cast<u32>(output_index)), 0,
static_cast<size_t>(params.sample_count - samples_read));
} }
} else { } else {
AuxInfoDSP empty{}; AuxInfoDSP empty{};
memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP));
memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP));
if (output_index != input_index) { if (output_index != input_index) {
std::memcpy(GetMixBuffer(output_index), GetMixBuffer(input_index), std::memcpy(GetMixBuffer(static_cast<u32>(output_index)),
GetMixBuffer(static_cast<u32>(input_index)),
worker_params.sample_count * sizeof(s32)); worker_params.sample_count * sizeof(s32));
} }
} }
@ -458,7 +470,8 @@ ServerSplitterDestinationData* CommandGenerator::GetDestinationData(s32 splitter
if (splitter_id == AudioCommon::NO_SPLITTER) { if (splitter_id == AudioCommon::NO_SPLITTER) {
return nullptr; return nullptr;
} }
return splitter_context.GetDestinationData(splitter_id, index); return splitter_context.GetDestinationData(static_cast<u32>(splitter_id),
static_cast<u32>(index));
} }
s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples, s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples,
@ -488,7 +501,7 @@ s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u3
if (write_count != 0) { if (write_count != 0) {
dsp_info.write_offset = (dsp_info.write_offset + write_count) % max_samples; dsp_info.write_offset = (dsp_info.write_offset + write_count) % max_samples;
} }
return sample_count; return static_cast<s32>(sample_count);
} }
s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples, s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples,
@ -518,7 +531,7 @@ s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u3
if (read_count != 0) { if (read_count != 0) {
recv_info.read_offset = (recv_info.read_offset + read_count) % max_samples; recv_info.read_offset = (recv_info.read_offset + read_count) % max_samples;
} }
return sample_count; return static_cast<s32>(sample_count);
} }
void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float current_volume, void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float current_volume,
@ -537,15 +550,15 @@ void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float curren
} }
// Apply generic gain on samples // Apply generic gain on samples
ApplyGain(GetChannelMixBuffer(channel), GetChannelMixBuffer(channel), last, delta, ApplyGain(GetChannelMixBuffer(channel), GetChannelMixBuffer(channel), last, delta,
worker_params.sample_count); static_cast<s32>(worker_params.sample_count));
} }
void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes, void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes,
const MixVolumeBuffer& last_mix_volumes, const MixVolumeBuffer& last_mix_volumes,
VoiceState& dsp_state, s32 mix_buffer_offset, VoiceState& dsp_state, u32 mix_buffer_offset,
s32 mix_buffer_count, s32 voice_index, s32 node_id) { u32 mix_buffer_count, u32 voice_index, s32 node_id) {
// Loop all our mix buffers // Loop all our mix buffers
for (s32 i = 0; i < mix_buffer_count; i++) { for (size_t i = 0; i < mix_buffer_count; i++) {
if (last_mix_volumes[i] != 0.0f || mix_volumes[i] != 0.0f) { if (last_mix_volumes[i] != 0.0f || mix_volumes[i] != 0.0f) {
const auto delta = static_cast<float>((mix_volumes[i] - last_mix_volumes[i])) / const auto delta = static_cast<float>((mix_volumes[i] - last_mix_volumes[i])) /
static_cast<float>(worker_params.sample_count); static_cast<float>(worker_params.sample_count);
@ -558,9 +571,9 @@ void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volume
mix_volumes[i]); mix_volumes[i]);
} }
dsp_state.previous_samples[i] = dsp_state.previous_samples[i] = ApplyMixRamp(
ApplyMixRamp(GetMixBuffer(mix_buffer_offset + i), GetMixBuffer(voice_index), GetMixBuffer(mix_buffer_offset + i), GetMixBuffer(voice_index), last_mix_volumes[i],
last_mix_volumes[i], delta, worker_params.sample_count); delta, static_cast<s32>(worker_params.sample_count));
} else { } else {
dsp_state.previous_samples[i] = 0; dsp_state.previous_samples[i] = 0;
} }
@ -572,7 +585,8 @@ void CommandGenerator::GenerateSubMixCommand(ServerMixInfo& mix_info) {
LOG_DEBUG(Audio, "(DSP_TRACE) GenerateSubMixCommand"); LOG_DEBUG(Audio, "(DSP_TRACE) GenerateSubMixCommand");
} }
const auto& in_params = mix_info.GetInParams(); const auto& in_params = mix_info.GetInParams();
GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset, GenerateDepopForMixBuffersCommand(static_cast<u32>(in_params.buffer_count),
static_cast<u32>(in_params.buffer_offset),
in_params.sample_rate); in_params.sample_rate);
GenerateEffectCommand(mix_info); GenerateEffectCommand(mix_info);
@ -586,18 +600,18 @@ void CommandGenerator::GenerateMixCommands(ServerMixInfo& mix_info) {
} }
const auto& in_params = mix_info.GetInParams(); const auto& in_params = mix_info.GetInParams();
if (in_params.dest_mix_id != AudioCommon::NO_MIX) { if (in_params.dest_mix_id != AudioCommon::NO_MIX) {
const auto& dest_mix = mix_context.GetInfo(in_params.dest_mix_id); const auto& dest_mix = mix_context.GetInfo(static_cast<u32>(in_params.dest_mix_id));
const auto& dest_in_params = dest_mix.GetInParams(); const auto& dest_in_params = dest_mix.GetInParams();
const auto buffer_count = in_params.buffer_count; const auto buffer_count = static_cast<u32>(in_params.buffer_count);
for (s32 i = 0; i < buffer_count; i++) { for (u32 i = 0; i < buffer_count; i++) {
for (s32 j = 0; j < dest_in_params.buffer_count; j++) { for (u32 j = 0; j < static_cast<u32>(dest_in_params.buffer_count); j++) {
const auto mixed_volume = in_params.volume * in_params.mix_volume[i][j]; const auto mixed_volume = in_params.volume * in_params.mix_volume[i][j];
if (mixed_volume != 0.0f) { if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + j, GenerateMixCommand(static_cast<size_t>(dest_in_params.buffer_offset) + j,
in_params.buffer_offset + i, mixed_volume, static_cast<size_t>(in_params.buffer_offset) + i,
in_params.node_id); mixed_volume, static_cast<s32>(in_params.node_id));
} }
} }
} }
@ -608,15 +622,17 @@ void CommandGenerator::GenerateMixCommands(ServerMixInfo& mix_info) {
continue; continue;
} }
const auto& dest_mix = mix_context.GetInfo(destination_data->GetMixId()); const auto& dest_mix =
mix_context.GetInfo(static_cast<u32>(destination_data->GetMixId()));
const auto& dest_in_params = dest_mix.GetInParams(); const auto& dest_in_params = dest_mix.GetInParams();
const auto mix_index = (base - 1) % in_params.buffer_count + in_params.buffer_offset; const auto mix_index = (base - 1) % in_params.buffer_count + in_params.buffer_offset;
for (std::size_t i = 0; i < static_cast<std::size_t>(dest_in_params.buffer_count); for (std::size_t i = 0; i < static_cast<std::size_t>(dest_in_params.buffer_count);
i++) { i++) {
const auto mixed_volume = in_params.volume * destination_data->GetMixVolume(i); const auto mixed_volume = in_params.volume * destination_data->GetMixVolume(i);
if (mixed_volume != 0.0f) { if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + i, mix_index, mixed_volume, GenerateMixCommand(static_cast<size_t>(dest_in_params.buffer_offset) + i,
in_params.node_id); static_cast<size_t>(mix_index), mixed_volume,
static_cast<s32>(in_params.node_id));
} }
} }
} }
@ -635,7 +651,8 @@ void CommandGenerator::GenerateMixCommand(std::size_t output_offset, std::size_t
auto* output = GetMixBuffer(output_offset); auto* output = GetMixBuffer(output_offset);
const auto* input = GetMixBuffer(input_offset); const auto* input = GetMixBuffer(input_offset);
const s32 gain = static_cast<s32>(volume * 32768.0f); const auto gain = static_cast<s32>(volume * 32768.0f);
// Mix with loop unrolling // Mix with loop unrolling
if (worker_params.sample_count % 4 == 0) { if (worker_params.sample_count % 4 == 0) {
ApplyMix<4>(output, input, gain, worker_params.sample_count); ApplyMix<4>(output, input, gain, worker_params.sample_count);
@ -653,7 +670,8 @@ void CommandGenerator::GenerateFinalMixCommand() {
auto& mix_info = mix_context.GetFinalMixInfo(); auto& mix_info = mix_context.GetFinalMixInfo();
const auto& in_params = mix_info.GetInParams(); const auto& in_params = mix_info.GetInParams();
GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset, GenerateDepopForMixBuffersCommand(static_cast<u32>(in_params.buffer_count),
static_cast<u32>(in_params.buffer_offset),
in_params.sample_rate); in_params.sample_rate);
GenerateEffectCommand(mix_info); GenerateEffectCommand(mix_info);
@ -667,16 +685,16 @@ void CommandGenerator::GenerateFinalMixCommand() {
in_params.node_id, in_params.buffer_offset + i, in_params.buffer_offset + i, in_params.node_id, in_params.buffer_offset + i, in_params.buffer_offset + i,
in_params.volume); in_params.volume);
} }
ApplyGainWithoutDelta(GetMixBuffer(in_params.buffer_offset + i), ApplyGainWithoutDelta(GetMixBuffer(static_cast<size_t>(in_params.buffer_offset + i)),
GetMixBuffer(in_params.buffer_offset + i), gain, GetMixBuffer(static_cast<size_t>(in_params.buffer_offset + i)), gain,
worker_params.sample_count); static_cast<s32>(worker_params.sample_count));
} }
} }
s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_count, s32 channel, std::size_t mix_offset) { s32 sample_count, s32 channel, std::size_t mix_offset) {
const auto& in_params = voice_info.GetInParams(); const auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; const auto& wave_buffer = in_params.wave_buffer[static_cast<u32>(dsp_state.wave_buffer_index)];
if (wave_buffer.buffer_address == 0) { if (wave_buffer.buffer_address == 0) {
return 0; return 0;
} }
@ -689,24 +707,26 @@ s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_s
const auto samples_remaining = const auto samples_remaining =
(wave_buffer.end_sample_offset - wave_buffer.start_sample_offset) - dsp_state.offset; (wave_buffer.end_sample_offset - wave_buffer.start_sample_offset) - dsp_state.offset;
const auto start_offset = const auto start_offset =
((wave_buffer.start_sample_offset + dsp_state.offset) * in_params.channel_count) * static_cast<size_t>((wave_buffer.start_sample_offset + dsp_state.offset) *
in_params.channel_count) *
sizeof(s16); sizeof(s16);
const auto buffer_pos = wave_buffer.buffer_address + start_offset; const auto buffer_pos = wave_buffer.buffer_address + start_offset;
const auto samples_processed = std::min(sample_count, samples_remaining); const auto samples_processed = std::min(sample_count, samples_remaining);
if (in_params.channel_count == 1) { if (in_params.channel_count == 1) {
std::vector<s16> buffer(samples_processed); std::vector<s16> buffer(static_cast<size_t>(samples_processed));
memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16)); memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16));
for (std::size_t i = 0; i < buffer.size(); i++) { for (std::size_t i = 0; i < buffer.size(); i++) {
sample_buffer[mix_offset + i] = buffer[i]; sample_buffer[mix_offset + i] = buffer[i];
} }
} else { } else {
const auto channel_count = in_params.channel_count; const auto channel_count = in_params.channel_count;
std::vector<s16> buffer(samples_processed * channel_count); std::vector<s16> buffer(static_cast<size_t>(samples_processed * channel_count));
memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16)); memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16));
for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) { for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) {
sample_buffer[mix_offset + i] = buffer[i * channel_count + channel]; sample_buffer[mix_offset + i] =
buffer[i * static_cast<u32>(channel_count) + static_cast<u32>(channel)];
} }
} }
@ -716,7 +736,7 @@ s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_s
s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_count, s32 channel, std::size_t mix_offset) { s32 sample_count, s32 channel, std::size_t mix_offset) {
const auto& in_params = voice_info.GetInParams(); const auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; const auto& wave_buffer = in_params.wave_buffer[static_cast<u32>(dsp_state.wave_buffer_index)];
if (wave_buffer.buffer_address == 0) { if (wave_buffer.buffer_address == 0) {
return 0; return 0;
} }
@ -736,7 +756,7 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
constexpr std::size_t SAMPLES_PER_FRAME = 14; constexpr std::size_t SAMPLES_PER_FRAME = 14;
auto frame_header = dsp_state.context.header; auto frame_header = dsp_state.context.header;
s32 idx = (frame_header >> 4) & 0xf; auto idx = static_cast<size_t>((frame_header >> 4) & 0xf);
s32 scale = frame_header & 0xf; s32 scale = frame_header & 0xf;
s16 yn1 = dsp_state.context.yn1; s16 yn1 = dsp_state.context.yn1;
s16 yn2 = dsp_state.context.yn2; s16 yn2 = dsp_state.context.yn2;
@ -753,8 +773,9 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
const auto samples_processed = std::min(sample_count, samples_remaining); const auto samples_processed = std::min(sample_count, samples_remaining);
const auto sample_pos = wave_buffer.start_sample_offset + dsp_state.offset; const auto sample_pos = wave_buffer.start_sample_offset + dsp_state.offset;
const auto samples_remaining_in_frame = sample_pos % SAMPLES_PER_FRAME; const auto samples_remaining_in_frame = static_cast<u32>(sample_pos) % SAMPLES_PER_FRAME;
auto position_in_frame = ((sample_pos / SAMPLES_PER_FRAME) * NIBBLES_PER_SAMPLE) + auto position_in_frame =
((static_cast<u32>(sample_pos) / SAMPLES_PER_FRAME) * NIBBLES_PER_SAMPLE) +
samples_remaining_in_frame + (samples_remaining_in_frame != 0 ? 2 : 0); samples_remaining_in_frame + (samples_remaining_in_frame != 0 ? 2 : 0);
const auto decode_sample = [&](const int nibble) -> s16 { const auto decode_sample = [&](const int nibble) -> s16 {
@ -774,7 +795,7 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
std::size_t buffer_offset{}; std::size_t buffer_offset{};
std::vector<u8> buffer( std::vector<u8> buffer(
std::max((samples_processed / FRAME_LEN) * SAMPLES_PER_FRAME, FRAME_LEN)); std::max((static_cast<u32>(samples_processed) / FRAME_LEN) * SAMPLES_PER_FRAME, FRAME_LEN));
memory.ReadBlock(wave_buffer.buffer_address + (position_in_frame / 2), buffer.data(), memory.ReadBlock(wave_buffer.buffer_address + (position_in_frame / 2), buffer.data(),
buffer.size()); buffer.size());
std::size_t cur_mix_offset = mix_offset; std::size_t cur_mix_offset = mix_offset;
@ -784,7 +805,7 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
if (position_in_frame % NIBBLES_PER_SAMPLE == 0) { if (position_in_frame % NIBBLES_PER_SAMPLE == 0) {
// Read header // Read header
frame_header = buffer[buffer_offset++]; frame_header = buffer[buffer_offset++];
idx = (frame_header >> 4) & 0xf; idx = static_cast<size_t>((frame_header >> 4) & 0xf);
scale = frame_header & 0xf; scale = frame_header & 0xf;
coef1 = coeffs[idx * 2]; coef1 = coeffs[idx * 2];
coef2 = coeffs[idx * 2 + 1]; coef2 = coeffs[idx * 2 + 1];
@ -794,8 +815,8 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
if (remaining_samples >= static_cast<int>(SAMPLES_PER_FRAME)) { if (remaining_samples >= static_cast<int>(SAMPLES_PER_FRAME)) {
for (std::size_t i = 0; i < SAMPLES_PER_FRAME / 2; i++) { for (std::size_t i = 0; i < SAMPLES_PER_FRAME / 2; i++) {
// Sample 1 // Sample 1
const s32 s0 = SIGNED_NIBBLES[buffer[buffer_offset] >> 4]; const s32 s0 = SIGNED_NIBBLES[static_cast<u32>(buffer[buffer_offset] >> 4)];
const s32 s1 = SIGNED_NIBBLES[buffer[buffer_offset++] & 0xf]; const s32 s1 = SIGNED_NIBBLES[static_cast<u32>(buffer[buffer_offset++] & 0xf)];
const s16 sample_1 = decode_sample(s0); const s16 sample_1 = decode_sample(s0);
const s16 sample_2 = decode_sample(s1); const s16 sample_2 = decode_sample(s1);
sample_buffer[cur_mix_offset++] = sample_1; sample_buffer[cur_mix_offset++] = sample_1;
@ -807,14 +828,14 @@ s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_s
} }
} }
// Decode mid frame // Decode mid frame
s32 current_nibble = buffer[buffer_offset]; auto current_nibble = static_cast<s32>(buffer[buffer_offset]);
if (position_in_frame++ & 0x1) { if ((position_in_frame++ & 1) != 0) {
current_nibble &= 0xf; current_nibble &= 0xf;
buffer_offset++; buffer_offset++;
} else { } else {
current_nibble >>= 4; current_nibble >>= 4;
} }
const s16 sample = decode_sample(SIGNED_NIBBLES[current_nibble]); const s16 sample = decode_sample(SIGNED_NIBBLES[static_cast<u32>(current_nibble)]);
sample_buffer[cur_mix_offset++] = sample; sample_buffer[cur_mix_offset++] = sample;
remaining_samples--; remaining_samples--;
} }
@ -835,7 +856,7 @@ const s32* CommandGenerator::GetMixBuffer(std::size_t index) const {
} }
std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const { std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const {
return worker_params.mix_buffer_count + channel; return worker_params.mix_buffer_count + static_cast<u32>(channel);
} }
std::size_t CommandGenerator::GetTotalMixBufferCount() const { std::size_t CommandGenerator::GetTotalMixBufferCount() const {
@ -843,11 +864,11 @@ std::size_t CommandGenerator::GetTotalMixBufferCount() const {
} }
s32* CommandGenerator::GetChannelMixBuffer(s32 channel) { s32* CommandGenerator::GetChannelMixBuffer(s32 channel) {
return GetMixBuffer(worker_params.mix_buffer_count + channel); return GetMixBuffer(worker_params.mix_buffer_count + static_cast<u32>(channel));
} }
const s32* CommandGenerator::GetChannelMixBuffer(s32 channel) const { const s32* CommandGenerator::GetChannelMixBuffer(s32 channel) const {
return GetMixBuffer(worker_params.mix_buffer_count + channel); return GetMixBuffer(worker_params.mix_buffer_count + static_cast<u32>(channel));
} }
void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output, void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output,
@ -895,9 +916,10 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
s32 samples_read{}; s32 samples_read{};
while (samples_read < samples_to_read) { while (samples_read < samples_to_read) {
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; const auto& wave_buffer =
in_params.wave_buffer[static_cast<u32>(dsp_state.wave_buffer_index)];
// No more data can be read // No more data can be read
if (!dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index]) { if (!dsp_state.is_wave_buffer_valid[static_cast<u32>(dsp_state.wave_buffer_index)]) {
is_buffer_completed = true; is_buffer_completed = true;
break; break;
} }
@ -921,7 +943,7 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format); UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
} }
temp_mix_offset += samples_decoded; temp_mix_offset += static_cast<size_t>(samples_decoded);
samples_read += samples_decoded; samples_read += samples_decoded;
dsp_state.offset += samples_decoded; dsp_state.offset += samples_decoded;
dsp_state.played_sample_count += samples_decoded; dsp_state.played_sample_count += samples_decoded;
@ -944,10 +966,12 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
} else { } else {
// Update our wave buffer states // Update our wave buffer states
dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index] = false; dsp_state.is_wave_buffer_valid[static_cast<u32>(dsp_state.wave_buffer_index)] =
false;
dsp_state.wave_buffer_consumed++; dsp_state.wave_buffer_consumed++;
dsp_state.wave_buffer_index = dsp_state.wave_buffer_index =
(dsp_state.wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS; static_cast<u32>(dsp_state.wave_buffer_index + 1) %
AudioCommon::MAX_WAVE_BUFFERS;
if (wave_buffer.end_of_stream) { if (wave_buffer.end_of_stream) {
dsp_state.played_sample_count = 0; dsp_state.played_sample_count = 0;
} }
@ -957,16 +981,20 @@ void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* o
if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) { if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) {
// No need to resample // No need to resample
std::memcpy(output, sample_buffer.data(), samples_read * sizeof(s32)); std::memcpy(output, sample_buffer.data(),
static_cast<size_t>(samples_read) * sizeof(s32));
} else { } else {
std::fill(sample_buffer.begin() + temp_mix_offset, {
sample_buffer.begin() + temp_mix_offset + (samples_to_read - samples_read), const auto begin = sample_buffer.begin() + static_cast<ptrdiff_t>(temp_mix_offset);
0); const auto end = begin + (samples_to_read - samples_read);
std::fill(begin, end, 0);
}
AudioCore::Resample(output, sample_buffer.data(), resample_rate, dsp_state.fraction, AudioCore::Resample(output, sample_buffer.data(), resample_rate, dsp_state.fraction,
samples_to_output); static_cast<size_t>(samples_to_output));
// Resample // Resample
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) { for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
dsp_state.sample_history[i] = sample_buffer[samples_to_read + i]; dsp_state.sample_history[i] =
sample_buffer[static_cast<size_t>(samples_to_read) + i];
} }
} }
output += samples_to_output; output += samples_to_output;

@ -50,12 +50,12 @@ public:
private: private:
void GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 channel); void GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 channel);
void GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info, VoiceState& dsp_state, void GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 mix_buffer_count, s32 channel); u32 mix_buffer_count, s32 channel);
void GenerateVolumeRampCommand(float last_volume, float current_volume, s32 channel, void GenerateVolumeRampCommand(float last_volume, float current_volume, s32 channel,
s32 node_id); s32 node_id);
void GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes, void GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes,
const MixVolumeBuffer& last_mix_volumes, VoiceState& dsp_state, const MixVolumeBuffer& last_mix_volumes, VoiceState& dsp_state,
s32 mix_buffer_offset, s32 mix_buffer_count, s32 voice_index, u32 mix_buffer_offset, u32 mix_buffer_count, u32 voice_index,
s32 node_id); s32 node_id);
void GenerateSubMixCommand(ServerMixInfo& mix_info); void GenerateSubMixCommand(ServerMixInfo& mix_info);
void GenerateMixCommands(ServerMixInfo& mix_info); void GenerateMixCommands(ServerMixInfo& mix_info);

@ -202,7 +202,7 @@ long CubebSinkStream::DataCallback(cubeb_stream* stream, void* user_data, const
} }
const std::size_t num_channels = impl->GetNumChannels(); const std::size_t num_channels = impl->GetNumChannels();
const std::size_t samples_to_write = num_channels * num_frames; const std::size_t samples_to_write = num_channels * static_cast<u64>(num_frames);
std::size_t samples_written; std::size_t samples_written;
/* /*

@ -27,7 +27,7 @@ private:
std::vector<SinkStreamPtr> sink_streams; std::vector<SinkStreamPtr> sink_streams;
#ifdef _WIN32 #ifdef _WIN32
u32 com_init_result = 0; s32 com_init_result = 0;
#endif #endif
}; };

@ -350,7 +350,7 @@ ResultCode InfoUpdater::UpdateMixes(MixContext& mix_context, std::size_t mix_buf
std::size_t total_buffer_count{}; std::size_t total_buffer_count{};
for (std::size_t i = 0; i < mix_count; i++) { for (std::size_t i = 0; i < mix_count; i++) {
const auto& in = mix_in_params[i]; const auto& in = mix_in_params[i];
total_buffer_count += in.buffer_count; total_buffer_count += static_cast<size_t>(in.buffer_count);
if (static_cast<std::size_t>(in.dest_mix_id) > mix_count && if (static_cast<std::size_t>(in.dest_mix_id) > mix_count &&
in.dest_mix_id != AudioCommon::NO_MIX && in.mix_id != AudioCommon::FINAL_MIX) { in.dest_mix_id != AudioCommon::NO_MIX && in.mix_id != AudioCommon::FINAL_MIX) {
LOG_ERROR( LOG_ERROR(
@ -379,7 +379,7 @@ ResultCode InfoUpdater::UpdateMixes(MixContext& mix_context, std::size_t mix_buf
const auto& mix_in = mix_in_params[i]; const auto& mix_in = mix_in_params[i];
std::size_t target_mix{}; std::size_t target_mix{};
if (behavior_info.IsMixInParameterDirtyOnlyUpdateSupported()) { if (behavior_info.IsMixInParameterDirtyOnlyUpdateSupported()) {
target_mix = mix_in.mix_id; target_mix = static_cast<size_t>(mix_in.mix_id);
} else { } else {
// Non dirty supported games just use i instead of the actual mix_id // Non dirty supported games just use i instead of the actual mix_id
target_mix = i; target_mix = i;

@ -62,7 +62,7 @@ void MixContext::UpdateDistancesFromFinalMix() {
distance_to_final_mix = AudioCommon::NO_FINAL_MIX; distance_to_final_mix = AudioCommon::NO_FINAL_MIX;
break; break;
} else { } else {
const auto& dest_mix = GetInfo(mix_id); const auto& dest_mix = GetInfo(static_cast<u32>(mix_id));
const auto dest_mix_distance = dest_mix.GetInParams().final_mix_distance; const auto dest_mix_distance = dest_mix.GetInParams().final_mix_distance;
if (dest_mix_distance == AudioCommon::NO_FINAL_MIX) { if (dest_mix_distance == AudioCommon::NO_FINAL_MIX) {
@ -129,7 +129,7 @@ bool MixContext::TsortInfo(SplitterContext& splitter_context) {
std::size_t info_id{}; std::size_t info_id{};
for (auto itr = sorted_list.rbegin(); itr != sorted_list.rend(); ++itr) { for (auto itr = sorted_list.rbegin(); itr != sorted_list.rend(); ++itr) {
// Set our sorted info // Set our sorted info
sorted_info[info_id++] = &GetInfo(*itr); sorted_info[info_id++] = &GetInfo(static_cast<u32>(*itr));
} }
// Calculate the mix buffer offset // Calculate the mix buffer offset
@ -218,7 +218,8 @@ bool ServerMixInfo::Update(EdgeMatrix& edge_matrix, const MixInfo::InParams& mix
for (std::size_t i = 0; i < effect_count; i++) { for (std::size_t i = 0; i < effect_count; i++) {
auto* effect_info = effect_context.GetInfo(i); auto* effect_info = effect_context.GetInfo(i);
if (effect_info->GetMixID() == in_params.mix_id) { if (effect_info->GetMixID() == in_params.mix_id) {
effect_processing_order[effect_info->GetProcessingOrder()] = static_cast<s32>(i); const auto processing_order = static_cast<u32>(effect_info->GetProcessingOrder());
effect_processing_order[processing_order] = static_cast<s32>(i);
} }
} }
@ -265,7 +266,7 @@ bool ServerMixInfo::UpdateConnection(EdgeMatrix& edge_matrix, const MixInfo::InP
if (in_params.dest_mix_id == mix_in.dest_mix_id && if (in_params.dest_mix_id == mix_in.dest_mix_id &&
in_params.splitter_id == mix_in.splitter_id && in_params.splitter_id == mix_in.splitter_id &&
((in_params.splitter_id == AudioCommon::NO_SPLITTER) || ((in_params.splitter_id == AudioCommon::NO_SPLITTER) ||
!splitter_context.GetInfo(in_params.splitter_id).HasNewConnection())) { !splitter_context.GetInfo(static_cast<u32>(in_params.splitter_id)).HasNewConnection())) {
return false; return false;
} }
// Remove current edges for mix id // Remove current edges for mix id
@ -275,11 +276,11 @@ bool ServerMixInfo::UpdateConnection(EdgeMatrix& edge_matrix, const MixInfo::InP
edge_matrix.Connect(in_params.mix_id, mix_in.dest_mix_id); edge_matrix.Connect(in_params.mix_id, mix_in.dest_mix_id);
} else if (mix_in.splitter_id != AudioCommon::NO_SPLITTER) { } else if (mix_in.splitter_id != AudioCommon::NO_SPLITTER) {
// Recurse our splitter linked and set our edges // Recurse our splitter linked and set our edges
auto& splitter_info = splitter_context.GetInfo(mix_in.splitter_id); auto& splitter_info = splitter_context.GetInfo(static_cast<u32>(mix_in.splitter_id));
const auto length = splitter_info.GetLength(); const auto length = static_cast<size_t>(splitter_info.GetLength());
for (s32 i = 0; i < length; i++) { for (size_t i = 0; i < length; i++) {
const auto* splitter_destination = const auto* splitter_destination =
splitter_context.GetDestinationData(mix_in.splitter_id, i); splitter_context.GetDestinationData(static_cast<u32>(mix_in.splitter_id), i);
if (splitter_destination == nullptr) { if (splitter_destination == nullptr) {
continue; continue;
} }

@ -23,8 +23,9 @@ bool SinkContext::InUse() const {
} }
std::vector<u8> SinkContext::OutputBuffers() const { std::vector<u8> SinkContext::OutputBuffers() const {
std::vector<u8> buffer_ret(use_count); const auto output_use_count = static_cast<size_t>(use_count);
std::memcpy(buffer_ret.data(), buffers.data(), use_count); std::vector<u8> buffer_ret(output_use_count);
std::memcpy(buffer_ret.data(), buffers.data(), output_use_count);
return buffer_ret; return buffer_ret;
} }

@ -109,7 +109,7 @@ std::size_t ServerSplitterInfo::Update(SplitterInfo::InInfoPrams& header) {
new_connection = true; new_connection = true;
// We need to update the size here due to the splitter bug being present and providing an // We need to update the size here due to the splitter bug being present and providing an
// incorrect size. We're suppose to also update the header here but we just ignore and continue // incorrect size. We're suppose to also update the header here but we just ignore and continue
return (sizeof(s32_le) * (header.length - 1)) + (sizeof(s32_le) * 3); return (sizeof(s32_le) * static_cast<size_t>(header.length - 1)) + (sizeof(s32_le) * 3);
} }
ServerSplitterDestinationData* ServerSplitterInfo::GetHead() { ServerSplitterDestinationData* ServerSplitterInfo::GetHead() {
@ -306,13 +306,14 @@ bool SplitterContext::UpdateInfo(const std::vector<u8>& input, std::size_t& inpu
break; break;
} }
if (header.send_id < 0 || static_cast<std::size_t>(header.send_id) > info_count) { const auto send_id = static_cast<std::size_t>(header.send_id);
if (header.send_id < 0 || send_id > info_count) {
LOG_ERROR(Audio, "Bad splitter data id"); LOG_ERROR(Audio, "Bad splitter data id");
break; break;
} }
UpdateOffsets(sizeof(SplitterInfo::InInfoPrams)); UpdateOffsets(sizeof(SplitterInfo::InInfoPrams));
auto& info = GetInfo(header.send_id); auto& info = GetInfo(send_id);
if (!RecomposeDestination(info, header, input, input_offset)) { if (!RecomposeDestination(info, header, input, input_offset)) {
LOG_ERROR(Audio, "Failed to recompose destination for splitter!"); LOG_ERROR(Audio, "Failed to recompose destination for splitter!");
return false; return false;
@ -348,11 +349,12 @@ bool SplitterContext::UpdateData(const std::vector<u8>& input, std::size_t& inpu
break; break;
} }
if (header.splitter_id < 0 || static_cast<std::size_t>(header.splitter_id) > data_count) { const auto splitter_id = static_cast<std::size_t>(header.splitter_id);
if (header.splitter_id < 0 || splitter_id > data_count) {
LOG_ERROR(Audio, "Bad splitter data id"); LOG_ERROR(Audio, "Bad splitter data id");
break; break;
} }
GetData(header.splitter_id).Update(header); GetData(splitter_id).Update(header);
} }
return true; return true;
} }
@ -386,9 +388,9 @@ bool SplitterContext::RecomposeDestination(ServerSplitterInfo& info,
return true; return true;
} }
auto* start_head = &GetData(header.resource_id_base); auto* start_head = &GetData(static_cast<u32>(header.resource_id_base));
current_head = start_head; current_head = start_head;
std::vector<s32_le> resource_ids(size - 1); std::vector<s32_le> resource_ids(static_cast<size_t>(size - 1));
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset, if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
resource_ids.size() * sizeof(s32_le))) { resource_ids.size() * sizeof(s32_le))) {
LOG_ERROR(Audio, "Buffer is an invalid size!"); LOG_ERROR(Audio, "Buffer is an invalid size!");
@ -397,8 +399,8 @@ bool SplitterContext::RecomposeDestination(ServerSplitterInfo& info,
std::memcpy(resource_ids.data(), input.data() + input_offset, std::memcpy(resource_ids.data(), input.data() + input_offset,
resource_ids.size() * sizeof(s32_le)); resource_ids.size() * sizeof(s32_le));
for (auto resource_id : resource_ids) { for (const auto resource_id : resource_ids) {
auto* head = &GetData(resource_id); auto* head = &GetData(static_cast<u32>(resource_id));
current_head->SetNextDestination(head); current_head->SetNextDestination(head);
current_head = head; current_head = head;
} }
@ -444,7 +446,7 @@ bool NodeStates::DepthFirstSearch(EdgeMatrix& edge_matrix) {
const auto node_id = static_cast<s32>(i); const auto node_id = static_cast<s32>(i);
// If we don't have a state, send to our index stack for work // If we don't have a state, send to our index stack for work
if (GetState(i) == NodeStates::State::NoState) { if (GetState(i) == State::NoState) {
index_stack.push(node_id); index_stack.push(node_id);
} }
@ -453,19 +455,19 @@ bool NodeStates::DepthFirstSearch(EdgeMatrix& edge_matrix) {
// Get the current node // Get the current node
const auto current_stack_index = index_stack.top(); const auto current_stack_index = index_stack.top();
// Check if we've seen the node yet // Check if we've seen the node yet
const auto index_state = GetState(current_stack_index); const auto index_state = GetState(static_cast<u32>(current_stack_index));
if (index_state == NodeStates::State::NoState) { if (index_state == State::NoState) {
// Mark the node as seen // Mark the node as seen
UpdateState(NodeStates::State::InFound, current_stack_index); UpdateState(State::InFound, static_cast<u32>(current_stack_index));
} else if (index_state == NodeStates::State::InFound) { } else if (index_state == State::InFound) {
// We've seen this node before, mark it as completed // We've seen this node before, mark it as completed
UpdateState(NodeStates::State::InCompleted, current_stack_index); UpdateState(State::InCompleted, static_cast<u32>(current_stack_index));
// Update our index list // Update our index list
PushTsortResult(current_stack_index); PushTsortResult(current_stack_index);
// Pop the stack // Pop the stack
index_stack.pop(); index_stack.pop();
continue; continue;
} else if (index_state == NodeStates::State::InCompleted) { } else if (index_state == State::InCompleted) {
// If our node is already sorted, clear it // If our node is already sorted, clear it
index_stack.pop(); index_stack.pop();
continue; continue;
@ -479,11 +481,11 @@ bool NodeStates::DepthFirstSearch(EdgeMatrix& edge_matrix) {
} }
// Check if our node exists // Check if our node exists
const auto node_state = GetState(j); const auto node_state = GetState(static_cast<u32>(j));
if (node_state == NodeStates::State::NoState) { if (node_state == State::NoState) {
// Add more work // Add more work
index_stack.push(j); index_stack.push(j);
} else if (node_state == NodeStates::State::InFound) { } else if (node_state == State::InFound) {
UNREACHABLE_MSG("Node start marked as found"); UNREACHABLE_MSG("Node start marked as found");
ResetState(); ResetState();
return false; return false;
@ -507,17 +509,17 @@ void NodeStates::ResetState() {
} }
} }
void NodeStates::UpdateState(NodeStates::State state, std::size_t i) { void NodeStates::UpdateState(State state, std::size_t i) {
switch (state) { switch (state) {
case NodeStates::State::NoState: case State::NoState:
was_node_found[i] = false; was_node_found[i] = false;
was_node_completed[i] = false; was_node_completed[i] = false;
break; break;
case NodeStates::State::InFound: case State::InFound:
was_node_found[i] = true; was_node_found[i] = true;
was_node_completed[i] = false; was_node_completed[i] = false;
break; break;
case NodeStates::State::InCompleted: case State::InCompleted:
was_node_found[i] = false; was_node_found[i] = false;
was_node_completed[i] = true; was_node_completed[i] = true;
break; break;
@ -528,13 +530,13 @@ NodeStates::State NodeStates::GetState(std::size_t i) {
ASSERT(i < node_count); ASSERT(i < node_count);
if (was_node_found[i]) { if (was_node_found[i]) {
// If our node exists in our found list // If our node exists in our found list
return NodeStates::State::InFound; return State::InFound;
} else if (was_node_completed[i]) { } else if (was_node_completed[i]) {
// If node is in the completed list // If node is in the completed list
return NodeStates::State::InCompleted; return State::InCompleted;
} else { } else {
// If in neither // If in neither
return NodeStates::State::NoState; return State::NoState;
} }
} }
@ -601,16 +603,16 @@ std::size_t EdgeMatrix::GetNodeCount() const {
void EdgeMatrix::SetState(s32 a, s32 b, bool state) { void EdgeMatrix::SetState(s32 a, s32 b, bool state) {
ASSERT(InRange(a, b)); ASSERT(InRange(a, b));
edge_matrix.at(a * node_count + b) = state; edge_matrix.at(static_cast<u32>(a) * node_count + static_cast<u32>(b)) = state;
} }
bool EdgeMatrix::GetState(s32 a, s32 b) { bool EdgeMatrix::GetState(s32 a, s32 b) {
ASSERT(InRange(a, b)); ASSERT(InRange(a, b));
return edge_matrix.at(a * node_count + b); return edge_matrix.at(static_cast<u32>(a) * node_count + static_cast<u32>(b));
} }
bool EdgeMatrix::InRange(s32 a, s32 b) const { bool EdgeMatrix::InRange(s32 a, s32 b) const {
const std::size_t pos = a * node_count + b; const std::size_t pos = static_cast<u32>(a) * node_count + static_cast<u32>(b);
return pos < (node_count * node_count); return pos < (node_count * node_count);
} }

@ -5,9 +5,17 @@
#pragma once #pragma once
#include <cstddef> #include <cstddef>
#include <SoundTouch.h>
#include "common/common_types.h" #include "common/common_types.h"
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
#include <SoundTouch.h>
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
namespace AudioCore { namespace AudioCore {
class TimeStretcher { class TimeStretcher {

@ -98,7 +98,7 @@ void ServerVoiceInfo::UpdateParameters(const VoiceInfo::InParams& voice_in,
BehaviorInfo& behavior_info) { BehaviorInfo& behavior_info) {
in_params.in_use = voice_in.is_in_use; in_params.in_use = voice_in.is_in_use;
in_params.id = voice_in.id; in_params.id = voice_in.id;
in_params.node_id = voice_in.node_id; in_params.node_id = static_cast<s32>(voice_in.node_id);
in_params.last_playstate = in_params.current_playstate; in_params.last_playstate = in_params.current_playstate;
switch (voice_in.play_state) { switch (voice_in.play_state) {
case PlayState::Paused: case PlayState::Paused:
@ -220,8 +220,10 @@ void ServerVoiceInfo::UpdateWaveBuffer(ServerWaveBuffer& out_wavebuffer,
if (sample_format == SampleFormat::Pcm16) { if (sample_format == SampleFormat::Pcm16) {
const auto buffer_size = in_wave_buffer.buffer_size; const auto buffer_size = in_wave_buffer.buffer_size;
if (in_wave_buffer.start_sample_offset < 0 || in_wave_buffer.end_sample_offset < 0 || if (in_wave_buffer.start_sample_offset < 0 || in_wave_buffer.end_sample_offset < 0 ||
(buffer_size < (sizeof(s16) * in_wave_buffer.start_sample_offset)) || (buffer_size <
(buffer_size < (sizeof(s16) * in_wave_buffer.end_sample_offset))) { (sizeof(s16) * static_cast<u32>(in_wave_buffer.start_sample_offset))) ||
(buffer_size <
(sizeof(s16) * static_cast<u32>(in_wave_buffer.end_sample_offset)))) {
// TODO(ogniK): Write error info // TODO(ogniK): Write error info
return; return;
} }
@ -254,8 +256,8 @@ void ServerVoiceInfo::WriteOutStatus(
voice_out.played_sample_count = 0; voice_out.played_sample_count = 0;
voice_out.voice_dropped = false; voice_out.voice_dropped = false;
} else if (!in_params.is_new) { } else if (!in_params.is_new) {
voice_out.wave_buffer_consumed = voice_states[0]->wave_buffer_consumed; voice_out.wave_buffer_consumed = static_cast<u32>(voice_states[0]->wave_buffer_consumed);
voice_out.played_sample_count = voice_states[0]->played_sample_count; voice_out.played_sample_count = static_cast<u64>(voice_states[0]->played_sample_count);
voice_out.voice_dropped = in_params.voice_drop_flag; voice_out.voice_dropped = in_params.voice_drop_flag;
} else { } else {
voice_out.wave_buffer_consumed = 0; voice_out.wave_buffer_consumed = 0;
@ -293,8 +295,8 @@ bool ServerVoiceInfo::UpdateForCommandGeneration(VoiceContext& voice_context) {
in_params.is_new = false; in_params.is_new = false;
} }
const s32 channel_count = in_params.channel_count; const auto channel_count = static_cast<size_t>(in_params.channel_count);
for (s32 i = 0; i < channel_count; i++) { for (size_t i = 0; i < channel_count; i++) {
const auto channel_resource = in_params.voice_channel_resource_id[i]; const auto channel_resource = in_params.voice_channel_resource_id[i];
dsp_voice_states[i] = dsp_voice_states[i] =
&voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource)); &voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource));
@ -303,8 +305,9 @@ bool ServerVoiceInfo::UpdateForCommandGeneration(VoiceContext& voice_context) {
} }
void ServerVoiceInfo::ResetResources(VoiceContext& voice_context) { void ServerVoiceInfo::ResetResources(VoiceContext& voice_context) {
const s32 channel_count = in_params.channel_count; const auto channel_count = static_cast<size_t>(in_params.channel_count);
for (s32 i = 0; i < channel_count; i++) {
for (size_t i = 0; i < channel_count; i++) {
const auto channel_resource = in_params.voice_channel_resource_id[i]; const auto channel_resource = in_params.voice_channel_resource_id[i];
auto& dsp_state = auto& dsp_state =
voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource)); voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource));
@ -325,9 +328,9 @@ bool ServerVoiceInfo::UpdateParametersForCommandGeneration(
switch (in_params.current_playstate) { switch (in_params.current_playstate) {
case ServerPlayState::Play: { case ServerPlayState::Play: {
for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) { for (size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) {
if (!in_params.wave_buffer[i].sent_to_dsp) { if (!in_params.wave_buffer[i].sent_to_dsp) {
for (s32 channel = 0; channel < channel_count; channel++) { for (size_t channel = 0; channel < static_cast<size_t>(channel_count); channel++) {
dsp_voice_states[channel]->is_wave_buffer_valid[i] = true; dsp_voice_states[channel]->is_wave_buffer_valid[i] = true;
} }
in_params.wave_buffer[i].sent_to_dsp = true; in_params.wave_buffer[i].sent_to_dsp = true;
@ -344,12 +347,13 @@ bool ServerVoiceInfo::UpdateParametersForCommandGeneration(
case ServerPlayState::RequestStop: { case ServerPlayState::RequestStop: {
for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) { for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) {
in_params.wave_buffer[i].sent_to_dsp = true; in_params.wave_buffer[i].sent_to_dsp = true;
for (s32 channel = 0; channel < channel_count; channel++) { for (std::size_t channel = 0; channel < static_cast<size_t>(channel_count); channel++) {
auto* dsp_state = dsp_voice_states[channel]; auto* dsp_state = dsp_voice_states[channel];
if (dsp_state->is_wave_buffer_valid[i]) { if (dsp_state->is_wave_buffer_valid[i]) {
dsp_state->wave_buffer_index = dsp_state->wave_buffer_index =
(dsp_state->wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS; static_cast<s32>(static_cast<u32>(dsp_state->wave_buffer_index + 1) %
AudioCommon::MAX_WAVE_BUFFERS);
dsp_state->wave_buffer_consumed++; dsp_state->wave_buffer_consumed++;
} }
@ -357,7 +361,7 @@ bool ServerVoiceInfo::UpdateParametersForCommandGeneration(
} }
} }
for (s32 channel = 0; channel < channel_count; channel++) { for (size_t channel = 0; channel < static_cast<size_t>(channel_count); channel++) {
auto* dsp_state = dsp_voice_states[channel]; auto* dsp_state = dsp_voice_states[channel];
dsp_state->offset = 0; dsp_state->offset = 0;
dsp_state->played_sample_count = 0; dsp_state->played_sample_count = 0;
@ -383,15 +387,16 @@ void ServerVoiceInfo::FlushWaveBuffers(
auto wave_head = in_params.wave_bufffer_head; auto wave_head = in_params.wave_bufffer_head;
for (u8 i = 0; i < flush_count; i++) { for (u8 i = 0; i < flush_count; i++) {
in_params.wave_buffer[wave_head].sent_to_dsp = true; in_params.wave_buffer[static_cast<u16>(wave_head)].sent_to_dsp = true;
for (s32 channel = 0; channel < channel_count; channel++) { for (size_t channel = 0; channel < static_cast<size_t>(channel_count); channel++) {
auto* dsp_state = dsp_voice_states[channel]; auto* dsp_state = dsp_voice_states[channel];
dsp_state->wave_buffer_consumed++; dsp_state->wave_buffer_consumed++;
dsp_state->is_wave_buffer_valid[wave_head] = false; dsp_state->is_wave_buffer_valid[static_cast<u16>(wave_head)] = false;
dsp_state->wave_buffer_index = dsp_state->wave_buffer_index = static_cast<s32>(
(dsp_state->wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS; static_cast<u32>(dsp_state->wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS);
} }
wave_head = (wave_head + 1) % AudioCommon::MAX_WAVE_BUFFERS; wave_head =
static_cast<s16>(static_cast<u32>(wave_head + 1) % AudioCommon::MAX_WAVE_BUFFERS);
} }
} }
@ -483,7 +488,7 @@ s32 VoiceContext::DecodePcm16(s32* output_buffer, ServerWaveBuffer* wave_buffer,
const auto samples_remaining = const auto samples_remaining =
(wave_buffer->end_sample_offset - wave_buffer->start_sample_offset) - buffer_offset; (wave_buffer->end_sample_offset - wave_buffer->start_sample_offset) - buffer_offset;
const auto start_offset = (wave_buffer->start_sample_offset + buffer_offset) * channel_count; const auto start_offset = (wave_buffer->start_sample_offset + buffer_offset) * channel_count;
const auto buffer_pos = wave_buffer->buffer_address + start_offset; const auto buffer_pos = wave_buffer->buffer_address + static_cast<VAddr>(start_offset);
s16* buffer_data = reinterpret_cast<s16*>(memory.GetPointer(buffer_pos)); s16* buffer_data = reinterpret_cast<s16*>(memory.GetPointer(buffer_pos));

@ -41,8 +41,8 @@ public:
Fiber(const Fiber&) = delete; Fiber(const Fiber&) = delete;
Fiber& operator=(const Fiber&) = delete; Fiber& operator=(const Fiber&) = delete;
Fiber(Fiber&&) = default; Fiber(Fiber&&) = delete;
Fiber& operator=(Fiber&&) = default; Fiber& operator=(Fiber&&) = delete;
/// Yields control from Fiber 'from' to Fiber 'to' /// Yields control from Fiber 'from' to Fiber 'to'
/// Fiber 'from' must be the currently running fiber. /// Fiber 'from' must be the currently running fiber.

@ -189,7 +189,8 @@ template <typename T>
return {}; return {};
} }
last = std::min<std::size_t>(last, vector.size()); last = std::min<std::size_t>(last, vector.size());
return std::vector<T>(vector.begin() + first, vector.begin() + first + last); return std::vector<T>(vector.begin() + static_cast<std::ptrdiff_t>(first),
vector.begin() + static_cast<std::ptrdiff_t>(first + last));
} }
enum class DirectorySeparator { enum class DirectorySeparator {

@ -27,7 +27,7 @@ struct Rectangle {
if constexpr (std::is_floating_point_v<T>) { if constexpr (std::is_floating_point_v<T>) {
return std::abs(right - left); return std::abs(right - left);
} else { } else {
return std::abs(static_cast<std::make_signed_t<T>>(right - left)); return static_cast<T>(std::abs(static_cast<std::make_signed_t<T>>(right - left)));
} }
} }
@ -35,7 +35,7 @@ struct Rectangle {
if constexpr (std::is_floating_point_v<T>) { if constexpr (std::is_floating_point_v<T>) {
return std::abs(bottom - top); return std::abs(bottom - top);
} else { } else {
return std::abs(static_cast<std::make_signed_t<T>>(bottom - top)); return static_cast<T>(std::abs(static_cast<std::make_signed_t<T>>(bottom - top)));
} }
} }

@ -320,7 +320,7 @@ private:
} }
const auto begin_range = list.begin(); const auto begin_range = list.begin();
const auto end_range = std::next(begin_range, shift); const auto end_range = std::next(begin_range, static_cast<std::ptrdiff_t>(shift));
list.splice(list.end(), list, begin_range, end_range); list.splice(list.end(), list, begin_range, end_range);
} }

@ -15,6 +15,14 @@ namespace Common {
*/ */
class SpinLock { class SpinLock {
public: public:
SpinLock() = default;
SpinLock(const SpinLock&) = delete;
SpinLock& operator=(const SpinLock&) = delete;
SpinLock(SpinLock&&) = delete;
SpinLock& operator=(SpinLock&&) = delete;
void lock(); void lock();
void unlock(); void unlock();
[[nodiscard]] bool try_lock(); [[nodiscard]] bool try_lock();

@ -504,35 +504,35 @@ bool operator==(const S& p, const swap_struct_t<T, F> v) {
template <typename T> template <typename T>
struct swap_64_t { struct swap_64_t {
static T swap(T x) { static T swap(T x) {
return static_cast<T>(Common::swap64(x)); return static_cast<T>(Common::swap64(static_cast<u64>(x)));
} }
}; };
template <typename T> template <typename T>
struct swap_32_t { struct swap_32_t {
static T swap(T x) { static T swap(T x) {
return static_cast<T>(Common::swap32(x)); return static_cast<T>(Common::swap32(static_cast<u32>(x)));
} }
}; };
template <typename T> template <typename T>
struct swap_16_t { struct swap_16_t {
static T swap(T x) { static T swap(T x) {
return static_cast<T>(Common::swap16(x)); return static_cast<T>(Common::swap16(static_cast<u16>(x)));
} }
}; };
template <typename T> template <typename T>
struct swap_float_t { struct swap_float_t {
static T swap(T x) { static T swap(T x) {
return static_cast<T>(Common::swapf(x)); return static_cast<T>(Common::swapf(static_cast<float>(x)));
} }
}; };
template <typename T> template <typename T>
struct swap_double_t { struct swap_double_t {
static T swap(T x) { static T swap(T x) {
return static_cast<T>(Common::swapd(x)); return static_cast<T>(Common::swapd(static_cast<double>(x)));
} }
}; };

@ -33,7 +33,7 @@ struct ThreadQueueList {
} }
} }
return -1; return static_cast<Priority>(-1);
} }
[[nodiscard]] T get_first() const { [[nodiscard]] T get_first() const {
@ -156,7 +156,7 @@ private:
void link(Priority priority) { void link(Priority priority) {
Queue* cur = &queues[priority]; Queue* cur = &queues[priority];
for (int i = priority - 1; i >= 0; --i) { for (auto i = static_cast<int>(priority - 1); i >= 0; --i) {
if (queues[i].next_nonempty != UnlinkedTag()) { if (queues[i].next_nonempty != UnlinkedTag()) {
cur->next_nonempty = queues[i].next_nonempty; cur->next_nonempty = queues[i].next_nonempty;
queues[i].next_nonempty = cur; queues[i].next_nonempty = cur;

@ -630,8 +630,9 @@ else()
-Werror=implicit-fallthrough -Werror=implicit-fallthrough
-Werror=reorder -Werror=reorder
-Werror=sign-compare -Werror=sign-compare
-Werror=unused-but-set-parameter -Werror=sign-conversion
-Werror=unused-but-set-variable $<$<CXX_COMPILER_ID:GNU>:-Werror=unused-but-set-parameter>
$<$<CXX_COMPILER_ID:GNU>:-Werror=unused-but-set-variable>
-Werror=unused-variable -Werror=unused-variable
) )
endif() endif()

@ -147,10 +147,18 @@ std::vector<ARM_Interface::BacktraceEntry> ARM_Interface::GetBacktraceFromContex
auto fp = ctx.cpu_registers[29]; auto fp = ctx.cpu_registers[29];
auto lr = ctx.cpu_registers[30]; auto lr = ctx.cpu_registers[30];
while (true) { while (true) {
out.push_back({"", 0, lr, 0}); out.push_back({
if (!fp) { .module = "",
.address = 0,
.original_address = lr,
.offset = 0,
.name = "",
});
if (fp == 0) {
break; break;
} }
lr = memory.Read64(fp + 8) - 4; lr = memory.Read64(fp + 8) - 4;
fp = memory.Read64(fp); fp = memory.Read64(fp);
} }
@ -203,10 +211,18 @@ std::vector<ARM_Interface::BacktraceEntry> ARM_Interface::GetBacktrace() const {
auto fp = GetReg(29); auto fp = GetReg(29);
auto lr = GetReg(30); auto lr = GetReg(30);
while (true) { while (true) {
out.push_back({"", 0, lr, 0, ""}); out.push_back({
if (!fp) { .module = "",
.address = 0,
.original_address = lr,
.offset = 0,
.name = "",
});
if (fp == 0) {
break; break;
} }
lr = memory.Read64(fp + 8) - 4; lr = memory.Read64(fp + 8) - 4;
fp = memory.Read64(fp); fp = memory.Read64(fp);
} }

@ -93,14 +93,14 @@ public:
* @param index Register index * @param index Register index
* @return Returns the value in the register * @return Returns the value in the register
*/ */
virtual u64 GetReg(int index) const = 0; virtual u64 GetReg(std::size_t index) const = 0;
/** /**
* Set an ARM register * Set an ARM register
* @param index Register index * @param index Register index
* @param value Value to set register to * @param value Value to set register to
*/ */
virtual void SetReg(int index, u64 value) = 0; virtual void SetReg(std::size_t index, u64 value) = 0;
/** /**
* Gets the value of a specified vector register. * Gets the value of a specified vector register.
@ -108,7 +108,7 @@ public:
* @param index The index of the vector register. * @param index The index of the vector register.
* @return the value within the vector register. * @return the value within the vector register.
*/ */
virtual u128 GetVectorReg(int index) const = 0; virtual u128 GetVectorReg(std::size_t index) const = 0;
/** /**
* Sets a given value into a vector register. * Sets a given value into a vector register.
@ -116,7 +116,7 @@ public:
* @param index The index of the vector register. * @param index The index of the vector register.
* @param value The new value to place in the register. * @param value The new value to place in the register.
*/ */
virtual void SetVectorReg(int index, u128 value) = 0; virtual void SetVectorReg(std::size_t index, u128 value) = 0;
/** /**
* Get the current PSTATE register * Get the current PSTATE register

@ -21,8 +21,8 @@ public:
CPUInterruptHandler(const CPUInterruptHandler&) = delete; CPUInterruptHandler(const CPUInterruptHandler&) = delete;
CPUInterruptHandler& operator=(const CPUInterruptHandler&) = delete; CPUInterruptHandler& operator=(const CPUInterruptHandler&) = delete;
CPUInterruptHandler(CPUInterruptHandler&&) = default; CPUInterruptHandler(CPUInterruptHandler&&) = delete;
CPUInterruptHandler& operator=(CPUInterruptHandler&&) = default; CPUInterruptHandler& operator=(CPUInterruptHandler&&) = delete;
bool IsInterrupted() const { bool IsInterrupted() const {
return is_interrupted; return is_interrupted;

@ -111,7 +111,7 @@ public:
} }
return 0U; return 0U;
} }
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0); return static_cast<u64>(std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0));
} }
ARM_Dynarmic_32& parent; ARM_Dynarmic_32& parent;
@ -210,19 +210,19 @@ u64 ARM_Dynarmic_32::GetPC() const {
return jit->Regs()[15]; return jit->Regs()[15];
} }
u64 ARM_Dynarmic_32::GetReg(int index) const { u64 ARM_Dynarmic_32::GetReg(std::size_t index) const {
return jit->Regs()[index]; return jit->Regs()[index];
} }
void ARM_Dynarmic_32::SetReg(int index, u64 value) { void ARM_Dynarmic_32::SetReg(std::size_t index, u64 value) {
jit->Regs()[index] = static_cast<u32>(value); jit->Regs()[index] = static_cast<u32>(value);
} }
u128 ARM_Dynarmic_32::GetVectorReg(int index) const { u128 ARM_Dynarmic_32::GetVectorReg(std::size_t index) const {
return {}; return {};
} }
void ARM_Dynarmic_32::SetVectorReg(int index, u128 value) {} void ARM_Dynarmic_32::SetVectorReg(std::size_t index, u128 value) {}
u32 ARM_Dynarmic_32::GetPSTATE() const { u32 ARM_Dynarmic_32::GetPSTATE() const {
return jit->Cpsr(); return jit->Cpsr();

@ -35,10 +35,10 @@ public:
void SetPC(u64 pc) override; void SetPC(u64 pc) override;
u64 GetPC() const override; u64 GetPC() const override;
u64 GetReg(int index) const override; u64 GetReg(std::size_t index) const override;
void SetReg(int index, u64 value) override; void SetReg(std::size_t index, u64 value) override;
u128 GetVectorReg(int index) const override; u128 GetVectorReg(std::size_t index) const override;
void SetVectorReg(int index, u128 value) override; void SetVectorReg(std::size_t index, u128 value) override;
u32 GetPSTATE() const override; u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override; void SetPSTATE(u32 pstate) override;
void Run() override; void Run() override;

@ -148,7 +148,7 @@ public:
} }
return 0U; return 0U;
} }
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0); return static_cast<u64>(std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0));
} }
u64 GetCNTPCT() override { u64 GetCNTPCT() override {
@ -265,19 +265,19 @@ u64 ARM_Dynarmic_64::GetPC() const {
return jit->GetPC(); return jit->GetPC();
} }
u64 ARM_Dynarmic_64::GetReg(int index) const { u64 ARM_Dynarmic_64::GetReg(std::size_t index) const {
return jit->GetRegister(index); return jit->GetRegister(index);
} }
void ARM_Dynarmic_64::SetReg(int index, u64 value) { void ARM_Dynarmic_64::SetReg(std::size_t index, u64 value) {
jit->SetRegister(index, value); jit->SetRegister(index, value);
} }
u128 ARM_Dynarmic_64::GetVectorReg(int index) const { u128 ARM_Dynarmic_64::GetVectorReg(std::size_t index) const {
return jit->GetVector(index); return jit->GetVector(index);
} }
void ARM_Dynarmic_64::SetVectorReg(int index, u128 value) { void ARM_Dynarmic_64::SetVectorReg(std::size_t index, u128 value) {
jit->SetVector(index, value); jit->SetVector(index, value);
} }

@ -33,10 +33,10 @@ public:
void SetPC(u64 pc) override; void SetPC(u64 pc) override;
u64 GetPC() const override; u64 GetPC() const override;
u64 GetReg(int index) const override; u64 GetReg(std::size_t index) const override;
void SetReg(int index, u64 value) override; void SetReg(std::size_t index, u64 value) override;
u128 GetVectorReg(int index) const override; u128 GetVectorReg(std::size_t index) const override;
void SetVectorReg(int index, u128 value) override; void SetVectorReg(std::size_t index, u128 value) override;
u32 GetPSTATE() const override; u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override; void SetPSTATE(u32 pstate) override;
void Run() override; void Run() override;

@ -96,35 +96,35 @@ u64 ARM_Unicorn::GetPC() const {
return val; return val;
} }
u64 ARM_Unicorn::GetReg(int regn) const { u64 ARM_Unicorn::GetReg(std::size_t index) const {
u64 val{}; u64 val{};
auto treg = UC_ARM64_REG_SP; auto treg = UC_ARM64_REG_SP;
if (regn <= 28) { if (index <= 28) {
treg = (uc_arm64_reg)(UC_ARM64_REG_X0 + regn); treg = static_cast<uc_arm64_reg>(UC_ARM64_REG_X0 + static_cast<int>(index));
} else if (regn < 31) { } else if (index < 31) {
treg = (uc_arm64_reg)(UC_ARM64_REG_X29 + regn - 29); treg = static_cast<uc_arm64_reg>(UC_ARM64_REG_X29 + static_cast<int>(index) - 29);
} }
CHECKED(uc_reg_read(uc, treg, &val)); CHECKED(uc_reg_read(uc, treg, &val));
return val; return val;
} }
void ARM_Unicorn::SetReg(int regn, u64 val) { void ARM_Unicorn::SetReg(std::size_t index, u64 value) {
auto treg = UC_ARM64_REG_SP; auto treg = UC_ARM64_REG_SP;
if (regn <= 28) { if (index <= 28) {
treg = (uc_arm64_reg)(UC_ARM64_REG_X0 + regn); treg = static_cast<uc_arm64_reg>(UC_ARM64_REG_X0 + static_cast<int>(index));
} else if (regn < 31) { } else if (index < 31) {
treg = (uc_arm64_reg)(UC_ARM64_REG_X29 + regn - 29); treg = static_cast<uc_arm64_reg>(UC_ARM64_REG_X29 + static_cast<int>(index) - 29);
} }
CHECKED(uc_reg_write(uc, treg, &val)); CHECKED(uc_reg_write(uc, treg, &value));
} }
u128 ARM_Unicorn::GetVectorReg(int /*index*/) const { u128 ARM_Unicorn::GetVectorReg(std::size_t /*index*/) const {
UNIMPLEMENTED(); UNIMPLEMENTED();
static constexpr u128 res{}; static constexpr u128 res{};
return res; return res;
} }
void ARM_Unicorn::SetVectorReg(int /*index*/, u128 /*value*/) { void ARM_Unicorn::SetVectorReg(std::size_t /*index*/, u128 /*value*/) {
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
@ -217,8 +217,8 @@ void ARM_Unicorn::SaveContext(ThreadContext64& ctx) {
CHECKED(uc_reg_read(uc, UC_ARM64_REG_PC, &ctx.pc)); CHECKED(uc_reg_read(uc, UC_ARM64_REG_PC, &ctx.pc));
CHECKED(uc_reg_read(uc, UC_ARM64_REG_NZCV, &ctx.pstate)); CHECKED(uc_reg_read(uc, UC_ARM64_REG_NZCV, &ctx.pstate));
for (auto i = 0; i < 29; ++i) { for (std::size_t i = 0; i < 29; ++i) {
uregs[i] = UC_ARM64_REG_X0 + i; uregs[i] = UC_ARM64_REG_X0 + static_cast<int>(i);
tregs[i] = &ctx.cpu_registers[i]; tregs[i] = &ctx.cpu_registers[i];
} }
uregs[29] = UC_ARM64_REG_X29; uregs[29] = UC_ARM64_REG_X29;
@ -228,8 +228,8 @@ void ARM_Unicorn::SaveContext(ThreadContext64& ctx) {
CHECKED(uc_reg_read_batch(uc, uregs, tregs, 31)); CHECKED(uc_reg_read_batch(uc, uregs, tregs, 31));
for (int i = 0; i < 32; ++i) { for (std::size_t i = 0; i < 32; ++i) {
uregs[i] = UC_ARM64_REG_Q0 + i; uregs[i] = UC_ARM64_REG_Q0 + static_cast<int>(i);
tregs[i] = &ctx.vector_registers[i]; tregs[i] = &ctx.vector_registers[i];
} }
@ -244,8 +244,8 @@ void ARM_Unicorn::LoadContext(const ThreadContext64& ctx) {
CHECKED(uc_reg_write(uc, UC_ARM64_REG_PC, &ctx.pc)); CHECKED(uc_reg_write(uc, UC_ARM64_REG_PC, &ctx.pc));
CHECKED(uc_reg_write(uc, UC_ARM64_REG_NZCV, &ctx.pstate)); CHECKED(uc_reg_write(uc, UC_ARM64_REG_NZCV, &ctx.pstate));
for (int i = 0; i < 29; ++i) { for (std::size_t i = 0; i < 29; ++i) {
uregs[i] = UC_ARM64_REG_X0 + i; uregs[i] = UC_ARM64_REG_X0 + static_cast<int>(i);
tregs[i] = (void*)&ctx.cpu_registers[i]; tregs[i] = (void*)&ctx.cpu_registers[i];
} }
uregs[29] = UC_ARM64_REG_X29; uregs[29] = UC_ARM64_REG_X29;
@ -255,8 +255,8 @@ void ARM_Unicorn::LoadContext(const ThreadContext64& ctx) {
CHECKED(uc_reg_write_batch(uc, uregs, tregs, 31)); CHECKED(uc_reg_write_batch(uc, uregs, tregs, 31));
for (auto i = 0; i < 32; ++i) { for (std::size_t i = 0; i < 32; ++i) {
uregs[i] = UC_ARM64_REG_Q0 + i; uregs[i] = UC_ARM64_REG_Q0 + static_cast<int>(i);
tregs[i] = (void*)&ctx.vector_registers[i]; tregs[i] = (void*)&ctx.vector_registers[i];
} }

@ -26,10 +26,10 @@ public:
void SetPC(u64 pc) override; void SetPC(u64 pc) override;
u64 GetPC() const override; u64 GetPC() const override;
u64 GetReg(int index) const override; u64 GetReg(std::size_t index) const override;
void SetReg(int index, u64 value) override; void SetReg(std::size_t index, u64 value) override;
u128 GetVectorReg(int index) const override; u128 GetVectorReg(std::size_t index) const override;
void SetVectorReg(int index, u128 value) override; void SetVectorReg(std::size_t index, u128 value) override;
u32 GetPSTATE() const override; u32 GetPSTATE() const override;
void SetPSTATE(u32 pstate) override; void SetPSTATE(u32 pstate) override;
VAddr GetTlsAddress() const override; VAddr GetTlsAddress() const override;

@ -140,7 +140,8 @@ void CoreTiming::AddTicks(u64 ticks) {
void CoreTiming::Idle() { void CoreTiming::Idle() {
if (!event_queue.empty()) { if (!event_queue.empty()) {
const u64 next_event_time = event_queue.front().time; const u64 next_event_time = event_queue.front().time;
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U; const u64 next_ticks =
static_cast<u64>(nsToCycles(std::chrono::nanoseconds(next_event_time))) + 10;
if (next_ticks > ticks) { if (next_ticks > ticks) {
ticks = next_ticks; ticks = next_ticks;
} }
@ -187,7 +188,7 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::optional<s64> CoreTiming::Advance() { std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock}; std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count(); global_timer = static_cast<u64>(GetGlobalTimeNs().count());
while (!event_queue.empty() && event_queue.front().time <= global_timer) { while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front()); Event evt = std::move(event_queue.front());
@ -201,11 +202,11 @@ std::optional<s64> CoreTiming::Advance() {
} }
basic_lock.lock(); basic_lock.lock();
global_timer = GetGlobalTimeNs().count(); global_timer = static_cast<u64>(GetGlobalTimeNs().count());
} }
if (!event_queue.empty()) { if (!event_queue.empty()) {
const s64 next_time = event_queue.front().time - global_timer; const auto next_time = static_cast<s64>(event_queue.front().time - global_timer);
return next_time; return next_time;
} else { } else {
return std::nullopt; return std::nullopt;
@ -240,14 +241,14 @@ std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) { if (is_multicore) {
return clock->GetTimeNS(); return clock->GetTimeNS();
} }
return CyclesToNs(ticks); return CyclesToNs(static_cast<s64>(ticks));
} }
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) { if (is_multicore) {
return clock->GetTimeUS(); return clock->GetTimeUS();
} }
return CyclesToUs(ticks); return CyclesToUs(static_cast<s64>(ticks));
} }
} // namespace Core::Timing } // namespace Core::Timing

@ -21,9 +21,9 @@ s64 msToCycles(std::chrono::milliseconds ms) {
} }
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) { if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding"); LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000); return static_cast<s64>(Hardware::BASE_CLOCK_RATE * static_cast<u64>(ms.count() / 1000));
} }
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000; return static_cast<s64>((Hardware::BASE_CLOCK_RATE * static_cast<u64>(ms.count())) / 1000);
} }
s64 usToCycles(std::chrono::microseconds us) { s64 usToCycles(std::chrono::microseconds us) {
@ -33,51 +33,55 @@ s64 usToCycles(std::chrono::microseconds us) {
} }
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) { if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding"); LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000); return static_cast<s64>(Hardware::BASE_CLOCK_RATE * static_cast<u64>(us.count() / 1000000));
} }
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000; return static_cast<s64>((Hardware::BASE_CLOCK_RATE * static_cast<u64>(us.count())) / 1000000);
} }
s64 nsToCycles(std::chrono::nanoseconds ns) { s64 nsToCycles(std::chrono::nanoseconds ns) {
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE); const u128 temp =
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first; Common::Multiply64Into128(static_cast<u64>(ns.count()), Hardware::BASE_CLOCK_RATE);
return static_cast<s64>(Common::Divide128On32(temp, static_cast<u32>(1000000000)).first);
} }
u64 msToClockCycles(std::chrono::milliseconds ns) { u64 msToClockCycles(std::chrono::milliseconds ms) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); const auto count = static_cast<u64>(ms.count());
const u128 temp = Common::Multiply64Into128(count, Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000).first; return Common::Divide128On32(temp, 1000).first;
} }
u64 usToClockCycles(std::chrono::microseconds ns) { u64 usToClockCycles(std::chrono::microseconds us) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); const auto count = static_cast<u64>(us.count());
const u128 temp = Common::Multiply64Into128(count, Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000000).first; return Common::Divide128On32(temp, 1000000).first;
} }
u64 nsToClockCycles(std::chrono::nanoseconds ns) { u64 nsToClockCycles(std::chrono::nanoseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); const auto count = static_cast<u64>(ns.count());
const u128 temp = Common::Multiply64Into128(count, Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000000000).first; return Common::Divide128On32(temp, 1000000000).first;
} }
u64 CpuCyclesToClockCycles(u64 ticks) { u64 CpuCyclesToClockCycles(u64 ticks) {
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ); const u128 temp = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; return Common::Divide128On32(temp, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
} }
std::chrono::milliseconds CyclesToMs(s64 cycles) { std::chrono::milliseconds CyclesToMs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000); const u128 temp = Common::Multiply64Into128(static_cast<u64>(cycles), 1000);
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; const u64 ms = Common::Divide128On32(temp, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::milliseconds(ms); return std::chrono::milliseconds(ms);
} }
std::chrono::nanoseconds CyclesToNs(s64 cycles) { std::chrono::nanoseconds CyclesToNs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000); const u128 temp = Common::Multiply64Into128(static_cast<u64>(cycles), 1000000000);
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; const u64 ns = Common::Divide128On32(temp, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::nanoseconds(ns); return std::chrono::nanoseconds(ns);
} }
std::chrono::microseconds CyclesToUs(s64 cycles) { std::chrono::microseconds CyclesToUs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000000); const u128 temp = Common::Multiply64Into128(static_cast<u64>(cycles), 1000000);
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; const u64 us = Common::Divide128On32(temp, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::microseconds(us); return std::chrono::microseconds(us);
} }

@ -12,8 +12,8 @@ namespace Core::Timing {
s64 msToCycles(std::chrono::milliseconds ms); s64 msToCycles(std::chrono::milliseconds ms);
s64 usToCycles(std::chrono::microseconds us); s64 usToCycles(std::chrono::microseconds us);
s64 nsToCycles(std::chrono::nanoseconds ns); s64 nsToCycles(std::chrono::nanoseconds ns);
u64 msToClockCycles(std::chrono::milliseconds ns); u64 msToClockCycles(std::chrono::milliseconds ms);
u64 usToClockCycles(std::chrono::microseconds ns); u64 usToClockCycles(std::chrono::microseconds us);
u64 nsToClockCycles(std::chrono::nanoseconds ns); u64 nsToClockCycles(std::chrono::nanoseconds ns);
std::chrono::milliseconds CyclesToMs(s64 cycles); std::chrono::milliseconds CyclesToMs(s64 cycles);
std::chrono::nanoseconds CyclesToNs(s64 cycles); std::chrono::nanoseconds CyclesToNs(s64 cycles);

@ -143,6 +143,7 @@ u64 GetSignatureTypeDataSize(SignatureType type) {
return 0x3C; return 0x3C;
} }
UNREACHABLE(); UNREACHABLE();
return 0;
} }
u64 GetSignatureTypePaddingSize(SignatureType type) { u64 GetSignatureTypePaddingSize(SignatureType type) {
@ -157,6 +158,7 @@ u64 GetSignatureTypePaddingSize(SignatureType type) {
return 0x40; return 0x40;
} }
UNREACHABLE(); UNREACHABLE();
return 0;
} }
SignatureType Ticket::GetSignatureType() const { SignatureType Ticket::GetSignatureType() const {
@ -171,6 +173,7 @@ SignatureType Ticket::GetSignatureType() const {
} }
UNREACHABLE(); UNREACHABLE();
return {};
} }
TicketData& Ticket::GetData() { TicketData& Ticket::GetData() {
@ -348,7 +351,7 @@ std::optional<Key128> DeriveSDSeed() {
std::array<u8, 0x10> buffer{}; std::array<u8, 0x10> buffer{};
std::size_t offset = 0; std::size_t offset = 0;
for (; offset + 0x10 < save_43.GetSize(); ++offset) { for (; offset + 0x10 < save_43.GetSize(); ++offset) {
if (!save_43.Seek(offset, SEEK_SET)) { if (!save_43.Seek(static_cast<s64>(offset), SEEK_SET)) {
return std::nullopt; return std::nullopt;
} }
@ -358,7 +361,7 @@ std::optional<Key128> DeriveSDSeed() {
} }
} }
if (!save_43.Seek(offset + 0x10, SEEK_SET)) { if (!save_43.Seek(static_cast<s64>(offset + 0x10), SEEK_SET)) {
return std::nullopt; return std::nullopt;
} }

@ -161,7 +161,7 @@ static constexpr u8 CalculateMaxKeyblobSourceHash() {
return true; return true;
}; };
for (s8 i = 0x1F; i >= 0; --i) { for (std::size_t i = 0x1F; i <= 0x1F; --i) {
if (!is_zero(keyblob_source_hashes[i])) { if (!is_zero(keyblob_source_hashes[i])) {
return static_cast<u8>(i + 1); return static_cast<u8>(i + 1);
} }

@ -201,9 +201,9 @@ bool NCA::HandlePotentialHeaderDecryption() {
} }
std::vector<NCASectionHeader> NCA::ReadSectionHeaders() const { std::vector<NCASectionHeader> NCA::ReadSectionHeaders() const {
const std::ptrdiff_t number_sections = const auto number_sections = static_cast<std::size_t>(
std::count_if(std::begin(header.section_tables), std::end(header.section_tables), std::count_if(std::begin(header.section_tables), std::end(header.section_tables),
[](NCASectionTableEntry entry) { return entry.media_offset > 0; }); [](NCASectionTableEntry entry) { return entry.media_offset > 0; }));
std::vector<NCASectionHeader> sections(number_sections); std::vector<NCASectionHeader> sections(number_sections);
const auto length_sections = SECTION_HEADER_SIZE * number_sections; const auto length_sections = SECTION_HEADER_SIZE * number_sections;

@ -103,7 +103,7 @@ static u32 romfs_calc_path_hash(u32 parent, std::string_view path, u32 start,
u32 hash = parent ^ 123456789; u32 hash = parent ^ 123456789;
for (u32 i = 0; i < path_len; i++) { for (u32 i = 0; i < path_len; i++) {
hash = (hash >> 5) | (hash << 27); hash = (hash >> 5) | (hash << 27);
hash ^= path[start + i]; hash ^= static_cast<u32>(path[start + i]);
} }
return hash; return hash;

@ -66,12 +66,14 @@ static bool IsEOF(IPSFileType type, const std::vector<u8>& data) {
} }
VirtualFile PatchIPS(const VirtualFile& in, const VirtualFile& ips) { VirtualFile PatchIPS(const VirtualFile& in, const VirtualFile& ips) {
if (in == nullptr || ips == nullptr) if (in == nullptr || ips == nullptr) {
return nullptr; return nullptr;
}
const auto type = IdentifyMagic(ips->ReadBytes(0x5)); const auto type = IdentifyMagic(ips->ReadBytes(0x5));
if (type == IPSFileType::Error) if (type == IPSFileType::Error) {
return nullptr; return nullptr;
}
auto in_data = in->ReadAllBytes(); auto in_data = in->ReadAllBytes();
@ -84,37 +86,46 @@ VirtualFile PatchIPS(const VirtualFile& in, const VirtualFile& ips) {
} }
u32 real_offset{}; u32 real_offset{};
if (type == IPSFileType::IPS32) if (type == IPSFileType::IPS32) {
real_offset = (temp[0] << 24) | (temp[1] << 16) | (temp[2] << 8) | temp[3]; real_offset = static_cast<u32>(temp[0] << 24) | static_cast<u32>(temp[1] << 16) |
else static_cast<u32>(temp[2] << 8) | temp[3];
real_offset = (temp[0] << 16) | (temp[1] << 8) | temp[2]; } else {
real_offset =
static_cast<u32>(temp[0] << 16) | static_cast<u32>(temp[1] << 8) | temp[2];
}
u16 data_size{}; u16 data_size{};
if (ips->ReadObject(&data_size, offset) != sizeof(u16)) if (ips->ReadObject(&data_size, offset) != sizeof(u16)) {
return nullptr; return nullptr;
}
data_size = Common::swap16(data_size); data_size = Common::swap16(data_size);
offset += sizeof(u16); offset += sizeof(u16);
if (data_size == 0) { // RLE if (data_size == 0) { // RLE
u16 rle_size{}; u16 rle_size{};
if (ips->ReadObject(&rle_size, offset) != sizeof(u16)) if (ips->ReadObject(&rle_size, offset) != sizeof(u16)) {
return nullptr; return nullptr;
}
rle_size = Common::swap16(rle_size); rle_size = Common::swap16(rle_size);
offset += sizeof(u16); offset += sizeof(u16);
const auto data = ips->ReadByte(offset++); const auto data = ips->ReadByte(offset++);
if (!data) if (!data) {
return nullptr; return nullptr;
}
if (real_offset + rle_size > in_data.size()) if (real_offset + rle_size > in_data.size()) {
rle_size = static_cast<u16>(in_data.size() - real_offset); rle_size = static_cast<u16>(in_data.size() - real_offset);
}
std::memset(in_data.data() + real_offset, *data, rle_size); std::memset(in_data.data() + real_offset, *data, rle_size);
} else { // Standard Patch } else { // Standard Patch
auto read = data_size; auto read = data_size;
if (real_offset + read > in_data.size()) if (real_offset + read > in_data.size()) {
read = static_cast<u16>(in_data.size() - real_offset); read = static_cast<u16>(in_data.size() - real_offset);
if (ips->Read(in_data.data() + real_offset, read, offset) != data_size) }
if (ips->Read(in_data.data() + real_offset, read, offset) != data_size) {
return nullptr; return nullptr;
}
offset += data_size; offset += data_size;
} }
} }
@ -182,14 +193,16 @@ void IPSwitchCompiler::ParseFlag(const std::string& line) {
void IPSwitchCompiler::Parse() { void IPSwitchCompiler::Parse() {
const auto bytes = patch_text->ReadAllBytes(); const auto bytes = patch_text->ReadAllBytes();
std::stringstream s; std::stringstream s;
s.write(reinterpret_cast<const char*>(bytes.data()), bytes.size()); s.write(reinterpret_cast<const char*>(bytes.data()),
static_cast<std::streamsize>(bytes.size()));
std::vector<std::string> lines; std::vector<std::string> lines;
std::string stream_line; std::string stream_line;
while (std::getline(s, stream_line)) { while (std::getline(s, stream_line)) {
// Remove a trailing \r // Remove a trailing \r
if (!stream_line.empty() && stream_line.back() == '\r') if (!stream_line.empty() && stream_line.back() == '\r') {
stream_line.pop_back(); stream_line.pop_back();
}
lines.push_back(std::move(stream_line)); lines.push_back(std::move(stream_line));
} }

@ -36,14 +36,14 @@ bool DecompressBLZ(std::vector<u8>& data) {
while (out_index > 0) { while (out_index > 0) {
--index; --index;
auto control = data[index + start_offset]; auto control = data[index + start_offset];
for (size_t i = 0; i < 8; ++i) { for (std::size_t i = 0; i < 8; ++i) {
if (((control << i) & 0x80) > 0) { if (((control << i) & 0x80) > 0) {
if (index < 2) { if (index < 2) {
return false; return false;
} }
index -= 2; index -= 2;
std::size_t segment_offset = std::size_t segment_offset = static_cast<u32>(data[index + start_offset]) |
data[index + start_offset] | data[index + start_offset + 1] << 8; static_cast<u32>(data[index + start_offset + 1] << 8);
std::size_t segment_size = ((segment_offset >> 12) & 0xF) + 3; std::size_t segment_size = ((segment_offset >> 12) & 0xF) + 3;
segment_offset &= 0xFFF; segment_offset &= 0xFFF;
segment_offset += 3; segment_offset += 3;

@ -25,9 +25,9 @@ std::pair<std::size_t, std::size_t> SearchBucketEntry(u64 offset, const BlockTyp
ASSERT_MSG(offset <= block.size, "Offset is out of bounds in BKTR relocation block."); ASSERT_MSG(offset <= block.size, "Offset is out of bounds in BKTR relocation block.");
} }
std::size_t bucket_id = std::count_if( const auto bucket_id = static_cast<std::size_t>(std::count_if(
block.base_offsets.begin() + 1, block.base_offsets.begin() + block.number_buckets, block.base_offsets.begin() + 1, block.base_offsets.begin() + block.number_buckets,
[&offset](u64 base_offset) { return base_offset <= offset; }); [&offset](u64 base_offset) { return base_offset <= offset; }));
const auto& bucket = buckets[bucket_id]; const auto& bucket = buckets[bucket_id];
@ -53,6 +53,7 @@ std::pair<std::size_t, std::size_t> SearchBucketEntry(u64 offset, const BlockTyp
} }
UNREACHABLE_MSG("Offset could not be found in BKTR block."); UNREACHABLE_MSG("Offset could not be found in BKTR block.");
return {};
} }
} // Anonymous namespace } // Anonymous namespace
@ -136,7 +137,7 @@ std::size_t BKTR::Read(u8* data, std::size_t length, std::size_t offset) const {
const auto block_offset = section_offset & 0xF; const auto block_offset = section_offset & 0xF;
if (block_offset != 0) { if (block_offset != 0) {
auto block = bktr_romfs->ReadBytes(0x10, section_offset & ~0xF); auto block = bktr_romfs->ReadBytes(0x10, section_offset & ~0xFU);
cipher.Transcode(block.data(), block.size(), block.data(), Core::Crypto::Op::Decrypt); cipher.Transcode(block.data(), block.size(), block.data(), Core::Crypto::Op::Decrypt);
if (length + block_offset < 0x10) { if (length + block_offset < 0x10) {
std::memcpy(data, block.data() + block_offset, std::min(length, block.size())); std::memcpy(data, block.data() + block_offset, std::min(length, block.size()));

@ -30,7 +30,7 @@ void DefaultControllerApplet::ReconfigureControllers(std::function<void()> callb
auto& players = Settings::values.players; auto& players = Settings::values.players;
const std::size_t min_supported_players = const std::size_t min_supported_players =
parameters.enable_single_mode ? 1 : parameters.min_players; parameters.enable_single_mode ? 1 : static_cast<std::size_t>(parameters.min_players);
// Disconnect Handheld first. // Disconnect Handheld first.
npad.DisconnectNPadAtIndex(8); npad.DisconnectNPadAtIndex(8);

@ -12,8 +12,9 @@ ProfileSelectApplet::~ProfileSelectApplet() = default;
void DefaultProfileSelectApplet::SelectProfile( void DefaultProfileSelectApplet::SelectProfile(
std::function<void(std::optional<Common::UUID>)> callback) const { std::function<void(std::optional<Common::UUID>)> callback) const {
const auto user_index = static_cast<std::size_t>(Settings::values.current_user);
Service::Account::ProfileManager manager; Service::Account::ProfileManager manager;
callback(manager.GetUser(Settings::values.current_user).value_or(Common::UUID{})); callback(manager.GetUser(user_index).value_or(Common::UUID{}));
LOG_INFO(Service_ACC, "called, selecting current user instead of prompting..."); LOG_INFO(Service_ACC, "called, selecting current user instead of prompting...");
} }

@ -205,7 +205,7 @@ static Kernel::Thread* FindThreadById(s64 id) {
const auto& threads = Core::System::GetInstance().GlobalScheduler().GetThreadList(); const auto& threads = Core::System::GetInstance().GlobalScheduler().GetThreadList();
for (auto& thread : threads) { for (auto& thread : threads) {
if (thread->GetThreadID() == static_cast<u64>(id)) { if (thread->GetThreadID() == static_cast<u64>(id)) {
current_core = thread->GetProcessorID(); current_core = static_cast<u32>(thread->GetProcessorID());
return thread.get(); return thread.get();
} }
} }
@ -457,7 +457,14 @@ static u128 GdbHexToU128(const u8* src) {
/// Read a byte from the gdb client. /// Read a byte from the gdb client.
static u8 ReadByte() { static u8 ReadByte() {
u8 c; u8 c;
std::size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
#ifdef WIN32
const auto socket_id = static_cast<SOCKET>(gdbserver_socket);
#else
const auto socket_id = gdbserver_socket;
#endif
const auto received_size = recv(socket_id, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
if (received_size != 1) { if (received_size != 1) {
LOG_ERROR(Debug_GDBStub, "recv failed: {}", received_size); LOG_ERROR(Debug_GDBStub, "recv failed: {}", received_size);
Shutdown(); Shutdown();
@ -574,7 +581,13 @@ bool CheckBreakpoint(VAddr addr, BreakpointType type) {
* @param packet Packet to be sent to client. * @param packet Packet to be sent to client.
*/ */
static void SendPacket(const char packet) { static void SendPacket(const char packet) {
std::size_t sent_size = send(gdbserver_socket, &packet, 1, 0); #ifdef WIN32
const auto socket_id = static_cast<SOCKET>(gdbserver_socket);
#else
const auto socket_id = gdbserver_socket;
#endif
const auto sent_size = send(socket_id, &packet, 1, 0);
if (sent_size != 1) { if (sent_size != 1) {
LOG_ERROR(Debug_GDBStub, "send failed"); LOG_ERROR(Debug_GDBStub, "send failed");
} }
@ -611,7 +624,13 @@ static void SendReply(const char* reply) {
u8* ptr = command_buffer; u8* ptr = command_buffer;
u32 left = command_length + 4; u32 left = command_length + 4;
while (left > 0) { while (left > 0) {
const auto sent_size = send(gdbserver_socket, reinterpret_cast<char*>(ptr), left, 0); #ifdef WIN32
const auto socket_id = static_cast<SOCKET>(gdbserver_socket);
#else
const auto socket_id = gdbserver_socket;
#endif
const auto sent_size =
send(socket_id, reinterpret_cast<char*>(ptr), static_cast<socklen_t>(left), 0);
if (sent_size < 0) { if (sent_size < 0) {
LOG_ERROR(Debug_GDBStub, "gdb: send failed"); LOG_ERROR(Debug_GDBStub, "gdb: send failed");
return Shutdown(); return Shutdown();
@ -1294,8 +1313,13 @@ static void Init(u16 port) {
WSAStartup(MAKEWORD(2, 2), &InitData); WSAStartup(MAKEWORD(2, 2), &InitData);
#endif #endif
int tmpsock = static_cast<int>(socket(PF_INET, SOCK_STREAM, 0)); #ifdef WIN32
if (tmpsock == -1) { using socket_type = SOCKET;
#else
using socket_type = int;
#endif
const auto tmpsock = static_cast<socket_type>(socket(PF_INET, SOCK_STREAM, 0));
if (tmpsock == static_cast<socket_type>(-1)) {
LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket"); LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket");
} }
@ -1335,7 +1359,7 @@ static void Init(u16 port) {
} }
// Clean up temporary socket if it's still alive at this point. // Clean up temporary socket if it's still alive at this point.
if (tmpsock != -1) { if (tmpsock != static_cast<socket_type>(-1)) {
shutdown(tmpsock, SHUT_RDWR); shutdown(tmpsock, SHUT_RDWR);
} }
} }
@ -1352,7 +1376,12 @@ void Shutdown() {
LOG_INFO(Debug_GDBStub, "Stopping GDB ..."); LOG_INFO(Debug_GDBStub, "Stopping GDB ...");
if (gdbserver_socket != -1) { if (gdbserver_socket != -1) {
shutdown(gdbserver_socket, SHUT_RDWR); #ifdef WIN32
const auto tmpsock = static_cast<SOCKET>(socket(PF_INET, SOCK_STREAM, 0));
#else
const auto tmpsock = static_cast<int>(socket(PF_INET, SOCK_STREAM, 0));
#endif
shutdown(tmpsock, SHUT_RDWR);
gdbserver_socket = -1; gdbserver_socket = -1;
} }
@ -1383,7 +1412,7 @@ void SetCpuStepFlag(bool is_step) {
step_loop = is_step; step_loop = is_step;
} }
void SendTrap(Kernel::Thread* thread, int trap) { void SendTrap(Kernel::Thread* thread, u32 trap) {
if (!send_trap) { if (!send_trap) {
return; return;
} }

@ -110,5 +110,5 @@ void SetCpuStepFlag(bool is_step);
* @param thread Sending thread. * @param thread Sending thread.
* @param trap Trap no. * @param trap Trap no.
*/ */
void SendTrap(Kernel::Thread* thread, int trap); void SendTrap(Kernel::Thread* thread, u32 trap);
} // namespace GDBStub } // namespace GDBStub

@ -233,7 +233,7 @@ void ResponseBuilder::PushRaw(const T& value) {
static_assert(std::is_trivially_copyable_v<T>, static_assert(std::is_trivially_copyable_v<T>,
"It's undefined behavior to use memcpy with non-trivially copyable objects"); "It's undefined behavior to use memcpy with non-trivially copyable objects");
std::memcpy(cmdbuf + index, &value, sizeof(T)); std::memcpy(cmdbuf + index, &value, sizeof(T));
index += (sizeof(T) + 3) / 4; // round up to word length index += static_cast<std::ptrdiff_t>((sizeof(T) + 3) / 4); // round up to word length
} }
template <> template <>
@ -390,7 +390,7 @@ void RequestParser::PopRaw(T& value) {
static_assert(std::is_trivially_copyable_v<T>, static_assert(std::is_trivially_copyable_v<T>,
"It's undefined behavior to use memcpy with non-trivially copyable objects"); "It's undefined behavior to use memcpy with non-trivially copyable objects");
std::memcpy(&value, cmdbuf + index, sizeof(T)); std::memcpy(&value, cmdbuf + index, sizeof(T));
index += (sizeof(T) + 3) / 4; // round up to word length index += static_cast<std::ptrdiff_t>((sizeof(T) + 3) / 4); // round up to word length
} }
template <typename T> template <typename T>

@ -108,7 +108,7 @@ ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr a
auto& monitor = system.Monitor(); auto& monitor = system.Monitor();
s32 updated_value; s32 updated_value;
do { do {
updated_value = monitor.ExclusiveRead32(current_core, address); updated_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
if (updated_value != value) { if (updated_value != value) {
return ERR_INVALID_STATE; return ERR_INVALID_STATE;
@ -129,7 +129,7 @@ ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr a
updated_value = value; updated_value = value;
} }
} }
} while (!monitor.ExclusiveWrite32(current_core, address, updated_value)); } while (!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(updated_value)));
WakeThreads(waiting_threads, num_to_wake); WakeThreads(waiting_threads, num_to_wake);
return RESULT_SUCCESS; return RESULT_SUCCESS;

@ -68,7 +68,7 @@ ResultVal<Handle> HandleTable::Create(std::shared_ptr<Object> obj) {
generations[slot] = generation; generations[slot] = generation;
objects[slot] = std::move(obj); objects[slot] = std::move(obj);
Handle handle = generation | (slot << 15); const auto handle = static_cast<Handle>(generation | static_cast<u16>(slot << 15));
return MakeResult<Handle>(handle); return MakeResult<Handle>(handle);
} }

@ -58,7 +58,7 @@ std::shared_ptr<WritableEvent> HLERequestContext::SleepClientThread(
{ {
Handle event_handle = InvalidHandle; Handle event_handle = InvalidHandle;
SchedulerLockAndSleep lock(kernel, event_handle, thread.get(), timeout); SchedulerLockAndSleep lock(kernel, event_handle, thread.get(), static_cast<s64>(timeout));
thread->SetHLECallback( thread->SetHLECallback(
[context = *this, callback](std::shared_ptr<Thread> thread) mutable -> bool { [context = *this, callback](std::shared_ptr<Thread> thread) mutable -> bool {
ThreadWakeupReason reason = thread->GetSignalingResult() == RESULT_TIMEOUT ThreadWakeupReason reason = thread->GetSignalingResult() == RESULT_TIMEOUT

@ -168,7 +168,7 @@ struct KernelCore::Impl {
const auto type = const auto type =
static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_SUSPEND); static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_SUSPEND);
auto thread_res = auto thread_res =
Thread::Create(system, type, std::move(name), 0, 0, 0, static_cast<u32>(i), 0, Thread::Create(system, type, std::move(name), 0, 0, 0, static_cast<s32>(i), 0,
nullptr, std::move(init_func), init_func_parameter); nullptr, std::move(init_func), init_func_parameter);
suspend_threads[i] = std::move(thread_res).Unwrap(); suspend_threads[i] = std::move(thread_res).Unwrap();

@ -96,6 +96,7 @@ u64 AddressSpaceInfo::GetAddressSpaceStart(std::size_t width, Type type) {
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].address; return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].address;
} }
UNREACHABLE(); UNREACHABLE();
return 0;
} }
std::size_t AddressSpaceInfo::GetAddressSpaceSize(std::size_t width, Type type) { std::size_t AddressSpaceInfo::GetAddressSpaceSize(std::size_t width, Type type) {
@ -112,6 +113,7 @@ std::size_t AddressSpaceInfo::GetAddressSpaceSize(std::size_t width, Type type)
return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].size; return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].size;
} }
UNREACHABLE(); UNREACHABLE();
return 0;
} }
} // namespace Kernel::Memory } // namespace Kernel::Memory

@ -71,7 +71,7 @@ VAddr MemoryManager::AllocateContinuous(std::size_t num_pages, std::size_t align
} }
// If we allocated more than we need, free some // If we allocated more than we need, free some
const auto allocated_pages{PageHeap::GetBlockNumPages(heap_index)}; const auto allocated_pages{PageHeap::GetBlockNumPages(static_cast<u32>(heap_index))};
if (allocated_pages > num_pages) { if (allocated_pages > num_pages) {
chosen_manager.Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages); chosen_manager.Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
} }
@ -112,7 +112,7 @@ ResultCode MemoryManager::Allocate(PageLinkedList& page_list, std::size_t num_pa
// Keep allocating until we've allocated all our pages // Keep allocating until we've allocated all our pages
for (s32 index{heap_index}; index >= 0 && num_pages > 0; index--) { for (s32 index{heap_index}; index >= 0 && num_pages > 0; index--) {
const auto pages_per_alloc{PageHeap::GetBlockNumPages(index)}; const auto pages_per_alloc{PageHeap::GetBlockNumPages(static_cast<u32>(index))};
while (num_pages >= pages_per_alloc) { while (num_pages >= pages_per_alloc) {
// Allocate a block // Allocate a block

@ -33,11 +33,12 @@ void PageHeap::Initialize(VAddr address, std::size_t size, std::size_t metadata_
} }
VAddr PageHeap::AllocateBlock(s32 index) { VAddr PageHeap::AllocateBlock(s32 index) {
const std::size_t needed_size{blocks[index].GetSize()}; const auto u_index = static_cast<std::size_t>(index);
const auto needed_size{blocks[u_index].GetSize()};
for (s32 i{index}; i < static_cast<s32>(MemoryBlockPageShifts.size()); i++) { for (auto i = u_index; i < MemoryBlockPageShifts.size(); i++) {
if (const VAddr addr{blocks[i].PopBlock()}; addr) { if (const VAddr addr = blocks[i].PopBlock(); addr != 0) {
if (const std::size_t allocated_size{blocks[i].GetSize()}; if (const std::size_t allocated_size = blocks[i].GetSize();
allocated_size > needed_size) { allocated_size > needed_size) {
Free(addr + needed_size, (allocated_size - needed_size) / PageSize); Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
} }
@ -50,7 +51,7 @@ VAddr PageHeap::AllocateBlock(s32 index) {
void PageHeap::FreeBlock(VAddr block, s32 index) { void PageHeap::FreeBlock(VAddr block, s32 index) {
do { do {
block = blocks[index++].PushBlock(block); block = blocks[static_cast<std::size_t>(index++)].PushBlock(block);
} while (block != 0); } while (block != 0);
} }
@ -69,7 +70,7 @@ void PageHeap::Free(VAddr addr, std::size_t num_pages) {
VAddr after_start{end}; VAddr after_start{end};
VAddr after_end{end}; VAddr after_end{end};
while (big_index >= 0) { while (big_index >= 0) {
const std::size_t block_size{blocks[big_index].GetSize()}; const std::size_t block_size{blocks[static_cast<std::size_t>(big_index)].GetSize()};
const VAddr big_start{Common::AlignUp((start), block_size)}; const VAddr big_start{Common::AlignUp((start), block_size)};
const VAddr big_end{Common::AlignDown((end), block_size)}; const VAddr big_end{Common::AlignDown((end), block_size)};
if (big_start < big_end) { if (big_start < big_end) {
@ -87,7 +88,7 @@ void PageHeap::Free(VAddr addr, std::size_t num_pages) {
// Free space before the big blocks // Free space before the big blocks
for (s32 i{big_index - 1}; i >= 0; i--) { for (s32 i{big_index - 1}; i >= 0; i--) {
const std::size_t block_size{blocks[i].GetSize()}; const std::size_t block_size{blocks[static_cast<size_t>(i)].GetSize()};
while (before_start + block_size <= before_end) { while (before_start + block_size <= before_end) {
before_end -= block_size; before_end -= block_size;
FreeBlock(before_end, i); FreeBlock(before_end, i);
@ -96,7 +97,7 @@ void PageHeap::Free(VAddr addr, std::size_t num_pages) {
// Free space after the big blocks // Free space after the big blocks
for (s32 i{big_index - 1}; i >= 0; i--) { for (s32 i{big_index - 1}; i >= 0; i--) {
const std::size_t block_size{blocks[i].GetSize()}; const std::size_t block_size{blocks[static_cast<size_t>(i)].GetSize()};
while (after_start + block_size <= after_end) { while (after_start + block_size <= after_end) {
FreeBlock(after_start, i); FreeBlock(after_start, i);
after_start += block_size; after_start += block_size;

@ -34,7 +34,9 @@ public:
static constexpr s32 GetBlockIndex(std::size_t num_pages) { static constexpr s32 GetBlockIndex(std::size_t num_pages) {
for (s32 i{static_cast<s32>(NumMemoryBlockPageShifts) - 1}; i >= 0; i--) { for (s32 i{static_cast<s32>(NumMemoryBlockPageShifts) - 1}; i >= 0; i--) {
if (num_pages >= (static_cast<std::size_t>(1) << MemoryBlockPageShifts[i]) / PageSize) { const auto shift_index = static_cast<std::size_t>(i);
if (num_pages >=
(static_cast<std::size_t>(1) << MemoryBlockPageShifts[shift_index]) / PageSize) {
return i; return i;
} }
} }
@ -86,7 +88,7 @@ private:
// Set the bitmap pointers // Set the bitmap pointers
for (s32 depth{GetHighestDepthIndex()}; depth >= 0; depth--) { for (s32 depth{GetHighestDepthIndex()}; depth >= 0; depth--) {
bit_storages[depth] = storage; bit_storages[static_cast<std::size_t>(depth)] = storage;
size = Common::AlignUp(size, 64) / 64; size = Common::AlignUp(size, 64) / 64;
storage += size; storage += size;
} }
@ -99,7 +101,7 @@ private:
s32 depth{}; s32 depth{};
do { do {
const u64 v{bit_storages[depth][offset]}; const u64 v{bit_storages[static_cast<std::size_t>(depth)][offset]};
if (v == 0) { if (v == 0) {
// Non-zero depth indicates that a previous level had a free block // Non-zero depth indicates that a previous level had a free block
ASSERT(depth == 0); ASSERT(depth == 0);
@ -125,7 +127,7 @@ private:
constexpr bool ClearRange(std::size_t offset, std::size_t count) { constexpr bool ClearRange(std::size_t offset, std::size_t count) {
const s32 depth{GetHighestDepthIndex()}; const s32 depth{GetHighestDepthIndex()};
const auto bit_ind{offset / 64}; const auto bit_ind{offset / 64};
u64* bits{bit_storages[depth]}; u64* bits{bit_storages[static_cast<std::size_t>(depth)]};
if (count < 64) { if (count < 64) {
const auto shift{offset % 64}; const auto shift{offset % 64};
ASSERT(shift + count <= 64); ASSERT(shift + count <= 64);
@ -177,11 +179,11 @@ private:
const auto which{offset % 64}; const auto which{offset % 64};
const u64 mask{1ULL << which}; const u64 mask{1ULL << which};
u64* bit{std::addressof(bit_storages[depth][ind])}; u64* bit{std::addressof(bit_storages[static_cast<std::size_t>(depth)][ind])};
const u64 v{*bit}; const u64 v{*bit};
ASSERT((v & mask) == 0); ASSERT((v & mask) == 0);
*bit = v | mask; *bit = v | mask;
if (v) { if (v != 0) {
break; break;
} }
offset = ind; offset = ind;
@ -195,12 +197,12 @@ private:
const auto which{offset % 64}; const auto which{offset % 64};
const u64 mask{1ULL << which}; const u64 mask{1ULL << which};
u64* bit{std::addressof(bit_storages[depth][ind])}; u64* bit{std::addressof(bit_storages[static_cast<std::size_t>(depth)][ind])};
u64 v{*bit}; u64 v{*bit};
ASSERT((v & mask) != 0); ASSERT((v & mask) != 0);
v &= ~mask; v &= ~mask;
*bit = v; *bit = v;
if (v) { if (v != 0) {
break; break;
} }
offset = ind; offset = ind;

@ -414,7 +414,8 @@ ResultCode PageTable::MapPhysicalMemory(VAddr addr, std::size_t size) {
const std::size_t remaining_pages{remaining_size / PageSize}; const std::size_t remaining_pages{remaining_size / PageSize};
if (process->GetResourceLimit() && if (process->GetResourceLimit() &&
!process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory, remaining_size)) { !process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory,
static_cast<s64>(remaining_size))) {
return ERR_RESOURCE_LIMIT_EXCEEDED; return ERR_RESOURCE_LIMIT_EXCEEDED;
} }
@ -778,7 +779,8 @@ ResultVal<VAddr> PageTable::SetHeapSize(std::size_t size) {
auto process{system.Kernel().CurrentProcess()}; auto process{system.Kernel().CurrentProcess()};
if (process->GetResourceLimit() && delta != 0 && if (process->GetResourceLimit() && delta != 0 &&
!process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory, delta)) { !process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory,
static_cast<s64>(delta))) {
return ERR_RESOURCE_LIMIT_EXCEEDED; return ERR_RESOURCE_LIMIT_EXCEEDED;
} }

@ -34,7 +34,7 @@ public:
PhysicalCore& operator=(const PhysicalCore&) = delete; PhysicalCore& operator=(const PhysicalCore&) = delete;
PhysicalCore(PhysicalCore&&) = default; PhysicalCore(PhysicalCore&&) = default;
PhysicalCore& operator=(PhysicalCore&&) = default; PhysicalCore& operator=(PhysicalCore&&) = delete;
void Idle(); void Idle();
/// Interrupt this physical core. /// Interrupt this physical core.

@ -137,7 +137,8 @@ std::shared_ptr<ResourceLimit> Process::GetResourceLimit() const {
} }
u64 Process::GetTotalPhysicalMemoryAvailable() const { u64 Process::GetTotalPhysicalMemoryAvailable() const {
const u64 capacity{resource_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory) + const u64 capacity{
static_cast<u64>(resource_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory)) +
page_table->GetTotalHeapSize() + GetSystemResourceSize() + image_size + page_table->GetTotalHeapSize() + GetSystemResourceSize() + image_size +
main_thread_stack_size}; main_thread_stack_size};
@ -279,12 +280,12 @@ ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata,
// Set initial resource limits // Set initial resource limits
resource_limit->SetLimitValue( resource_limit->SetLimitValue(
ResourceType::PhysicalMemory, ResourceType::PhysicalMemory,
kernel.MemoryManager().GetSize(Memory::MemoryManager::Pool::Application)); static_cast<s64>(kernel.MemoryManager().GetSize(Memory::MemoryManager::Pool::Application)));
resource_limit->SetLimitValue(ResourceType::Threads, 608); resource_limit->SetLimitValue(ResourceType::Threads, 608);
resource_limit->SetLimitValue(ResourceType::Events, 700); resource_limit->SetLimitValue(ResourceType::Events, 700);
resource_limit->SetLimitValue(ResourceType::TransferMemory, 128); resource_limit->SetLimitValue(ResourceType::TransferMemory, 128);
resource_limit->SetLimitValue(ResourceType::Sessions, 894); resource_limit->SetLimitValue(ResourceType::Sessions, 894);
ASSERT(resource_limit->Reserve(ResourceType::PhysicalMemory, code_size)); ASSERT(resource_limit->Reserve(ResourceType::PhysicalMemory, static_cast<s64>(code_size)));
// Create TLS region // Create TLS region
tls_region_address = CreateTLSRegion(); tls_region_address = CreateTLSRegion();
@ -300,9 +301,9 @@ void Process::Run(s32 main_thread_priority, u64 stack_size) {
ChangeStatus(ProcessStatus::Running); ChangeStatus(ProcessStatus::Running);
SetupMainThread(system, *this, main_thread_priority, main_thread_stack_top); SetupMainThread(system, *this, static_cast<u32>(main_thread_priority), main_thread_stack_top);
resource_limit->Reserve(ResourceType::Threads, 1); resource_limit->Reserve(ResourceType::Threads, 1);
resource_limit->Reserve(ResourceType::PhysicalMemory, main_thread_stack_size); resource_limit->Reserve(ResourceType::PhysicalMemory, static_cast<s64>(main_thread_stack_size));
} }
void Process::PrepareForTermination() { void Process::PrepareForTermination() {
@ -363,7 +364,7 @@ VAddr Process::CreateTLSRegion() {
->AllocateAndMapMemory(1, Memory::PageSize, true, start, size / Memory::PageSize, ->AllocateAndMapMemory(1, Memory::PageSize, true, start, size / Memory::PageSize,
Memory::MemoryState::ThreadLocal, Memory::MemoryState::ThreadLocal,
Memory::MemoryPermission::ReadAndWrite, tls_map_addr) Memory::MemoryPermission::ReadAndWrite, tls_map_addr)
.ValueOr(0)}; .ValueOr(0U)};
ASSERT(tls_page_addr); ASSERT(tls_page_addr);

@ -43,8 +43,8 @@ void ResourceLimit::Release(ResourceType resource, u64 amount) {
void ResourceLimit::Release(ResourceType resource, u64 used_amount, u64 available_amount) { void ResourceLimit::Release(ResourceType resource, u64 used_amount, u64 available_amount) {
const std::size_t index{ResourceTypeToIndex(resource)}; const std::size_t index{ResourceTypeToIndex(resource)};
current[index] -= used_amount; current[index] -= static_cast<s64>(used_amount);
available[index] -= available_amount; available[index] -= static_cast<s64>(available_amount);
} }
std::shared_ptr<ResourceLimit> ResourceLimit::Create(KernelCore& kernel) { std::shared_ptr<ResourceLimit> ResourceLimit::Create(KernelCore& kernel) {

@ -89,9 +89,11 @@ u32 GlobalScheduler::SelectThreads() {
while (iter != suggested_queue[core_id].end()) { while (iter != suggested_queue[core_id].end()) {
suggested = *iter; suggested = *iter;
iter++; iter++;
s32 suggested_core_id = suggested->GetProcessorID(); const s32 suggested_core_id = suggested->GetProcessorID();
Thread* top_thread = Thread* top_thread = suggested_core_id >= 0
suggested_core_id >= 0 ? top_threads[suggested_core_id] : nullptr; ? top_threads[static_cast<u32>(suggested_core_id)]
: nullptr;
if (top_thread != suggested) { if (top_thread != suggested) {
if (top_thread != nullptr && if (top_thread != nullptr &&
top_thread->GetPriority() < THREADPRIO_MAX_CORE_MIGRATION) { top_thread->GetPriority() < THREADPRIO_MAX_CORE_MIGRATION) {
@ -102,16 +104,19 @@ u32 GlobalScheduler::SelectThreads() {
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), suggested); TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), suggested);
break; break;
} }
suggested = nullptr; suggested = nullptr;
migration_candidates[num_candidates++] = suggested_core_id; migration_candidates[num_candidates++] = suggested_core_id;
} }
// Step 3: Select a suggested thread from another core // Step 3: Select a suggested thread from another core
if (suggested == nullptr) { if (suggested == nullptr) {
for (std::size_t i = 0; i < num_candidates; i++) { for (std::size_t i = 0; i < num_candidates; i++) {
s32 candidate_core = migration_candidates[i]; const auto candidate_core = static_cast<u32>(migration_candidates[i]);
suggested = top_threads[candidate_core]; suggested = top_threads[candidate_core];
auto it = scheduled_queue[candidate_core].begin(); auto it = scheduled_queue[candidate_core].begin();
it++; ++it;
Thread* next = it != scheduled_queue[candidate_core].end() ? *it : nullptr; Thread* next = it != scheduled_queue[candidate_core].end() ? *it : nullptr;
if (next != nullptr) { if (next != nullptr) {
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id),
@ -128,7 +133,8 @@ u32 GlobalScheduler::SelectThreads() {
idle_cores &= ~(1U << core_id); idle_cores &= ~(1U << core_id);
} }
u32 cores_needing_context_switch{};
u32 cores_needing_context_switch = 0;
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) { for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
Scheduler& sched = kernel.Scheduler(core); Scheduler& sched = kernel.Scheduler(core);
ASSERT(top_threads[core] == nullptr || ASSERT(top_threads[core] == nullptr ||
@ -186,13 +192,16 @@ bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
for (auto& thread : suggested_queue[core_id]) { for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID(); const s32 source_core = thread->GetProcessorID();
if (source_core >= 0) { if (source_core >= 0) {
if (current_threads[source_core] != nullptr) { const auto sanitized_source_core = static_cast<u32>(source_core);
if (thread == current_threads[source_core] ||
current_threads[source_core]->GetPriority() < min_regular_priority) { if (current_threads[sanitized_source_core] != nullptr) {
if (thread == current_threads[sanitized_source_core] ||
current_threads[sanitized_source_core]->GetPriority() < min_regular_priority) {
continue; continue;
} }
} }
} }
if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() || if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() ||
next_thread->GetPriority() < thread->GetPriority()) { next_thread->GetPriority() < thread->GetPriority()) {
if (thread->GetPriority() <= priority) { if (thread->GetPriority() <= priority) {
@ -240,17 +249,25 @@ bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread
for (std::size_t i = 0; i < current_threads.size(); i++) { for (std::size_t i = 0; i < current_threads.size(); i++) {
current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front(); current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
} }
for (auto& thread : suggested_queue[core_id]) { for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID(); const s32 source_core = thread->GetProcessorID();
if (source_core < 0 || thread == current_threads[source_core]) { if (source_core < 0) {
continue; continue;
} }
if (current_threads[source_core] == nullptr ||
current_threads[source_core]->GetPriority() >= min_regular_priority) { const auto sanitized_source_core = static_cast<u32>(source_core);
if (thread == current_threads[sanitized_source_core]) {
continue;
}
if (current_threads[sanitized_source_core] == nullptr ||
current_threads[sanitized_source_core]->GetPriority() >= min_regular_priority) {
winner = thread; winner = thread;
} }
break; break;
} }
if (winner != nullptr) { if (winner != nullptr) {
if (winner != yielding_thread) { if (winner != yielding_thread) {
TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner); TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
@ -292,17 +309,22 @@ void GlobalScheduler::PreemptThreads() {
if (thread->GetPriority() != priority) { if (thread->GetPriority() != priority) {
continue; continue;
} }
if (source_core >= 0) { if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty() const auto sanitized_source_core = static_cast<u32>(source_core);
Thread* next_thread = scheduled_queue[sanitized_source_core].empty()
? nullptr ? nullptr
: scheduled_queue[source_core].front(); : scheduled_queue[sanitized_source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) { if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break; break;
} }
if (next_thread == thread) { if (next_thread == thread) {
continue; continue;
} }
} }
if (current_thread != nullptr && if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) { current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread; winner = thread;
@ -322,17 +344,22 @@ void GlobalScheduler::PreemptThreads() {
if (thread->GetPriority() < priority) { if (thread->GetPriority() < priority) {
continue; continue;
} }
if (source_core >= 0) { if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty() const auto sanitized_source_core = static_cast<u32>(source_core);
Thread* next_thread = scheduled_queue[sanitized_source_core].empty()
? nullptr ? nullptr
: scheduled_queue[source_core].front(); : scheduled_queue[sanitized_source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) { if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break; break;
} }
if (next_thread == thread) { if (next_thread == thread) {
continue; continue;
} }
} }
if (current_thread != nullptr && if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) { current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread; winner = thread;
@ -352,11 +379,11 @@ void GlobalScheduler::PreemptThreads() {
void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule, void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule,
Core::EmuThreadHandle global_thread) { Core::EmuThreadHandle global_thread) {
u32 current_core = global_thread.host_handle; const u32 current_core = global_thread.host_handle;
bool must_context_switch = global_thread.guest_handle != InvalidHandle && bool must_context_switch = global_thread.guest_handle != InvalidHandle &&
(current_core < Core::Hardware::NUM_CPU_CORES); (current_core < Core::Hardware::NUM_CPU_CORES);
while (cores_pending_reschedule != 0) { while (cores_pending_reschedule != 0) {
u32 core = Common::CountTrailingZeroes32(cores_pending_reschedule); const u32 core = Common::CountTrailingZeroes32(cores_pending_reschedule);
ASSERT(core < Core::Hardware::NUM_CPU_CORES); ASSERT(core < Core::Hardware::NUM_CPU_CORES);
if (!must_context_switch || core != current_core) { if (!must_context_switch || core != current_core) {
auto& phys_core = kernel.PhysicalCore(core); auto& phys_core = kernel.PhysicalCore(core);
@ -366,6 +393,7 @@ void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule,
} }
cores_pending_reschedule &= ~(1U << core); cores_pending_reschedule &= ~(1U << core);
} }
if (must_context_switch) { if (must_context_switch) {
auto& core_scheduler = kernel.CurrentScheduler(); auto& core_scheduler = kernel.CurrentScheduler();
kernel.ExitSVCProfile(); kernel.ExitSVCProfile();
@ -803,9 +831,11 @@ void Scheduler::Initialize() {
std::string name = "Idle Thread Id:" + std::to_string(core_id); std::string name = "Idle Thread Id:" + std::to_string(core_id);
std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc(); std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc();
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater(); void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
ThreadType type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE); const auto type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE);
auto thread_res = Thread::Create(system, type, name, 0, 64, 0, static_cast<u32>(core_id), 0, auto thread_res =
Thread::Create(system, type, std::move(name), 0, 64, 0, static_cast<s32>(core_id), 0,
nullptr, std::move(init_func), init_func_parameter); nullptr, std::move(init_func), init_func_parameter);
idle_thread = std::move(thread_res).Unwrap(); idle_thread = std::move(thread_res).Unwrap();
} }

@ -482,7 +482,8 @@ static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr
static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address, static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address,
s32 handle_count, u32 timeout_high, Handle* index) { s32 handle_count, u32 timeout_high, Handle* index) {
const s64 nano_seconds{(static_cast<s64>(timeout_high) << 32) | static_cast<s64>(timeout_low)}; const s64 nano_seconds{(static_cast<s64>(timeout_high) << 32) | static_cast<s64>(timeout_low)};
return WaitSynchronization(system, index, handles_address, handle_count, nano_seconds); return WaitSynchronization(system, index, handles_address, static_cast<u32>(handle_count),
nano_seconds);
} }
/// Resumes a thread waiting on WaitSynchronization /// Resumes a thread waiting on WaitSynchronization
@ -2002,7 +2003,7 @@ static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle,
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
} }
*core = thread->GetIdealCore(); *core = static_cast<u32>(thread->GetIdealCore());
*mask = thread->GetAffinityMask(); *mask = thread->GetAffinityMask();
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -2070,7 +2071,7 @@ static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle,
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
} }
return thread->SetCoreAndAffinityMask(core, affinity_mask); return thread->SetCoreAndAffinityMask(static_cast<s32>(core), affinity_mask);
} }
static ResultCode SetThreadCoreMask32(Core::System& system, Handle thread_handle, u32 core, static ResultCode SetThreadCoreMask32(Core::System& system, Handle thread_handle, u32 core,

@ -11,11 +11,11 @@
namespace Kernel { namespace Kernel {
static inline u64 Param(const Core::System& system, int n) { static inline u64 Param(const Core::System& system, std::size_t n) {
return system.CurrentArmInterface().GetReg(n); return system.CurrentArmInterface().GetReg(n);
} }
static inline u32 Param32(const Core::System& system, int n) { static inline u32 Param32(const Core::System& system, std::size_t n) {
return static_cast<u32>(system.CurrentArmInterface().GetReg(n)); return static_cast<u32>(system.CurrentArmInterface().GetReg(n));
} }
@ -29,7 +29,7 @@ static inline void FuncReturn(Core::System& system, u64 result) {
} }
static inline void FuncReturn32(Core::System& system, u32 result) { static inline void FuncReturn32(Core::System& system, u32 result) {
system.CurrentArmInterface().SetReg(0, (u64)result); system.CurrentArmInterface().SetReg(0, static_cast<u64>(result));
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -386,8 +386,9 @@ template <ResultCode func(Core::System&, Handle*, u32, u32, u32, u32, s32)>
void SvcWrap32(Core::System& system) { void SvcWrap32(Core::System& system) {
Handle param_1 = 0; Handle param_1 = 0;
const u32 retval = func(system, &param_1, Param32(system, 0), Param32(system, 1), const u32 retval =
Param32(system, 2), Param32(system, 3), Param32(system, 4)) func(system, &param_1, Param32(system, 0), Param32(system, 1), Param32(system, 2),
Param32(system, 3), static_cast<s32>(Param32(system, 4)))
.raw; .raw;
system.CurrentArmInterface().SetReg(1, param_1); system.CurrentArmInterface().SetReg(1, param_1);
@ -542,8 +543,8 @@ void SvcWrap32(Core::System& system) {
template <ResultCode func(Core::System&, u32, u32, s32, u32, Handle*)> template <ResultCode func(Core::System&, u32, u32, s32, u32, Handle*)>
void SvcWrap32(Core::System& system) { void SvcWrap32(Core::System& system) {
u32 param_1 = 0; u32 param_1 = 0;
const u32 retval = func(system, Param32(system, 0), Param32(system, 1), Param32(system, 2), const u32 retval = func(system, Param32(system, 0), Param32(system, 1),
Param32(system, 3), &param_1) static_cast<s32>(Param32(system, 2)), Param32(system, 3), &param_1)
.raw; .raw;
system.CurrentArmInterface().SetReg(1, param_1); system.CurrentArmInterface().SetReg(1, param_1);
FuncReturn(system, retval); FuncReturn(system, retval);

@ -51,7 +51,7 @@ std::pair<ResultCode, Handle> Synchronization::WaitFor(
// We found a ready object, acquire it and set the result value // We found a ready object, acquire it and set the result value
SynchronizationObject* object = itr->get(); SynchronizationObject* object = itr->get();
object->Acquire(thread); object->Acquire(thread);
const u32 index = static_cast<s32>(std::distance(sync_objects.begin(), itr)); const auto index = static_cast<u32>(std::distance(sync_objects.begin(), itr));
lock.CancelSleep(); lock.CancelSleep();
return {RESULT_SUCCESS, index}; return {RESULT_SUCCESS, index};
} }
@ -105,7 +105,7 @@ std::pair<ResultCode, Handle> Synchronization::WaitFor(
}); });
ASSERT(itr != sync_objects.end()); ASSERT(itr != sync_objects.end());
signaling_object->Acquire(thread); signaling_object->Acquire(thread);
const u32 index = static_cast<s32>(std::distance(sync_objects.begin(), itr)); const auto index = static_cast<u32>(std::distance(sync_objects.begin(), itr));
return {signaling_result, index}; return {signaling_result, index};
} }
return {signaling_result, -1}; return {signaling_result, -1};

@ -525,7 +525,7 @@ ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
if (old_affinity_mask != new_affinity_mask) { if (old_affinity_mask != new_affinity_mask) {
const s32 old_core = processor_id; const s32 old_core = processor_id;
if (processor_id >= 0 && ((affinity_mask >> processor_id) & 1) == 0) { if (processor_id >= 0 && ((affinity_mask >> processor_id) & 1) == 0) {
if (static_cast<s32>(ideal_core) < 0) { if (ideal_core < 0) {
processor_id = HighestSetCore(affinity_mask, Core::Hardware::NUM_CPU_CORES); processor_id = HighestSetCore(affinity_mask, Core::Hardware::NUM_CPU_CORES);
} else { } else {
processor_id = ideal_core; processor_id = ideal_core;

@ -470,7 +470,7 @@ public:
bool InvokeHLECallback(std::shared_ptr<Thread> thread); bool InvokeHLECallback(std::shared_ptr<Thread> thread);
u32 GetIdealCore() const { s32 GetIdealCore() const {
return ideal_core; return ideal_core;
} }
@ -654,8 +654,8 @@ private:
Scheduler* scheduler = nullptr; Scheduler* scheduler = nullptr;
u32 ideal_core{0xFFFFFFFF}; s32 ideal_core = -1;
u64 affinity_mask{0x1}; u64 affinity_mask = 1;
s32 ideal_core_override = -1; s32 ideal_core_override = -1;
u64 affinity_mask_override = 0x1; u64 affinity_mask_override = 0x1;

@ -41,12 +41,15 @@ constexpr char ACC_SAVE_AVATORS_BASE_PATH[] = "/system/save/8000000000000010/su/
ProfileManager::ProfileManager() { ProfileManager::ProfileManager() {
ParseUserSaveFile(); ParseUserSaveFile();
if (user_count == 0) if (user_count == 0) {
CreateNewUser(UUID::Generate(), "yuzu"); CreateNewUser(UUID::Generate(), "yuzu");
}
auto current = std::clamp<int>(Settings::values.current_user, 0, MAX_USERS - 1); auto current = static_cast<size_t>(
if (UserExistsIndex(current)) std::clamp(Settings::values.current_user, 0, static_cast<s32>(MAX_USERS - 1)));
if (UserExistsIndex(current)) {
current = 0; current = 0;
}
OpenUser(*GetUser(current)); OpenUser(*GetUser(current));
} }
@ -189,8 +192,8 @@ std::size_t ProfileManager::GetUserCount() const {
/// booting /// booting
std::size_t ProfileManager::GetOpenUserCount() const { std::size_t ProfileManager::GetOpenUserCount() const {
return std::count_if(profiles.begin(), profiles.end(), return static_cast<std::size_t>(std::count_if(profiles.begin(), profiles.end(),
[](const ProfileInfo& p) { return p.is_open; }); [](const ProfileInfo& p) { return p.is_open; }));
} }
/// Checks if a user id exists in our profile manager /// Checks if a user id exists in our profile manager

@ -1311,7 +1311,7 @@ void IApplicationFunctions::PopLaunchParameter(Kernel::HLERequestContext& ctx) {
params.is_account_selected = 1; params.is_account_selected = 1;
Account::ProfileManager profile_manager{}; Account::ProfileManager profile_manager{};
const auto uuid = profile_manager.GetUser(Settings::values.current_user); const auto uuid = profile_manager.GetUser(static_cast<u32>(Settings::values.current_user));
ASSERT(uuid); ASSERT(uuid);
params.current_user = uuid->uuid; params.current_user = uuid->uuid;

@ -178,23 +178,23 @@ void Controller::Execute() {
} }
void Controller::ConfigurationComplete() { void Controller::ConfigurationComplete() {
ControllerSupportResultInfo result_info{};
const auto& players = Settings::values.players; const auto& players = Settings::values.players;
const s8 player_count =
is_single_mode
? 1
: static_cast<s8>(std::count_if(players.begin(), players.end() - 2,
[](const auto& player) { return player.connected; }));
const auto index = static_cast<u32>(std::distance(
players.begin(), std::find_if(players.begin(), players.end(),
[](const auto& player) { return player.connected; })));
// If enable_single_mode is enabled, player_count is 1 regardless of any other parameters. // If enable_single_mode is enabled, player_count is 1 regardless of any other parameters.
// Otherwise, only count connected players from P1-P8. // Otherwise, only count connected players from P1-P8.
result_info.player_count = ControllerSupportResultInfo result_info{};
is_single_mode ? 1 result_info.player_count = player_count;
: static_cast<s8>(std::count_if( result_info.selected_id = HID::Controller_NPad::IndexToNPad(index);
players.begin(), players.end() - 2,
[](Settings::PlayerInput player) { return player.connected; }));
result_info.selected_id = HID::Controller_NPad::IndexToNPad(
std::distance(players.begin(),
std::find_if(players.begin(), players.end(),
[](Settings::PlayerInput player) { return player.connected; })));
result_info.result = 0; result_info.result = 0;
LOG_DEBUG(Service_HID, "Result Info: player_count={}, selected_id={}, result={}", LOG_DEBUG(Service_HID, "Result Info: player_count={}, selected_id={}, result={}",

@ -69,7 +69,8 @@ public:
buffer_event = buffer_event =
Kernel::WritableEvent::CreateEventPair(system.Kernel(), "IAudioOutBufferReleased"); Kernel::WritableEvent::CreateEventPair(system.Kernel(), "IAudioOutBufferReleased");
stream = audio_core.OpenStream(system.CoreTiming(), audio_params.sample_rate, stream =
audio_core.OpenStream(system.CoreTiming(), static_cast<u32>(audio_params.sample_rate),
audio_params.channel_count, std::move(unique_name), audio_params.channel_count, std::move(unique_name),
[this] { buffer_event.writable->Signal(); }); [this] { buffer_event.writable->Signal(); });
} }

@ -50,8 +50,8 @@ public:
Enabled, Enabled,
}; };
explicit OpusDecoderState(OpusDecoderPtr decoder, u32 sample_rate, u32 channel_count) explicit OpusDecoderState(OpusDecoderPtr decoder_, s32 sample_rate_, u32 channel_count_)
: decoder{std::move(decoder)}, sample_rate{sample_rate}, channel_count{channel_count} {} : decoder{std::move(decoder_)}, sample_rate{sample_rate_}, channel_count{channel_count_} {}
// Decodes interleaved Opus packets. Optionally allows reporting time taken to // Decodes interleaved Opus packets. Optionally allows reporting time taken to
// perform the decoding, as well as any relevant extra behavior. // perform the decoding, as well as any relevant extra behavior.
@ -113,15 +113,16 @@ private:
return false; return false;
} }
const auto frame = input.data() + sizeof(OpusPacketHeader); const auto* const frame = input.data() + sizeof(OpusPacketHeader);
const auto decoded_sample_count = opus_packet_get_nb_samples( const auto decoded_sample_count = opus_packet_get_nb_samples(
frame, static_cast<opus_int32>(input.size() - sizeof(OpusPacketHeader)), frame, static_cast<opus_int32>(input.size() - sizeof(OpusPacketHeader)), sample_rate);
static_cast<opus_int32>(sample_rate)); const auto decoded_size =
if (decoded_sample_count * channel_count * sizeof(u16) > raw_output_sz) { static_cast<u32>(decoded_sample_count) * channel_count * sizeof(u16);
if (decoded_size > raw_output_sz) {
LOG_ERROR( LOG_ERROR(
Audio, Audio,
"Decoded data does not fit into the output data, decoded_sz={}, raw_output_sz={}", "Decoded data does not fit into the output data, decoded_sz={}, raw_output_sz={}",
decoded_sample_count * channel_count * sizeof(u16), raw_output_sz); decoded_size, raw_output_sz);
return false; return false;
} }
@ -137,11 +138,11 @@ private:
} }
const auto end_time = std::chrono::high_resolution_clock::now() - start_time; const auto end_time = std::chrono::high_resolution_clock::now() - start_time;
sample_count = out_sample_count; sample_count = static_cast<u32>(out_sample_count);
consumed = static_cast<u32>(sizeof(OpusPacketHeader) + hdr.size); consumed = static_cast<u32>(sizeof(OpusPacketHeader) + hdr.size);
if (out_performance_time != nullptr) { if (out_performance_time != nullptr) {
*out_performance_time = *out_performance_time = static_cast<u64>(
std::chrono::duration_cast<std::chrono::milliseconds>(end_time).count(); std::chrono::duration_cast<std::chrono::milliseconds>(end_time).count());
} }
return true; return true;
@ -154,7 +155,7 @@ private:
} }
OpusDecoderPtr decoder; OpusDecoderPtr decoder;
u32 sample_rate; s32 sample_rate;
u32 channel_count; u32 channel_count;
}; };
@ -212,7 +213,7 @@ std::size_t WorkerBufferSize(u32 channel_count) {
ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count");
constexpr int num_streams = 1; constexpr int num_streams = 1;
const int num_stereo_streams = channel_count == 2 ? 1 : 0; const int num_stereo_streams = channel_count == 2 ? 1 : 0;
return opus_multistream_decoder_get_size(num_streams, num_stereo_streams); return static_cast<size_t>(opus_multistream_decoder_get_size(num_streams, num_stereo_streams));
} }
// Creates the mapping table that maps the input channels to the particular // Creates the mapping table that maps the input channels to the particular
@ -244,7 +245,7 @@ void HwOpus::GetWorkBufferSize(Kernel::HLERequestContext& ctx) {
"Invalid sample rate"); "Invalid sample rate");
ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count"); ASSERT_MSG(channel_count == 1 || channel_count == 2, "Invalid channel count");
const u32 worker_buffer_sz = static_cast<u32>(WorkerBufferSize(channel_count)); const auto worker_buffer_sz = static_cast<u32>(WorkerBufferSize(channel_count));
LOG_DEBUG(Audio, "worker_buffer_sz={}", worker_buffer_sz); LOG_DEBUG(Audio, "worker_buffer_sz={}", worker_buffer_sz);
IPC::ResponseBuilder rb{ctx, 3}; IPC::ResponseBuilder rb{ctx, 3};
@ -254,7 +255,7 @@ void HwOpus::GetWorkBufferSize(Kernel::HLERequestContext& ctx) {
void HwOpus::OpenOpusDecoder(Kernel::HLERequestContext& ctx) { void HwOpus::OpenOpusDecoder(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto sample_rate = rp.Pop<u32>(); const auto sample_rate = rp.Pop<s32>();
const auto channel_count = rp.Pop<u32>(); const auto channel_count = rp.Pop<u32>();
const auto buffer_sz = rp.Pop<u32>(); const auto buffer_sz = rp.Pop<u32>();

@ -53,10 +53,10 @@ struct DeliveryCacheProgressImpl {
ResultCode result = RESULT_SUCCESS; ResultCode result = RESULT_SUCCESS;
DirectoryName current_directory; DirectoryName current_directory;
FileName current_file; FileName current_file;
s64 current_downloaded_bytes; ///< Bytes downloaded on current file. u64 current_downloaded_bytes; ///< Bytes downloaded on current file.
s64 current_total_bytes; ///< Bytes total on current file. u64 current_total_bytes; ///< Bytes total on current file.
s64 total_downloaded_bytes; ///< Bytes downloaded on overall download. u64 total_downloaded_bytes; ///< Bytes downloaded on overall download.
s64 total_bytes; ///< Bytes total on overall download. u64 total_bytes; ///< Bytes total on overall download.
INSERT_PADDING_BYTES( INSERT_PADDING_BYTES(
0x198); ///< Appears to be unused in official code, possibly reserved for future use. 0x198); ///< Appears to be unused in official code, possibly reserved for future use.
}; };

@ -3,7 +3,16 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <fmt/ostream.h> #include <fmt/ostream.h>
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
#include <httplib.h> #include <httplib.h>
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#include <mbedtls/sha256.h> #include <mbedtls/sha256.h>
#include <nlohmann/json.hpp> #include <nlohmann/json.hpp>
#include "common/hex_util.h" #include "common/hex_util.h"

@ -454,7 +454,8 @@ private:
write_size = std::min<u64>(write_size, files.size()); write_size = std::min<u64>(write_size, files.size());
std::vector<DeliveryCacheDirectoryEntry> entries(write_size); std::vector<DeliveryCacheDirectoryEntry> entries(write_size);
std::transform( std::transform(
files.begin(), files.begin() + write_size, entries.begin(), [](const auto& file) { files.begin(), files.begin() + static_cast<s64>(write_size), entries.begin(),
[](const auto& file) {
FileName name{}; FileName name{};
std::memcpy(name.data(), file->GetName().data(), std::memcpy(name.data(), file->GetName().data(),
std::min(file->GetName().size(), name.size())); std::min(file->GetName().size(), name.size()));

@ -94,7 +94,8 @@ private:
} }
// Read the data from the Storage backend // Read the data from the Storage backend
std::vector<u8> output = backend->ReadBytes(length, offset); const auto output = backend->ReadBytes(static_cast<u64>(length), static_cast<u64>(offset));
// Write the data to memory // Write the data to memory
ctx.WriteBuffer(output); ctx.WriteBuffer(output);
@ -151,7 +152,7 @@ private:
} }
// Read the data from the Storage backend // Read the data from the Storage backend
std::vector<u8> output = backend->ReadBytes(length, offset); const auto output = backend->ReadBytes(static_cast<u64>(length), static_cast<u64>(offset));
// Write the data to memory // Write the data to memory
ctx.WriteBuffer(output); ctx.WriteBuffer(output);
@ -194,7 +195,8 @@ private:
// Write the data to the Storage backend // Write the data to the Storage backend
const auto write_size = const auto write_size =
static_cast<std::size_t>(std::distance(data.begin(), data.begin() + length)); static_cast<std::size_t>(std::distance(data.begin(), data.begin() + length));
const std::size_t written = backend->Write(data.data(), write_size, offset); const std::size_t written =
backend->Write(data.data(), write_size, static_cast<u64>(offset));
ASSERT_MSG(static_cast<s64>(written) == length, ASSERT_MSG(static_cast<s64>(written) == length,
"Could not write all bytes to file (requested={:016X}, actual={:016X}).", length, "Could not write all bytes to file (requested={:016X}, actual={:016X}).", length,

@ -23,7 +23,7 @@ void Controller_DebugPad::OnRelease() {}
void Controller_DebugPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_DebugPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
shared_memory.header.timestamp = core_timing.GetCPUTicks(); shared_memory.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
shared_memory.header.total_entry_count = 17; shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -33,9 +33,11 @@ void Controller_DebugPad::OnUpdate(const Core::Timing::CoreTiming& core_timing,
} }
shared_memory.header.entry_count = 16; shared_memory.header.entry_count = 16;
const auto& last_entry = shared_memory.pad_states[shared_memory.header.last_entry_index]; const auto& last_entry =
shared_memory.pad_states[static_cast<u64>(shared_memory.header.last_entry_index)];
shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17; shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17;
auto& cur_entry = shared_memory.pad_states[shared_memory.header.last_entry_index]; auto& cur_entry =
shared_memory.pad_states[static_cast<u64>(shared_memory.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -19,7 +19,7 @@ void Controller_Gesture::OnRelease() {}
void Controller_Gesture::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_Gesture::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
shared_memory.header.timestamp = core_timing.GetCPUTicks(); shared_memory.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
shared_memory.header.total_entry_count = 17; shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -29,9 +29,11 @@ void Controller_Gesture::OnUpdate(const Core::Timing::CoreTiming& core_timing, u
} }
shared_memory.header.entry_count = 16; shared_memory.header.entry_count = 16;
const auto& last_entry = shared_memory.gesture_states[shared_memory.header.last_entry_index]; const auto& last_entry =
shared_memory.gesture_states[static_cast<u64>(shared_memory.header.last_entry_index)];
shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17; shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17;
auto& cur_entry = shared_memory.gesture_states[shared_memory.header.last_entry_index]; auto& cur_entry =
shared_memory.gesture_states[static_cast<u64>(shared_memory.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -21,7 +21,7 @@ void Controller_Keyboard::OnRelease() {}
void Controller_Keyboard::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_Keyboard::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
shared_memory.header.timestamp = core_timing.GetCPUTicks(); shared_memory.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
shared_memory.header.total_entry_count = 17; shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -31,9 +31,11 @@ void Controller_Keyboard::OnUpdate(const Core::Timing::CoreTiming& core_timing,
} }
shared_memory.header.entry_count = 16; shared_memory.header.entry_count = 16;
const auto& last_entry = shared_memory.pad_states[shared_memory.header.last_entry_index]; const auto& last_entry =
shared_memory.pad_states[static_cast<u64>(shared_memory.header.last_entry_index)];
shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17; shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17;
auto& cur_entry = shared_memory.pad_states[shared_memory.header.last_entry_index]; auto& cur_entry =
shared_memory.pad_states[static_cast<u64>(shared_memory.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -19,7 +19,7 @@ void Controller_Mouse::OnRelease() {}
void Controller_Mouse::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_Mouse::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
shared_memory.header.timestamp = core_timing.GetCPUTicks(); shared_memory.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
shared_memory.header.total_entry_count = 17; shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -29,9 +29,11 @@ void Controller_Mouse::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8*
} }
shared_memory.header.entry_count = 16; shared_memory.header.entry_count = 16;
auto& last_entry = shared_memory.mouse_states[shared_memory.header.last_entry_index]; auto& last_entry =
shared_memory.mouse_states[static_cast<u64>(shared_memory.header.last_entry_index)];
shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17; shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17;
auto& cur_entry = shared_memory.mouse_states[shared_memory.header.last_entry_index]; auto& cur_entry =
shared_memory.mouse_states[static_cast<u64>(shared_memory.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -341,26 +341,29 @@ void Controller_NPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8*
} }
for (std::size_t i = 0; i < shared_memory_entries.size(); i++) { for (std::size_t i = 0; i < shared_memory_entries.size(); i++) {
auto& npad = shared_memory_entries[i]; auto& npad = shared_memory_entries[i];
const std::array<NPadGeneric*, 7> controller_npads{&npad.main_controller_states, const std::array controller_npads{
&npad.main_controller_states,
&npad.handheld_states, &npad.handheld_states,
&npad.dual_states, &npad.dual_states,
&npad.left_joy_states, &npad.left_joy_states,
&npad.right_joy_states, &npad.right_joy_states,
&npad.pokeball_states, &npad.pokeball_states,
&npad.libnx}; &npad.libnx,
};
for (auto* main_controller : controller_npads) { for (auto* main_controller : controller_npads) {
main_controller->common.entry_count = 16; main_controller->common.entry_count = 16;
main_controller->common.total_entry_count = 17; main_controller->common.total_entry_count = 17;
const auto& last_entry = const auto& last_entry =
main_controller->npad[main_controller->common.last_entry_index]; main_controller->npad[static_cast<u64>(main_controller->common.last_entry_index)];
main_controller->common.timestamp = core_timing.GetCPUTicks(); main_controller->common.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
main_controller->common.last_entry_index = main_controller->common.last_entry_index =
(main_controller->common.last_entry_index + 1) % 17; (main_controller->common.last_entry_index + 1) % 17;
auto& cur_entry = main_controller->npad[main_controller->common.last_entry_index]; auto& cur_entry =
main_controller->npad[static_cast<u64>(main_controller->common.last_entry_index)];
cur_entry.timestamp = last_entry.timestamp + 1; cur_entry.timestamp = last_entry.timestamp + 1;
cur_entry.timestamp2 = cur_entry.timestamp; cur_entry.timestamp2 = cur_entry.timestamp;
@ -371,22 +374,29 @@ void Controller_NPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8*
if (controller_type == NPadControllerType::None || !connected_controllers[i].is_connected) { if (controller_type == NPadControllerType::None || !connected_controllers[i].is_connected) {
continue; continue;
} }
const u32 npad_index = static_cast<u32>(i); const auto npad_index = static_cast<u32>(i);
RequestPadStateUpdate(npad_index); RequestPadStateUpdate(npad_index);
auto& pad_state = npad_pad_states[npad_index]; auto& pad_state = npad_pad_states[npad_index];
auto& main_controller = auto& main_controller =
npad.main_controller_states.npad[npad.main_controller_states.common.last_entry_index]; npad.main_controller_states
.npad[static_cast<u64>(npad.main_controller_states.common.last_entry_index)];
auto& handheld_entry = auto& handheld_entry =
npad.handheld_states.npad[npad.handheld_states.common.last_entry_index]; npad.handheld_states
auto& dual_entry = npad.dual_states.npad[npad.dual_states.common.last_entry_index]; .npad[static_cast<u64>(npad.handheld_states.common.last_entry_index)];
auto& left_entry = npad.left_joy_states.npad[npad.left_joy_states.common.last_entry_index]; auto& dual_entry =
npad.dual_states.npad[static_cast<u64>(npad.dual_states.common.last_entry_index)];
auto& left_entry =
npad.left_joy_states
.npad[static_cast<u64>(npad.left_joy_states.common.last_entry_index)];
auto& right_entry = auto& right_entry =
npad.right_joy_states.npad[npad.right_joy_states.common.last_entry_index]; npad.right_joy_states
.npad[static_cast<u64>(npad.right_joy_states.common.last_entry_index)];
auto& pokeball_entry = auto& pokeball_entry =
npad.pokeball_states.npad[npad.pokeball_states.common.last_entry_index]; npad.pokeball_states
auto& libnx_entry = npad.libnx.npad[npad.libnx.common.last_entry_index]; .npad[static_cast<u64>(npad.pokeball_states.common.last_entry_index)];
auto& libnx_entry = npad.libnx.npad[static_cast<u64>(npad.libnx.common.last_entry_index)];
libnx_entry.connection_status.raw = 0; libnx_entry.connection_status.raw = 0;
libnx_entry.connection_status.IsConnected.Assign(1); libnx_entry.connection_status.IsConnected.Assign(1);
@ -500,13 +510,14 @@ void Controller_NPad::OnMotionUpdate(const Core::Timing::CoreTiming& core_timing
sixaxis_sensor->common.total_entry_count = 17; sixaxis_sensor->common.total_entry_count = 17;
const auto& last_entry = const auto& last_entry =
sixaxis_sensor->sixaxis[sixaxis_sensor->common.last_entry_index]; sixaxis_sensor->sixaxis[static_cast<u64>(sixaxis_sensor->common.last_entry_index)];
sixaxis_sensor->common.timestamp = core_timing.GetCPUTicks(); sixaxis_sensor->common.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
sixaxis_sensor->common.last_entry_index = sixaxis_sensor->common.last_entry_index =
(sixaxis_sensor->common.last_entry_index + 1) % 17; (sixaxis_sensor->common.last_entry_index + 1) % 17;
auto& cur_entry = sixaxis_sensor->sixaxis[sixaxis_sensor->common.last_entry_index]; auto& cur_entry =
sixaxis_sensor->sixaxis[static_cast<u64>(sixaxis_sensor->common.last_entry_index)];
cur_entry.timestamp = last_entry.timestamp + 1; cur_entry.timestamp = last_entry.timestamp + 1;
cur_entry.timestamp2 = cur_entry.timestamp; cur_entry.timestamp2 = cur_entry.timestamp;
@ -529,17 +540,21 @@ void Controller_NPad::OnMotionUpdate(const Core::Timing::CoreTiming& core_timing
} }
auto& full_sixaxis_entry = auto& full_sixaxis_entry =
npad.sixaxis_full.sixaxis[npad.sixaxis_full.common.last_entry_index]; npad.sixaxis_full.sixaxis[static_cast<u64>(npad.sixaxis_full.common.last_entry_index)];
auto& handheld_sixaxis_entry = auto& handheld_sixaxis_entry =
npad.sixaxis_handheld.sixaxis[npad.sixaxis_handheld.common.last_entry_index]; npad.sixaxis_handheld
.sixaxis[static_cast<u64>(npad.sixaxis_handheld.common.last_entry_index)];
auto& dual_left_sixaxis_entry = auto& dual_left_sixaxis_entry =
npad.sixaxis_dual_left.sixaxis[npad.sixaxis_dual_left.common.last_entry_index]; npad.sixaxis_dual_left
.sixaxis[static_cast<u64>(npad.sixaxis_dual_left.common.last_entry_index)];
auto& dual_right_sixaxis_entry = auto& dual_right_sixaxis_entry =
npad.sixaxis_dual_right.sixaxis[npad.sixaxis_dual_right.common.last_entry_index]; npad.sixaxis_dual_right
.sixaxis[static_cast<u64>(npad.sixaxis_dual_right.common.last_entry_index)];
auto& left_sixaxis_entry = auto& left_sixaxis_entry =
npad.sixaxis_left.sixaxis[npad.sixaxis_left.common.last_entry_index]; npad.sixaxis_left.sixaxis[static_cast<u64>(npad.sixaxis_left.common.last_entry_index)];
auto& right_sixaxis_entry = auto& right_sixaxis_entry =
npad.sixaxis_right.sixaxis[npad.sixaxis_right.common.last_entry_index]; npad.sixaxis_right
.sixaxis[static_cast<u64>(npad.sixaxis_right.common.last_entry_index)];
switch (controller_type) { switch (controller_type) {
case NPadControllerType::None: case NPadControllerType::None:

@ -22,12 +22,12 @@ void Controller_Stubbed::OnUpdate(const Core::Timing::CoreTiming& core_timing, u
return; return;
} }
CommonHeader header{}; const CommonHeader header{
header.timestamp = core_timing.GetCPUTicks(); .timestamp = static_cast<s64>(core_timing.GetCPUTicks()),
header.total_entry_count = 17; .total_entry_count = 17,
header.entry_count = 0; .last_entry_index = 0,
header.last_entry_index = 0; .entry_count = 0,
};
std::memcpy(data + common_offset, &header, sizeof(CommonHeader)); std::memcpy(data + common_offset, &header, sizeof(CommonHeader));
} }

@ -22,7 +22,7 @@ void Controller_Touchscreen::OnRelease() {}
void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
shared_memory.header.timestamp = core_timing.GetCPUTicks(); shared_memory.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
shared_memory.header.total_entry_count = 17; shared_memory.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -33,9 +33,12 @@ void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timin
shared_memory.header.entry_count = 16; shared_memory.header.entry_count = 16;
const auto& last_entry = const auto& last_entry =
shared_memory.shared_memory_entries[shared_memory.header.last_entry_index]; shared_memory
.shared_memory_entries[static_cast<u64>(shared_memory.header.last_entry_index)];
shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17; shared_memory.header.last_entry_index = (shared_memory.header.last_entry_index + 1) % 17;
auto& cur_entry = shared_memory.shared_memory_entries[shared_memory.header.last_entry_index]; auto& cur_entry =
shared_memory
.shared_memory_entries[static_cast<u64>(shared_memory.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -69,6 +69,6 @@ private:
TouchScreenSharedMemory shared_memory{}; TouchScreenSharedMemory shared_memory{};
std::unique_ptr<Input::TouchDevice> touch_device; std::unique_ptr<Input::TouchDevice> touch_device;
std::unique_ptr<Input::TouchDevice> touch_btn_device; std::unique_ptr<Input::TouchDevice> touch_btn_device;
s64_le last_touch{}; u64_le last_touch{};
}; };
} // namespace Service::HID } // namespace Service::HID

@ -20,7 +20,7 @@ void Controller_XPad::OnRelease() {}
void Controller_XPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data, void Controller_XPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
std::size_t size) { std::size_t size) {
for (auto& xpad_entry : shared_memory.shared_memory_entries) { for (auto& xpad_entry : shared_memory.shared_memory_entries) {
xpad_entry.header.timestamp = core_timing.GetCPUTicks(); xpad_entry.header.timestamp = static_cast<s64>(core_timing.GetCPUTicks());
xpad_entry.header.total_entry_count = 17; xpad_entry.header.total_entry_count = 17;
if (!IsControllerActivated()) { if (!IsControllerActivated()) {
@ -30,9 +30,11 @@ void Controller_XPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8*
} }
xpad_entry.header.entry_count = 16; xpad_entry.header.entry_count = 16;
const auto& last_entry = xpad_entry.pad_states[xpad_entry.header.last_entry_index]; const auto& last_entry =
xpad_entry.pad_states[static_cast<u64>(xpad_entry.header.last_entry_index)];
xpad_entry.header.last_entry_index = (xpad_entry.header.last_entry_index + 1) % 17; xpad_entry.header.last_entry_index = (xpad_entry.header.last_entry_index + 1) % 17;
auto& cur_entry = xpad_entry.pad_states[xpad_entry.header.last_entry_index]; auto& cur_entry =
xpad_entry.pad_states[static_cast<u64>(xpad_entry.header.last_entry_index)];
cur_entry.sampling_number = last_entry.sampling_number + 1; cur_entry.sampling_number = last_entry.sampling_number + 1;
cur_entry.sampling_number2 = cur_entry.sampling_number; cur_entry.sampling_number2 = cur_entry.sampling_number;

@ -23,7 +23,7 @@ namespace Service::LDR {
constexpr ResultCode ERROR_INSUFFICIENT_ADDRESS_SPACE{ErrorModule::RO, 2}; constexpr ResultCode ERROR_INSUFFICIENT_ADDRESS_SPACE{ErrorModule::RO, 2};
constexpr ResultCode ERROR_INVALID_MEMORY_STATE{ErrorModule::Loader, 51}; [[maybe_unused]] constexpr ResultCode ERROR_INVALID_MEMORY_STATE{ErrorModule::Loader, 51};
constexpr ResultCode ERROR_INVALID_NRO{ErrorModule::Loader, 52}; constexpr ResultCode ERROR_INVALID_NRO{ErrorModule::Loader, 52};
constexpr ResultCode ERROR_INVALID_NRR{ErrorModule::Loader, 53}; constexpr ResultCode ERROR_INVALID_NRR{ErrorModule::Loader, 53};
constexpr ResultCode ERROR_MISSING_NRR_HASH{ErrorModule::Loader, 54}; constexpr ResultCode ERROR_MISSING_NRR_HASH{ErrorModule::Loader, 54};
@ -33,7 +33,7 @@ constexpr ResultCode ERROR_ALREADY_LOADED{ErrorModule::Loader, 57};
constexpr ResultCode ERROR_INVALID_ALIGNMENT{ErrorModule::Loader, 81}; constexpr ResultCode ERROR_INVALID_ALIGNMENT{ErrorModule::Loader, 81};
constexpr ResultCode ERROR_INVALID_SIZE{ErrorModule::Loader, 82}; constexpr ResultCode ERROR_INVALID_SIZE{ErrorModule::Loader, 82};
constexpr ResultCode ERROR_INVALID_NRO_ADDRESS{ErrorModule::Loader, 84}; constexpr ResultCode ERROR_INVALID_NRO_ADDRESS{ErrorModule::Loader, 84};
constexpr ResultCode ERROR_INVALID_NRR_ADDRESS{ErrorModule::Loader, 85}; [[maybe_unused]] constexpr ResultCode ERROR_INVALID_NRR_ADDRESS{ErrorModule::Loader, 85};
constexpr ResultCode ERROR_NOT_INITIALIZED{ErrorModule::Loader, 87}; constexpr ResultCode ERROR_NOT_INITIALIZED{ErrorModule::Loader, 87};
constexpr std::size_t MAXIMUM_LOADED_RO{0x40}; constexpr std::size_t MAXIMUM_LOADED_RO{0x40};

@ -240,10 +240,10 @@ MiiStoreData BuildRandomStoreData(Age age, Gender gender, Race race, const Commo
bf.eye_type.Assign( bf.eye_type.Assign(
eye_type_info.values[GetRandomValue<std::size_t>(eye_type_info.values_count)]); eye_type_info.values[GetRandomValue<std::size_t>(eye_type_info.values_count)]);
const auto eye_rotate_1{gender != Gender::Male ? 4 : 2}; const auto eye_rotate_1{gender != Gender::Male ? 4U : 2U};
const auto eye_rotate_2{gender != Gender::Male ? 3 : 4}; const auto eye_rotate_2{gender != Gender::Male ? 3U : 4U};
const auto eye_rotate_offset{32 - EyeRotateLookup[eye_rotate_1] + eye_rotate_2}; const auto eye_rotate_offset{32U - EyeRotateLookup[eye_rotate_1] + eye_rotate_2};
const auto eye_rotate{32 - EyeRotateLookup[bf.eye_type]}; const auto eye_rotate{32U - EyeRotateLookup[bf.eye_type]};
bf.eye_color.Assign( bf.eye_color.Assign(
EyeColorLookup[eye_color_info EyeColorLookup[eye_color_info
@ -257,11 +257,11 @@ MiiStoreData BuildRandomStoreData(Age age, Gender gender, Race race, const Commo
bf.eyebrow_type.Assign( bf.eyebrow_type.Assign(
eyebrow_type_info.values[GetRandomValue<std::size_t>(eyebrow_type_info.values_count)]); eyebrow_type_info.values[GetRandomValue<std::size_t>(eyebrow_type_info.values_count)]);
const auto eyebrow_rotate_1{race == Race::Asian ? 6 : 0}; const auto eyebrow_rotate_1{race == Race::Asian ? 6U : 0U};
const auto eyebrow_y{race == Race::Asian ? 9 : 10}; const auto eyebrow_y{race == Race::Asian ? 9U : 10U};
const auto eyebrow_rotate_offset{32 - EyebrowRotateLookup[eyebrow_rotate_1] + 6}; const auto eyebrow_rotate_offset{32U - EyebrowRotateLookup[eyebrow_rotate_1] + 6};
const auto eyebrow_rotate{ const auto eyebrow_rotate{
32 - EyebrowRotateLookup[static_cast<std::size_t>(bf.eyebrow_type.Value())]}; 32U - EyebrowRotateLookup[static_cast<std::size_t>(bf.eyebrow_type.Value())]};
bf.eyebrow_color.Assign(bf.hair_color); bf.eyebrow_color.Assign(bf.hair_color);
bf.eyebrow_scale.Assign(4); bf.eyebrow_scale.Assign(4);
@ -270,14 +270,14 @@ MiiStoreData BuildRandomStoreData(Age age, Gender gender, Race race, const Commo
bf.eyebrow_x.Assign(2); bf.eyebrow_x.Assign(2);
bf.eyebrow_y.Assign(axis_y + eyebrow_y); bf.eyebrow_y.Assign(axis_y + eyebrow_y);
const auto nose_scale{gender == Gender::Female ? 3 : 4}; const auto nose_scale{gender == Gender::Female ? 3U : 4U};
bf.nose_type.Assign( bf.nose_type.Assign(
nose_type_info.values[GetRandomValue<std::size_t>(nose_type_info.values_count)]); nose_type_info.values[GetRandomValue<std::size_t>(nose_type_info.values_count)]);
bf.nose_scale.Assign(nose_scale); bf.nose_scale.Assign(nose_scale);
bf.nose_y.Assign(axis_y + 9); bf.nose_y.Assign(axis_y + 9);
const auto mouth_color{gender == Gender::Female ? GetRandomValue<int>(4) : 0}; const auto mouth_color{gender == Gender::Female ? GetRandomValue<u32>(4) : 0U};
bf.mouth_type.Assign( bf.mouth_type.Assign(
mouth_type_info.values[GetRandomValue<std::size_t>(mouth_type_info.values_count)]); mouth_type_info.values[GetRandomValue<std::size_t>(mouth_type_info.values_count)]);

@ -217,7 +217,7 @@ private:
const auto& amiibo = nfp_interface.GetAmiiboBuffer(); const auto& amiibo = nfp_interface.GetAmiiboBuffer();
const TagInfo tag_info{ const TagInfo tag_info{
.uuid = amiibo.uuid, .uuid = amiibo.uuid,
.uuid_length = static_cast<u8>(tag_info.uuid.size()), .uuid_length = static_cast<u8>(amiibo.uuid.size()),
.padding_1 = {}, .padding_1 = {},
.protocol = 1, // TODO(ogniK): Figure out actual values .protocol = 1, // TODO(ogniK): Figure out actual values
.tag_type = 2, .tag_type = 2,

@ -368,7 +368,7 @@ ResultVal<u8> IApplicationManagerInterface::GetApplicationDesiredLanguage(
// Get language code from settings // Get language code from settings
const auto language_code = const auto language_code =
Set::GetLanguageCodeFromIndex(Settings::values.language_index.GetValue()); Set::GetLanguageCodeFromIndex(static_cast<u32>(Settings::values.language_index.GetValue()));
// Convert to application language, get priority list // Convert to application language, get priority list
const auto application_language = ConvertToApplicationLanguage(language_code); const auto application_language = ConvertToApplicationLanguage(language_code);

@ -50,19 +50,9 @@ constexpr std::array<std::pair<FontArchives, const char*>, 7> SHARED_FONTS{
std::make_pair(FontArchives::Extension, "nintendo_ext2_003.bfttf"), std::make_pair(FontArchives::Extension, "nintendo_ext2_003.bfttf"),
}; };
constexpr std::array<const char*, 7> SHARED_FONTS_TTF{
"FontStandard.ttf",
"FontChineseSimplified.ttf",
"FontExtendedChineseSimplified.ttf",
"FontChineseTraditional.ttf",
"FontKorean.ttf",
"FontNintendoExtended.ttf",
"FontNintendoExtended2.ttf",
};
// The below data is specific to shared font data dumped from Switch on f/w 2.2 // The below data is specific to shared font data dumped from Switch on f/w 2.2
// Virtual address and offsets/sizes likely will vary by dump // Virtual address and offsets/sizes likely will vary by dump
constexpr VAddr SHARED_FONT_MEM_VADDR{0x00000009d3016000ULL}; [[maybe_unused]] constexpr VAddr SHARED_FONT_MEM_VADDR{0x00000009d3016000ULL};
constexpr u32 EXPECTED_RESULT{0x7f9a0218}; // What we expect the decrypted bfttf first 4 bytes to be constexpr u32 EXPECTED_RESULT{0x7f9a0218}; // What we expect the decrypted bfttf first 4 bytes to be
constexpr u32 EXPECTED_MAGIC{0x36f81a1e}; // What we expect the encrypted bfttf first 4 bytes to be constexpr u32 EXPECTED_MAGIC{0x36f81a1e}; // What we expect the encrypted bfttf first 4 bytes to be
constexpr u64 SHARED_FONT_MEM_SIZE{0x1100000}; constexpr u64 SHARED_FONT_MEM_SIZE{0x1100000};

@ -139,7 +139,7 @@ u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& ou
const auto object{nvmap_dev->GetObject(params.nvmap_handle)}; const auto object{nvmap_dev->GetObject(params.nvmap_handle)};
if (!object) { if (!object) {
LOG_CRITICAL(Service_NVDRV, "invalid nvmap_handle={:X}", params.nvmap_handle); LOG_ERROR(Service_NVDRV, "invalid nvmap_handle={:X}", params.nvmap_handle);
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvErrCodes::InvalidInput; return NvErrCodes::InvalidInput;
} }
@ -151,18 +151,21 @@ u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& ou
auto& gpu = system.GPU(); auto& gpu = system.GPU();
u64 page_size{params.page_size}; u64 page_size{params.page_size};
if (!page_size) { if (page_size == 0) {
page_size = object->align; page_size = object->align;
} }
if ((params.flags & AddressSpaceFlags::Remap) != AddressSpaceFlags::None) { if ((params.flags & AddressSpaceFlags::Remap) != AddressSpaceFlags::None) {
if (const auto buffer_map{FindBufferMap(params.offset)}; buffer_map) { const auto buffer_map = FindBufferMap(static_cast<GPUVAddr>(params.offset));
const auto cpu_addr{static_cast<VAddr>(buffer_map->CpuAddr() + params.buffer_offset)};
if (buffer_map) {
const auto cpu_addr{
static_cast<VAddr>(buffer_map->CpuAddr() + static_cast<u64>(params.buffer_offset))};
const auto gpu_addr{static_cast<GPUVAddr>(params.offset + params.buffer_offset)}; const auto gpu_addr{static_cast<GPUVAddr>(params.offset + params.buffer_offset)};
if (!gpu.MemoryManager().Map(cpu_addr, gpu_addr, params.mapping_size)) { if (!gpu.MemoryManager().Map(cpu_addr, gpu_addr, params.mapping_size)) {
LOG_CRITICAL(Service_NVDRV, LOG_ERROR(Service_NVDRV,
"remap failed, flags={:X}, nvmap_handle={:X}, buffer_offset={}, " "Remap failed, flags={:X}, nvmap_handle={:X}, buffer_offset={}, "
"mapping_size = {}, offset={}", "mapping_size = {}, offset={}",
params.flags, params.nvmap_handle, params.buffer_offset, params.flags, params.nvmap_handle, params.buffer_offset,
params.mapping_size, params.offset); params.mapping_size, params.offset);
@ -174,7 +177,7 @@ u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& ou
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvErrCodes::Success; return NvErrCodes::Success;
} else { } else {
LOG_CRITICAL(Service_NVDRV, "address not mapped offset={}", params.offset); LOG_ERROR(Service_NVDRV, "Address not mapped. offset={}", params.offset);
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvErrCodes::InvalidInput; return NvErrCodes::InvalidInput;
@ -184,25 +187,27 @@ u32 nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& ou
// We can only map objects that have already been assigned a CPU address. // We can only map objects that have already been assigned a CPU address.
ASSERT(object->status == nvmap::Object::Status::Allocated); ASSERT(object->status == nvmap::Object::Status::Allocated);
const auto physical_address{object->addr + params.buffer_offset}; const auto physical_address{object->addr + static_cast<VAddr>(params.buffer_offset)};
u64 size{params.mapping_size}; u64 size{params.mapping_size};
if (!size) { if (size == 0) {
size = object->size; size = object->size;
} }
const bool is_alloc{(params.flags & AddressSpaceFlags::FixedOffset) == AddressSpaceFlags::None}; const bool is_alloc{(params.flags & AddressSpaceFlags::FixedOffset) == AddressSpaceFlags::None};
if (is_alloc) { if (is_alloc) {
params.offset = gpu.MemoryManager().MapAllocate(physical_address, size, page_size); params.offset =
static_cast<s64>(gpu.MemoryManager().MapAllocate(physical_address, size, page_size));
} else { } else {
params.offset = gpu.MemoryManager().Map(physical_address, params.offset, size); params.offset = static_cast<s64>(
gpu.MemoryManager().Map(physical_address, static_cast<GPUVAddr>(params.offset), size));
} }
auto result{NvErrCodes::Success}; auto result{NvErrCodes::Success};
if (!params.offset) { if (params.offset == 0) {
LOG_CRITICAL(Service_NVDRV, "failed to map size={}", size); LOG_ERROR(Service_NVDRV, "Failed to map size={}", size);
result = NvErrCodes::InvalidInput; result = NvErrCodes::InvalidInput;
} else { } else {
AddBufferMap(params.offset, size, physical_address, is_alloc); AddBufferMap(static_cast<GPUVAddr>(params.offset), size, physical_address, is_alloc);
} }
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
@ -213,12 +218,13 @@ u32 nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& ou
IoctlUnmapBuffer params{}; IoctlUnmapBuffer params{};
std::memcpy(&params, input.data(), input.size()); std::memcpy(&params, input.data(), input.size());
LOG_DEBUG(Service_NVDRV, "called, offset=0x{:X}", params.offset); const auto offset = static_cast<GPUVAddr>(params.offset);
LOG_DEBUG(Service_NVDRV, "called, offset=0x{:X}", offset);
if (const auto size{RemoveBufferMap(params.offset)}; size) { if (const auto size{RemoveBufferMap(offset)}; size) {
system.GPU().MemoryManager().Unmap(params.offset, *size); system.GPU().MemoryManager().Unmap(offset, *size);
} else { } else {
LOG_ERROR(Service_NVDRV, "invalid offset=0x{:X}", params.offset); LOG_ERROR(Service_NVDRV, "invalid offset=0x{:X}", offset);
} }
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());

@ -63,8 +63,7 @@ u32 nvhost_ctrl::IocCtrlEventWait(const std::vector<u8>& input, std::vector<u8>&
return NvResult::BadParameter; return NvResult::BadParameter;
} }
u32 event_id = params.value & 0x00FF; const u32 event_id = params.value & 0x00FF;
if (event_id >= MaxNvEvents) { if (event_id >= MaxNvEvents) {
std::memcpy(output.data(), &params, sizeof(params)); std::memcpy(output.data(), &params, sizeof(params));
return NvResult::BadParameter; return NvResult::BadParameter;
@ -78,16 +77,17 @@ u32 nvhost_ctrl::IocCtrlEventWait(const std::vector<u8>& input, std::vector<u8>&
event.writable->Signal(); event.writable->Signal();
return NvResult::Success; return NvResult::Success;
} }
auto lock = gpu.LockSync(); auto lock = gpu.LockSync();
const u32 current_syncpoint_value = gpu.GetSyncpointValue(params.syncpt_id); const u32 current_syncpoint_value = gpu.GetSyncpointValue(params.syncpt_id);
const s32 diff = current_syncpoint_value - params.threshold; const s32 diff = static_cast<s32>(current_syncpoint_value - params.threshold);
if (diff >= 0) { if (diff >= 0) {
event.writable->Signal(); event.writable->Signal();
params.value = current_syncpoint_value; params.value = current_syncpoint_value;
std::memcpy(output.data(), &params, sizeof(params)); std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success; return NvResult::Success;
} }
const u32 target_value = current_syncpoint_value - diff; const u32 target_value = current_syncpoint_value - static_cast<u32>(diff);
if (!is_async) { if (!is_async) {
params.value = 0; params.value = 0;
@ -98,7 +98,7 @@ u32 nvhost_ctrl::IocCtrlEventWait(const std::vector<u8>& input, std::vector<u8>&
return NvResult::Timeout; return NvResult::Timeout;
} }
EventState status = events_interface.status[event_id]; const EventState status = events_interface.status[event_id];
if (event_id < MaxNvEvents || status == EventState::Free || status == EventState::Registered) { if (event_id < MaxNvEvents || status == EventState::Free || status == EventState::Registered) {
events_interface.SetEventStatus(event_id, EventState::Waiting); events_interface.SetEventStatus(event_id, EventState::Waiting);
events_interface.assigned_syncpt[event_id] = params.syncpt_id; events_interface.assigned_syncpt[event_id] = params.syncpt_id;
@ -114,7 +114,7 @@ u32 nvhost_ctrl::IocCtrlEventWait(const std::vector<u8>& input, std::vector<u8>&
if (!is_async && ctrl.fresh_call) { if (!is_async && ctrl.fresh_call) {
ctrl.must_delay = true; ctrl.must_delay = true;
ctrl.timeout = params.timeout; ctrl.timeout = params.timeout;
ctrl.event_id = event_id; ctrl.event_id = static_cast<s32>(event_id);
return NvResult::Timeout; return NvResult::Timeout;
} }
std::memcpy(output.data(), &params, sizeof(params)); std::memcpy(output.data(), &params, sizeof(params));

@ -127,7 +127,7 @@ u32 nvhost_gpu::AllocGPFIFOEx2(const std::vector<u8>& input, std::vector<u8>& ou
params.unk3); params.unk3);
auto& gpu = system.GPU(); auto& gpu = system.GPU();
params.fence_out.id = assigned_syncpoints; params.fence_out.id = static_cast<s32>(assigned_syncpoints);
params.fence_out.value = gpu.GetSyncpointValue(assigned_syncpoints); params.fence_out.value = gpu.GetSyncpointValue(assigned_syncpoints);
assigned_syncpoints++; assigned_syncpoints++;
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
@ -166,7 +166,8 @@ u32 nvhost_gpu::SubmitGPFIFO(const std::vector<u8>& input, std::vector<u8>& outp
UNIMPLEMENTED_IF(params.flags.add_increment.Value() != 0); UNIMPLEMENTED_IF(params.flags.add_increment.Value() != 0);
auto& gpu = system.GPU(); auto& gpu = system.GPU();
u32 current_syncpoint_value = gpu.GetSyncpointValue(params.fence_out.id); const u32 current_syncpoint_value =
gpu.GetSyncpointValue(static_cast<u32>(params.fence_out.id));
if (params.flags.increment.Value()) { if (params.flags.increment.Value()) {
params.fence_out.value += current_syncpoint_value; params.fence_out.value += current_syncpoint_value;
} else { } else {
@ -200,7 +201,8 @@ u32 nvhost_gpu::KickoffPB(const std::vector<u8>& input, std::vector<u8>& output,
UNIMPLEMENTED_IF(params.flags.add_increment.Value() != 0); UNIMPLEMENTED_IF(params.flags.add_increment.Value() != 0);
auto& gpu = system.GPU(); auto& gpu = system.GPU();
u32 current_syncpoint_value = gpu.GetSyncpointValue(params.fence_out.id); const u32 current_syncpoint_value =
gpu.GetSyncpointValue(static_cast<u32>(params.fence_out.id));
if (params.flags.increment.Value()) { if (params.flags.increment.Value()) {
params.fence_out.value += current_syncpoint_value; params.fence_out.value += current_syncpoint_value;
} else { } else {

@ -61,9 +61,9 @@ void NVDRV::IoctlBase(Kernel::HLERequestContext& ctx, IoctlVersion version) {
if (ctrl.must_delay) { if (ctrl.must_delay) {
ctrl.fresh_call = false; ctrl.fresh_call = false;
ctx.SleepClientThread( ctx.SleepClientThread(
"NVServices::DelayedResponse", ctrl.timeout, "NVServices::DelayedResponse", static_cast<u64>(ctrl.timeout),
[=, this](std::shared_ptr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx_, [=, this](std::shared_ptr<Kernel::Thread>, Kernel::HLERequestContext& ctx_,
Kernel::ThreadWakeupReason reason) { Kernel::ThreadWakeupReason) {
IoctlCtrl ctrl2{ctrl}; IoctlCtrl ctrl2{ctrl};
std::vector<u8> tmp_output = output; std::vector<u8> tmp_output = output;
std::vector<u8> tmp_output2 = output2; std::vector<u8> tmp_output2 = output2;
@ -77,7 +77,7 @@ void NVDRV::IoctlBase(Kernel::HLERequestContext& ctx, IoctlVersion version) {
rb.Push(RESULT_SUCCESS); rb.Push(RESULT_SUCCESS);
rb.Push(ioctl_result); rb.Push(ioctl_result);
}, },
nvdrv->GetEventWriteable(ctrl.event_id)); nvdrv->GetEventWriteable(static_cast<u32>(ctrl.event_id)));
} else { } else {
ctx.WriteBuffer(output); ctx.WriteBuffer(output);
if (version == IoctlVersion::Version3) { if (version == IoctlVersion::Version3) {

@ -247,7 +247,7 @@ void NVFlinger::Compose() {
guard->unlock(); guard->unlock();
for (u32 fence_id = 0; fence_id < multi_fence.num_fences; fence_id++) { for (u32 fence_id = 0; fence_id < multi_fence.num_fences; fence_id++) {
const auto& fence = multi_fence.fences[fence_id]; const auto& fence = multi_fence.fences[fence_id];
gpu.WaitFence(fence.id, fence.value); gpu.WaitFence(static_cast<u32>(fence.id), fence.value);
} }
guard->lock(); guard->lock();

@ -80,10 +80,10 @@ namespace Service {
std::string_view port_name, std::string_view port_name,
const u32* cmd_buff) { const u32* cmd_buff) {
// Number of params == bits 0-5 + bits 6-11 // Number of params == bits 0-5 + bits 6-11
int num_params = (cmd_buff[0] & 0x3F) + ((cmd_buff[0] >> 6) & 0x3F); const u32 num_params = (cmd_buff[0] & 0x3F) + ((cmd_buff[0] >> 6) & 0x3F);
std::string function_string = fmt::format("function '{}': port={}", name, port_name); std::string function_string = fmt::format("function '{}': port={}", name, port_name);
for (int i = 1; i <= num_params; ++i) { for (u32 i = 1; i <= num_params; ++i) {
function_string += fmt::format(", cmd_buff[{}]=0x{:X}", i, cmd_buff[i]); function_string += fmt::format(", cmd_buff[{}]=0x{:X}", i, cmd_buff[i]);
} }
return function_string; return function_string;

@ -91,7 +91,8 @@ void GetAvailableLanguageCodesImpl(Kernel::HLERequestContext& ctx, std::size_t m
} }
void GetKeyCodeMapImpl(Kernel::HLERequestContext& ctx) { void GetKeyCodeMapImpl(Kernel::HLERequestContext& ctx) {
const auto language_code = available_language_codes[Settings::values.language_index.GetValue()]; const auto language_code =
available_language_codes[static_cast<u32>(Settings::values.language_index.GetValue())];
const auto key_code = const auto key_code =
std::find_if(language_to_layout.cbegin(), language_to_layout.cend(), std::find_if(language_to_layout.cbegin(), language_to_layout.cend(),
[=](const auto& element) { return element.first == language_code; }); [=](const auto& element) { return element.first == language_code; });
@ -167,7 +168,8 @@ void SET::GetLanguageCode(Kernel::HLERequestContext& ctx) {
IPC::ResponseBuilder rb{ctx, 4}; IPC::ResponseBuilder rb{ctx, 4};
rb.Push(RESULT_SUCCESS); rb.Push(RESULT_SUCCESS);
rb.PushEnum(available_language_codes[Settings::values.language_index.GetValue()]); rb.PushEnum(
available_language_codes[static_cast<u32>(Settings::values.language_index.GetValue())]);
} }
void SET::GetRegionCode(Kernel::HLERequestContext& ctx) { void SET::GetRegionCode(Kernel::HLERequestContext& ctx) {

@ -437,9 +437,9 @@ std::pair<s32, Errno> BSD::SocketImpl(Domain domain, Type type, Protocol protoco
UNIMPLEMENTED_MSG("SOCK_RAW errno management"); UNIMPLEMENTED_MSG("SOCK_RAW errno management");
} }
[[maybe_unused]] const bool unk_flag = (static_cast<u32>(type) & 0x20000000) != 0; [[maybe_unused]] const bool unk_flag = (static_cast<u32>(type) & 0x20000000U) != 0;
UNIMPLEMENTED_IF_MSG(unk_flag, "Unknown flag in type"); UNIMPLEMENTED_IF_MSG(unk_flag, "Unknown flag in type");
type = static_cast<Type>(static_cast<u32>(type) & ~0x20000000); type = static_cast<Type>(static_cast<u32>(type) & ~0x20000000U);
const s32 fd = FindFreeFileDescriptorHandle(); const s32 fd = FindFreeFileDescriptorHandle();
if (fd < 0) { if (fd < 0) {
@ -447,7 +447,7 @@ std::pair<s32, Errno> BSD::SocketImpl(Domain domain, Type type, Protocol protoco
return {-1, Errno::MFILE}; return {-1, Errno::MFILE};
} }
FileDescriptor& descriptor = file_descriptors[fd].emplace(); FileDescriptor& descriptor = GetFileDescriptor(fd).emplace();
// ENONMEM might be thrown here // ENONMEM might be thrown here
LOG_INFO(Service, "New socket fd={}", fd); LOG_INFO(Service, "New socket fd={}", fd);
@ -461,7 +461,7 @@ std::pair<s32, Errno> BSD::SocketImpl(Domain domain, Type type, Protocol protoco
std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::vector<u8> read_buffer, std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::vector<u8> read_buffer,
s32 nfds, s32 timeout) { s32 nfds, s32 timeout) {
if (write_buffer.size() < nfds * sizeof(PollFD)) { if (write_buffer.size() < static_cast<size_t>(nfds) * sizeof(PollFD)) {
return {-1, Errno::INVAL}; return {-1, Errno::INVAL};
} }
@ -471,7 +471,7 @@ std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::vector<u
} }
const size_t length = std::min(read_buffer.size(), write_buffer.size()); const size_t length = std::min(read_buffer.size(), write_buffer.size());
std::vector<PollFD> fds(nfds); std::vector<PollFD> fds(static_cast<size_t>(nfds));
std::memcpy(fds.data(), read_buffer.data(), length); std::memcpy(fds.data(), read_buffer.data(), length);
if (timeout >= 0) { if (timeout >= 0) {
@ -497,7 +497,7 @@ std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::vector<u
return {0, Errno::SUCCESS}; return {0, Errno::SUCCESS};
} }
const std::optional<FileDescriptor>& descriptor = file_descriptors[pollfd.fd]; const std::optional<FileDescriptor>& descriptor = GetFileDescriptor(pollfd.fd);
if (!descriptor) { if (!descriptor) {
LOG_ERROR(Service, "File descriptor handle={} is not allocated", pollfd.fd); LOG_ERROR(Service, "File descriptor handle={} is not allocated", pollfd.fd);
pollfd.revents = POLL_NVAL; pollfd.revents = POLL_NVAL;
@ -508,7 +508,7 @@ std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::vector<u
std::vector<Network::PollFD> host_pollfds(fds.size()); std::vector<Network::PollFD> host_pollfds(fds.size());
std::transform(fds.begin(), fds.end(), host_pollfds.begin(), [this](PollFD pollfd) { std::transform(fds.begin(), fds.end(), host_pollfds.begin(), [this](PollFD pollfd) {
Network::PollFD result; Network::PollFD result;
result.socket = file_descriptors[pollfd.fd]->socket.get(); result.socket = GetFileDescriptor(pollfd.fd)->socket.get();
result.events = TranslatePollEventsToHost(pollfd.events); result.events = TranslatePollEventsToHost(pollfd.events);
result.revents = 0; result.revents = 0;
return result; return result;
@ -536,13 +536,13 @@ std::pair<s32, Errno> BSD::AcceptImpl(s32 fd, std::vector<u8>& write_buffer) {
return {-1, Errno::MFILE}; return {-1, Errno::MFILE};
} }
FileDescriptor& descriptor = *file_descriptors[fd]; FileDescriptor& descriptor = *GetFileDescriptor(fd);
auto [result, bsd_errno] = descriptor.socket->Accept(); auto [result, bsd_errno] = descriptor.socket->Accept();
if (bsd_errno != Network::Errno::SUCCESS) { if (bsd_errno != Network::Errno::SUCCESS) {
return {-1, Translate(bsd_errno)}; return {-1, Translate(bsd_errno)};
} }
FileDescriptor& new_descriptor = file_descriptors[new_fd].emplace(); FileDescriptor& new_descriptor = GetFileDescriptor(new_fd).emplace();
new_descriptor.socket = std::move(result.socket); new_descriptor.socket = std::move(result.socket);
new_descriptor.is_connection_based = descriptor.is_connection_based; new_descriptor.is_connection_based = descriptor.is_connection_based;
@ -561,7 +561,7 @@ Errno BSD::BindImpl(s32 fd, const std::vector<u8>& addr) {
SockAddrIn addr_in; SockAddrIn addr_in;
std::memcpy(&addr_in, addr.data(), sizeof(addr_in)); std::memcpy(&addr_in, addr.data(), sizeof(addr_in));
return Translate(file_descriptors[fd]->socket->Bind(Translate(addr_in))); return Translate(GetFileDescriptor(fd)->socket->Bind(Translate(addr_in)));
} }
Errno BSD::ConnectImpl(s32 fd, const std::vector<u8>& addr) { Errno BSD::ConnectImpl(s32 fd, const std::vector<u8>& addr) {
@ -573,7 +573,7 @@ Errno BSD::ConnectImpl(s32 fd, const std::vector<u8>& addr) {
SockAddrIn addr_in; SockAddrIn addr_in;
std::memcpy(&addr_in, addr.data(), sizeof(addr_in)); std::memcpy(&addr_in, addr.data(), sizeof(addr_in));
return Translate(file_descriptors[fd]->socket->Connect(Translate(addr_in))); return Translate(GetFileDescriptor(fd)->socket->Connect(Translate(addr_in)));
} }
Errno BSD::GetPeerNameImpl(s32 fd, std::vector<u8>& write_buffer) { Errno BSD::GetPeerNameImpl(s32 fd, std::vector<u8>& write_buffer) {
@ -581,7 +581,7 @@ Errno BSD::GetPeerNameImpl(s32 fd, std::vector<u8>& write_buffer) {
return Errno::BADF; return Errno::BADF;
} }
const auto [addr_in, bsd_errno] = file_descriptors[fd]->socket->GetPeerName(); const auto [addr_in, bsd_errno] = GetFileDescriptor(fd)->socket->GetPeerName();
if (bsd_errno != Network::Errno::SUCCESS) { if (bsd_errno != Network::Errno::SUCCESS) {
return Translate(bsd_errno); return Translate(bsd_errno);
} }
@ -597,7 +597,7 @@ Errno BSD::GetSockNameImpl(s32 fd, std::vector<u8>& write_buffer) {
return Errno::BADF; return Errno::BADF;
} }
const auto [addr_in, bsd_errno] = file_descriptors[fd]->socket->GetSockName(); const auto [addr_in, bsd_errno] = GetFileDescriptor(fd)->socket->GetSockName();
if (bsd_errno != Network::Errno::SUCCESS) { if (bsd_errno != Network::Errno::SUCCESS) {
return Translate(bsd_errno); return Translate(bsd_errno);
} }
@ -612,7 +612,7 @@ Errno BSD::ListenImpl(s32 fd, s32 backlog) {
if (!IsFileDescriptorValid(fd)) { if (!IsFileDescriptorValid(fd)) {
return Errno::BADF; return Errno::BADF;
} }
return Translate(file_descriptors[fd]->socket->Listen(backlog)); return Translate(GetFileDescriptor(fd)->socket->Listen(backlog));
} }
std::pair<s32, Errno> BSD::FcntlImpl(s32 fd, FcntlCmd cmd, s32 arg) { std::pair<s32, Errno> BSD::FcntlImpl(s32 fd, FcntlCmd cmd, s32 arg) {
@ -620,14 +620,14 @@ std::pair<s32, Errno> BSD::FcntlImpl(s32 fd, FcntlCmd cmd, s32 arg) {
return {-1, Errno::BADF}; return {-1, Errno::BADF};
} }
FileDescriptor& descriptor = *file_descriptors[fd]; FileDescriptor& descriptor = *GetFileDescriptor(fd);
switch (cmd) { switch (cmd) {
case FcntlCmd::GETFL: case FcntlCmd::GETFL:
ASSERT(arg == 0); ASSERT(arg == 0);
return {descriptor.flags, Errno::SUCCESS}; return {descriptor.flags, Errno::SUCCESS};
case FcntlCmd::SETFL: { case FcntlCmd::SETFL: {
const bool enable = (arg & FLAG_O_NONBLOCK) != 0; const bool enable = (static_cast<u32>(arg) & FLAG_O_NONBLOCK) != 0;
const Errno bsd_errno = Translate(descriptor.socket->SetNonBlock(enable)); const Errno bsd_errno = Translate(descriptor.socket->SetNonBlock(enable));
if (bsd_errno != Errno::SUCCESS) { if (bsd_errno != Errno::SUCCESS) {
return {-1, bsd_errno}; return {-1, bsd_errno};
@ -648,7 +648,7 @@ Errno BSD::SetSockOptImpl(s32 fd, u32 level, OptName optname, size_t optlen, con
return Errno::BADF; return Errno::BADF;
} }
Network::Socket* const socket = file_descriptors[fd]->socket.get(); Network::Socket* const socket = GetFileDescriptor(fd)->socket.get();
if (optname == OptName::LINGER) { if (optname == OptName::LINGER) {
ASSERT(optlen == sizeof(Linger)); ASSERT(optlen == sizeof(Linger));
@ -689,14 +689,14 @@ Errno BSD::ShutdownImpl(s32 fd, s32 how) {
return Errno::BADF; return Errno::BADF;
} }
const Network::ShutdownHow host_how = Translate(static_cast<ShutdownHow>(how)); const Network::ShutdownHow host_how = Translate(static_cast<ShutdownHow>(how));
return Translate(file_descriptors[fd]->socket->Shutdown(host_how)); return Translate(GetFileDescriptor(fd)->socket->Shutdown(host_how));
} }
std::pair<s32, Errno> BSD::RecvImpl(s32 fd, u32 flags, std::vector<u8>& message) { std::pair<s32, Errno> BSD::RecvImpl(s32 fd, u32 flags, std::vector<u8>& message) {
if (!IsFileDescriptorValid(fd)) { if (!IsFileDescriptorValid(fd)) {
return {-1, Errno::BADF}; return {-1, Errno::BADF};
} }
return Translate(file_descriptors[fd]->socket->Recv(flags, message)); return Translate(GetFileDescriptor(fd)->socket->Recv(flags, message));
} }
std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& message, std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& message,
@ -705,7 +705,7 @@ std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& mess
return {-1, Errno::BADF}; return {-1, Errno::BADF};
} }
FileDescriptor& descriptor = *file_descriptors[fd]; FileDescriptor& descriptor = *GetFileDescriptor(fd);
Network::SockAddrIn addr_in{}; Network::SockAddrIn addr_in{};
Network::SockAddrIn* p_addr_in = nullptr; Network::SockAddrIn* p_addr_in = nullptr;
@ -719,7 +719,7 @@ std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& mess
// Apply flags // Apply flags
if ((flags & FLAG_MSG_DONTWAIT) != 0) { if ((flags & FLAG_MSG_DONTWAIT) != 0) {
flags &= ~FLAG_MSG_DONTWAIT; flags &= ~FLAG_MSG_DONTWAIT;
if ((descriptor.flags & FLAG_O_NONBLOCK) == 0) { if ((static_cast<u32>(descriptor.flags) & FLAG_O_NONBLOCK) == 0) {
descriptor.socket->SetNonBlock(true); descriptor.socket->SetNonBlock(true);
} }
} }
@ -727,7 +727,7 @@ std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& mess
const auto [ret, bsd_errno] = Translate(descriptor.socket->RecvFrom(flags, message, p_addr_in)); const auto [ret, bsd_errno] = Translate(descriptor.socket->RecvFrom(flags, message, p_addr_in));
// Restore original state // Restore original state
if ((descriptor.flags & FLAG_O_NONBLOCK) == 0) { if ((static_cast<u32>(descriptor.flags) & FLAG_O_NONBLOCK) == 0) {
descriptor.socket->SetNonBlock(false); descriptor.socket->SetNonBlock(false);
} }
@ -748,7 +748,7 @@ std::pair<s32, Errno> BSD::SendImpl(s32 fd, u32 flags, const std::vector<u8>& me
if (!IsFileDescriptorValid(fd)) { if (!IsFileDescriptorValid(fd)) {
return {-1, Errno::BADF}; return {-1, Errno::BADF};
} }
return Translate(file_descriptors[fd]->socket->Send(message, flags)); return Translate(GetFileDescriptor(fd)->socket->Send(message, flags));
} }
std::pair<s32, Errno> BSD::SendToImpl(s32 fd, u32 flags, const std::vector<u8>& message, std::pair<s32, Errno> BSD::SendToImpl(s32 fd, u32 flags, const std::vector<u8>& message,
@ -767,7 +767,8 @@ std::pair<s32, Errno> BSD::SendToImpl(s32 fd, u32 flags, const std::vector<u8>&
p_addr_in = &addr_in; p_addr_in = &addr_in;
} }
return Translate(file_descriptors[fd]->socket->SendTo(flags, message, p_addr_in)); const auto& descriptor = GetFileDescriptor(fd);
return Translate(descriptor->socket->SendTo(flags, message, p_addr_in));
} }
Errno BSD::CloseImpl(s32 fd) { Errno BSD::CloseImpl(s32 fd) {
@ -775,20 +776,21 @@ Errno BSD::CloseImpl(s32 fd) {
return Errno::BADF; return Errno::BADF;
} }
const Errno bsd_errno = Translate(file_descriptors[fd]->socket->Close()); auto& descriptor = GetFileDescriptor(fd);
const Errno bsd_errno = Translate(descriptor->socket->Close());
if (bsd_errno != Errno::SUCCESS) { if (bsd_errno != Errno::SUCCESS) {
return bsd_errno; return bsd_errno;
} }
LOG_INFO(Service, "Close socket fd={}", fd); LOG_INFO(Service, "Close socket fd={}", fd);
file_descriptors[fd].reset(); descriptor.reset();
return bsd_errno; return bsd_errno;
} }
s32 BSD::FindFreeFileDescriptorHandle() noexcept { s32 BSD::FindFreeFileDescriptorHandle() noexcept {
for (s32 fd = 0; fd < static_cast<s32>(file_descriptors.size()); ++fd) { for (s32 fd = 0; fd < static_cast<s32>(file_descriptors.size()); ++fd) {
if (!file_descriptors[fd]) { if (!GetFileDescriptor(fd)) {
return fd; return fd;
} }
} }
@ -800,7 +802,7 @@ bool BSD::IsFileDescriptorValid(s32 fd) const noexcept {
LOG_ERROR(Service, "Invalid file descriptor handle={}", fd); LOG_ERROR(Service, "Invalid file descriptor handle={}", fd);
return false; return false;
} }
if (!file_descriptors[fd]) { if (!GetFileDescriptor(fd)) {
LOG_ERROR(Service, "File descriptor handle={} is not allocated", fd); LOG_ERROR(Service, "File descriptor handle={} is not allocated", fd);
return false; return false;
} }
@ -813,10 +815,12 @@ bool BSD::IsBlockingSocket(s32 fd) const noexcept {
if (fd > static_cast<s32>(MAX_FD) || fd < 0) { if (fd > static_cast<s32>(MAX_FD) || fd < 0) {
return false; return false;
} }
if (!file_descriptors[fd]) {
const auto& descriptor = GetFileDescriptor(fd);
if (!descriptor) {
return false; return false;
} }
return (file_descriptors[fd]->flags & FLAG_O_NONBLOCK) != 0; return (static_cast<u32>(descriptor->flags) & FLAG_O_NONBLOCK) != 0;
} }
void BSD::BuildErrnoResponse(Kernel::HLERequestContext& ctx, Errno bsd_errno) const noexcept { void BSD::BuildErrnoResponse(Kernel::HLERequestContext& ctx, Errno bsd_errno) const noexcept {
@ -827,6 +831,14 @@ void BSD::BuildErrnoResponse(Kernel::HLERequestContext& ctx, Errno bsd_errno) co
rb.PushEnum(bsd_errno); rb.PushEnum(bsd_errno);
} }
std::optional<BSD::FileDescriptor>& BSD::GetFileDescriptor(s32 fd) {
return file_descriptors[static_cast<u32>(fd)];
}
const std::optional<BSD::FileDescriptor>& BSD::GetFileDescriptor(s32 fd) const {
return file_descriptors[static_cast<u32>(fd)];
}
BSD::BSD(Core::System& system, const char* name) BSD::BSD(Core::System& system, const char* name)
: ServiceFramework(name), worker_pool{system, this} { : ServiceFramework(name), worker_pool{system, this} {
// clang-format off // clang-format off

@ -167,6 +167,9 @@ private:
void BuildErrnoResponse(Kernel::HLERequestContext& ctx, Errno bsd_errno) const noexcept; void BuildErrnoResponse(Kernel::HLERequestContext& ctx, Errno bsd_errno) const noexcept;
std::optional<FileDescriptor>& GetFileDescriptor(s32 fd);
const std::optional<FileDescriptor>& GetFileDescriptor(s32 fd) const;
std::array<std::optional<FileDescriptor>, MAX_FD> file_descriptors; std::array<std::optional<FileDescriptor>, MAX_FD> file_descriptors;
BlockingWorkerPool<BSD, PollWork, AcceptWork, ConnectWork, RecvWork, RecvFromWork, SendWork, BlockingWorkerPool<BSD, PollWork, AcceptWork, ConnectWork, RecvWork, RecvFromWork, SendWork,

@ -64,6 +64,7 @@ Network::Type Translate(Type type) {
return Network::Type::DGRAM; return Network::Type::DGRAM;
default: default:
UNIMPLEMENTED_MSG("Unimplemented type={}", static_cast<int>(type)); UNIMPLEMENTED_MSG("Unimplemented type={}", static_cast<int>(type));
return {};
} }
} }

@ -117,7 +117,8 @@ static constexpr int GetMonthLength(bool is_leap_year, int month) {
constexpr std::array<int, 12> month_lengths{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; constexpr std::array<int, 12> month_lengths{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
constexpr std::array<int, 12> month_lengths_leap{31, 29, 31, 30, 31, 30, constexpr std::array<int, 12> month_lengths_leap{31, 29, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31}; 31, 31, 30, 31, 30, 31};
return is_leap_year ? month_lengths_leap[month] : month_lengths[month]; const auto month_index = static_cast<u32>(month);
return is_leap_year ? month_lengths_leap[month_index] : month_lengths[month_index];
} }
static constexpr bool IsDigit(char value) { static constexpr bool IsDigit(char value) {
@ -320,7 +321,7 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
int dest_len{}; int dest_len{};
int dest_offset{}; int dest_offset{};
const char* dest_name{name + offset}; const char* dest_name{name + offset};
if (rule.chars.size() < std::size_t(char_count)) { if (rule.chars.size() < static_cast<std::size_t>(char_count)) {
return {}; return {};
} }
@ -343,7 +344,7 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
return {}; return {};
} }
char_count += dest_len + 1; char_count += dest_len + 1;
if (rule.chars.size() < std::size_t(char_count)) { if (rule.chars.size() < static_cast<std::size_t>(char_count)) {
return {}; return {};
} }
if (name[offset] != '\0' && name[offset] != ',' && name[offset] != ';') { if (name[offset] != '\0' && name[offset] != ',' && name[offset] != ';') {
@ -386,7 +387,7 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
rule.default_type = 0; rule.default_type = 0;
s64 jan_first{}; s64 jan_first{};
int time_count{}; u32 time_count{};
int jan_offset{}; int jan_offset{};
int year_beginning{epoch_year}; int year_beginning{epoch_year};
do { do {
@ -414,7 +415,7 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
if (is_reversed || if (is_reversed ||
(start_time < end_time && (start_time < end_time &&
(end_time - start_time < (year_seconds + (std_offset - dest_offset))))) { (end_time - start_time < (year_seconds + (std_offset - dest_offset))))) {
if (rule.ats.size() - 2 < std::size_t(time_count)) { if (rule.ats.size() - 2 < time_count) {
break; break;
} }
@ -438,7 +439,7 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
} }
jan_offset = 0; jan_offset = 0;
} }
rule.time_count = time_count; rule.time_count = static_cast<s32>(time_count);
if (time_count == 0) { if (time_count == 0) {
rule.type_count = 1; rule.type_count = 1;
} else if (years_per_repeat < year - year_beginning) { } else if (years_per_repeat < year - year_beginning) {
@ -451,26 +452,30 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
} }
s64 their_std_offset{}; s64 their_std_offset{};
for (int index{}; index < rule.time_count; ++index) { for (u32 index = 0; index < static_cast<u32>(rule.time_count); ++index) {
const s8 type{rule.types[index]}; const s8 type{rule.types[index]};
if (rule.ttis[type].is_standard_time_daylight) { const auto& tti = rule.ttis[static_cast<u8>(type)];
their_std_offset = -rule.ttis[type].gmt_offset;
if (tti.is_standard_time_daylight) {
their_std_offset = -tti.gmt_offset;
} }
} }
s64 their_offset{their_std_offset}; s64 their_offset{their_std_offset};
for (int index{}; index < rule.time_count; ++index) { for (u32 index = 0; index < static_cast<u32>(rule.time_count); ++index) {
const s8 type{rule.types[index]}; const s8 type{rule.types[index]};
rule.types[index] = rule.ttis[type].is_dst ? 1 : 0; const auto& tti = rule.ttis[static_cast<u8>(type)];
if (!rule.ttis[type].is_gmt) {
if (!rule.ttis[type].is_standard_time_daylight) { rule.types[index] = tti.is_dst ? 1 : 0;
if (!tti.is_gmt) {
if (!tti.is_standard_time_daylight) {
rule.ats[index] += dest_offset - their_std_offset; rule.ats[index] += dest_offset - their_std_offset;
} else { } else {
rule.ats[index] += std_offset - their_std_offset; rule.ats[index] += std_offset - their_std_offset;
} }
} }
their_offset = -rule.ttis[type].gmt_offset; their_offset = -tti.gmt_offset;
if (!rule.ttis[type].is_dst) { if (!tti.is_dst) {
their_std_offset = their_offset; their_std_offset = their_offset;
} }
} }
@ -494,16 +499,16 @@ static bool ParsePosixName(const char* name, TimeZoneRule& rule) {
} }
rule.char_count = char_count; rule.char_count = char_count;
for (int index{}; index < std_len; ++index) { for (std::size_t index = 0; index < static_cast<std::size_t>(std_len); ++index) {
rule.chars[index] = std_name[index]; rule.chars[index] = std_name[index];
} }
rule.chars[std_len++] = '\0'; rule.chars[static_cast<size_t>(std_len++)] = '\0';
if (dest_len != 0) { if (dest_len != 0) {
for (int index{}; index < dest_len; ++index) { for (int index = 0; index < dest_len; ++index) {
rule.chars[std_len + index] = dest_name[index]; rule.chars[static_cast<std::size_t>(std_len + index)] = dest_name[index];
} }
rule.chars[std_len + dest_len] = '\0'; rule.chars[static_cast<std::size_t>(std_len + dest_len)] = '\0';
} }
return true; return true;
@ -531,33 +536,33 @@ static bool ParseTimeZoneBinary(TimeZoneRule& time_zone_rule, FileSys::VirtualFi
int time_count{}; int time_count{};
u64 read_offset = sizeof(TzifHeader); u64 read_offset = sizeof(TzifHeader);
for (int index{}; index < time_zone_rule.time_count; ++index) { for (size_t index = 0; index < static_cast<size_t>(time_zone_rule.time_count); ++index) {
s64_be at{}; s64_be at{};
vfs_file->ReadObject<s64_be>(&at, read_offset); vfs_file->ReadObject<s64_be>(&at, read_offset);
time_zone_rule.types[index] = 1; time_zone_rule.types[index] = 1;
if (time_count != 0 && at <= time_zone_rule.ats[time_count - 1]) { if (time_count != 0 && at <= time_zone_rule.ats[static_cast<size_t>(time_count) - 1]) {
if (at < time_zone_rule.ats[time_count - 1]) { if (at < time_zone_rule.ats[static_cast<size_t>(time_count) - 1]) {
return {}; return {};
} }
time_zone_rule.types[index - 1] = 0; time_zone_rule.types[index - 1] = 0;
time_count--; time_count--;
} }
time_zone_rule.ats[time_count++] = at; time_zone_rule.ats[static_cast<size_t>(time_count++)] = at;
read_offset += sizeof(s64_be); read_offset += sizeof(s64_be);
} }
time_count = 0; time_count = 0;
for (int index{}; index < time_zone_rule.time_count; ++index) { for (size_t index = 0; index < static_cast<size_t>(time_zone_rule.time_count); ++index) {
const u8 type{*vfs_file->ReadByte(read_offset)}; const auto type{static_cast<s8>(*vfs_file->ReadByte(read_offset))};
read_offset += sizeof(u8); read_offset += sizeof(s8);
if (time_zone_rule.time_count <= type) { if (time_zone_rule.time_count <= type) {
return {}; return {};
} }
if (time_zone_rule.types[index] != 0) { if (time_zone_rule.types[index] != 0) {
time_zone_rule.types[time_count++] = type; time_zone_rule.types[static_cast<size_t>(time_count++)] = type;
} }
} }
time_zone_rule.time_count = time_count; time_zone_rule.time_count = time_count;
for (int index{}; index < time_zone_rule.type_count; ++index) { for (size_t index = 0; index < static_cast<size_t>(time_zone_rule.type_count); ++index) {
TimeTypeInfo& ttis{time_zone_rule.ttis[index]}; TimeTypeInfo& ttis{time_zone_rule.ttis[index]};
u32_be gmt_offset{}; u32_be gmt_offset{};
vfs_file->ReadObject<u32_be>(&gmt_offset, read_offset); vfs_file->ReadObject<u32_be>(&gmt_offset, read_offset);
@ -579,10 +584,11 @@ static bool ParseTimeZoneBinary(TimeZoneRule& time_zone_rule, FileSys::VirtualFi
ttis.abbreviation_list_index = abbreviation_list_index; ttis.abbreviation_list_index = abbreviation_list_index;
} }
vfs_file->ReadArray(time_zone_rule.chars.data(), time_zone_rule.char_count, read_offset); vfs_file->ReadArray(time_zone_rule.chars.data(), static_cast<u32>(time_zone_rule.char_count),
time_zone_rule.chars[time_zone_rule.char_count] = '\0'; read_offset);
read_offset += time_zone_rule.char_count; time_zone_rule.chars[static_cast<u32>(time_zone_rule.char_count)] = '\0';
for (int index{}; index < time_zone_rule.type_count; ++index) { read_offset += static_cast<u64>(time_zone_rule.char_count);
for (size_t index = 0; index < static_cast<size_t>(time_zone_rule.type_count); ++index) {
if (header.ttis_std_count == 0) { if (header.ttis_std_count == 0) {
time_zone_rule.ttis[index].is_standard_time_daylight = false; time_zone_rule.ttis[index].is_standard_time_daylight = false;
} else { } else {
@ -595,7 +601,7 @@ static bool ParseTimeZoneBinary(TimeZoneRule& time_zone_rule, FileSys::VirtualFi
} }
} }
for (int index{}; index < time_zone_rule.type_count; ++index) { for (size_t index = 0; index < static_cast<size_t>(time_zone_rule.type_count); ++index) {
if (header.ttis_std_count == 0) { if (header.ttis_std_count == 0) {
time_zone_rule.ttis[index].is_gmt = false; time_zone_rule.ttis[index].is_gmt = false;
} else { } else {
@ -619,13 +625,14 @@ static bool ParseTimeZoneBinary(TimeZoneRule& time_zone_rule, FileSys::VirtualFi
} }
std::array<char, time_zone_name_max + 1> temp_name{}; std::array<char, time_zone_name_max + 1> temp_name{};
vfs_file->ReadArray(temp_name.data(), bytes_read, read_offset); vfs_file->ReadArray(temp_name.data(), static_cast<size_t>(bytes_read), read_offset);
if (bytes_read > 2 && temp_name[0] == '\n' && temp_name[bytes_read - 1] == '\n' && if (bytes_read > 2 && temp_name[0] == '\n' &&
std::size_t(time_zone_rule.type_count) + 2 <= time_zone_rule.ttis.size()) { temp_name[static_cast<u64>(bytes_read - 1)] == '\n' &&
temp_name[bytes_read - 1] = '\0'; static_cast<std::size_t>(time_zone_rule.type_count) + 2 <= time_zone_rule.ttis.size()) {
temp_name[static_cast<u64>(bytes_read - 1)] = '\0';
std::array<char, time_zone_name_max> name{}; std::array<char, time_zone_name_max> name{};
std::memcpy(name.data(), temp_name.data() + 1, std::size_t(bytes_read - 1)); std::memcpy(name.data(), temp_name.data() + 1, static_cast<std::size_t>(bytes_read - 1));
TimeZoneRule temp_rule; TimeZoneRule temp_rule;
if (ParsePosixName(name.data(), temp_rule)) { if (ParsePosixName(name.data(), temp_rule)) {
@ -642,24 +649,24 @@ static bool ParseTimeZoneBinary(TimeZoneRule& time_zone_rule, FileSys::VirtualFi
s32 default_type{}; s32 default_type{};
for (default_type = 0; default_type < time_zone_rule.time_count; default_type++) { for (default_type = 0; default_type < time_zone_rule.time_count; default_type++) {
if (time_zone_rule.types[default_type] == 0) { if (time_zone_rule.types[static_cast<u32>(default_type)] == 0) {
break; break;
} }
} }
default_type = default_type < time_zone_rule.time_count ? -1 : 0; default_type = default_type < time_zone_rule.time_count ? -1 : 0;
if (default_type < 0 && time_zone_rule.time_count > 0 && if (default_type < 0 && time_zone_rule.time_count > 0 &&
time_zone_rule.ttis[time_zone_rule.types[0]].is_dst) { time_zone_rule.ttis[static_cast<u8>(time_zone_rule.types[0])].is_dst) {
default_type = time_zone_rule.types[0]; default_type = time_zone_rule.types[0];
while (--default_type >= 0) { while (--default_type >= 0) {
if (!time_zone_rule.ttis[default_type].is_dst) { if (!time_zone_rule.ttis[static_cast<u32>(default_type)].is_dst) {
break; break;
} }
} }
} }
if (default_type < 0) { if (default_type < 0) {
default_type = 0; default_type = 0;
while (time_zone_rule.ttis[default_type].is_dst) { while (time_zone_rule.ttis[static_cast<u32>(default_type)].is_dst) {
if (++default_type >= time_zone_rule.type_count) { if (++default_type >= time_zone_rule.type_count) {
default_type = 0; default_type = 0;
break; break;
@ -749,12 +756,12 @@ static ResultCode ToCalendarTimeInternal(const TimeZoneRule& rules, s64 time,
CalendarTimeInternal& calendar_time, CalendarTimeInternal& calendar_time,
CalendarAdditionalInfo& calendar_additional_info) { CalendarAdditionalInfo& calendar_additional_info) {
if ((rules.go_ahead && time < rules.ats[0]) || if ((rules.go_ahead && time < rules.ats[0]) ||
(rules.go_back && time > rules.ats[rules.time_count - 1])) { (rules.go_back && time > rules.ats[static_cast<size_t>(rules.time_count - 1)])) {
s64 seconds{}; s64 seconds{};
if (time < rules.ats[0]) { if (time < rules.ats[0]) {
seconds = rules.ats[0] - time; seconds = rules.ats[0] - time;
} else { } else {
seconds = time - rules.ats[rules.time_count - 1]; seconds = time - rules.ats[static_cast<size_t>(rules.time_count - 1)];
} }
seconds--; seconds--;
@ -767,7 +774,8 @@ static ResultCode ToCalendarTimeInternal(const TimeZoneRule& rules, s64 time,
} else { } else {
new_time -= seconds; new_time -= seconds;
} }
if (new_time < rules.ats[0] && new_time > rules.ats[rules.time_count - 1]) { if (new_time < rules.ats[0] &&
new_time > rules.ats[static_cast<size_t>(rules.time_count - 1)]) {
return ERROR_TIME_NOT_FOUND; return ERROR_TIME_NOT_FOUND;
} }
if (const ResultCode result{ if (const ResultCode result{
@ -791,25 +799,27 @@ static ResultCode ToCalendarTimeInternal(const TimeZoneRule& rules, s64 time,
s32 low{1}; s32 low{1};
s32 high{rules.time_count}; s32 high{rules.time_count};
while (low < high) { while (low < high) {
s32 mid{(low + high) >> 1}; const s32 mid{(low + high) >> 1};
if (time < rules.ats[mid]) { if (time < rules.ats[static_cast<size_t>(mid)]) {
high = mid; high = mid;
} else { } else {
low = mid + 1; low = mid + 1;
} }
} }
tti_index = rules.types[low - 1]; tti_index = rules.types[static_cast<size_t>(low - 1)];
} }
if (const ResultCode result{CreateCalendarTime(time, rules.ttis[tti_index].gmt_offset, if (const ResultCode result{
CreateCalendarTime(time, rules.ttis[static_cast<u32>(tti_index)].gmt_offset,
calendar_time, calendar_additional_info)}; calendar_time, calendar_additional_info)};
result != RESULT_SUCCESS) { result != RESULT_SUCCESS) {
return result; return result;
} }
calendar_additional_info.is_dst = rules.ttis[tti_index].is_dst; const auto& tti = rules.ttis[static_cast<size_t>(tti_index)];
const char* time_zone{&rules.chars[rules.ttis[tti_index].abbreviation_list_index]}; calendar_additional_info.is_dst = tti.is_dst;
for (int index{}; time_zone[index] != '\0'; ++index) { const char* time_zone{&rules.chars[static_cast<size_t>(tti.abbreviation_list_index)]};
for (size_t index = 0; time_zone[index] != '\0'; ++index) {
calendar_additional_info.timezone_name[index] = time_zone[index]; calendar_additional_info.timezone_name[index] = time_zone[index];
} }
return RESULT_SUCCESS; return RESULT_SUCCESS;

@ -49,12 +49,12 @@ void ITimeZoneService::LoadTimeZoneRule(Kernel::HLERequestContext& ctx) {
const auto raw_location_name{rp.PopRaw<std::array<u8, 0x24>>()}; const auto raw_location_name{rp.PopRaw<std::array<u8, 0x24>>()};
std::string location_name; std::string location_name;
for (const auto& byte : raw_location_name) { for (const auto byte : raw_location_name) {
// Strip extra bytes // Strip extra bytes
if (byte == '\0') { if (byte == '\0') {
break; break;
} }
location_name.push_back(byte); location_name.push_back(static_cast<char>(byte));
} }
LOG_DEBUG(Service_Time, "called, location_name={}", location_name); LOG_DEBUG(Service_Time, "called, location_name={}", location_name);

Some files were not shown because too many files have changed in this diff Show More