kernel/process: Make data member variables private

Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
master
Lioncash 2018-09-29 18:47:00 +07:00
parent 16145e2f21
commit cf9d6c6f52
18 changed files with 120 additions and 75 deletions

@ -130,7 +130,7 @@ public:
std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit() const {
auto& current_process = Core::CurrentProcess();
auto** const page_table = current_process->vm_manager.page_table.pointers.data();
auto** const page_table = current_process->VMManager().page_table.pointers.data();
Dynarmic::A64::UserConfig config;
@ -139,7 +139,7 @@ std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit() const {
// Memory
config.page_table = reinterpret_cast<void**>(page_table);
config.page_table_address_space_bits = current_process->vm_manager.GetAddressSpaceWidth();
config.page_table_address_space_bits = current_process->VMManager().GetAddressSpaceWidth();
config.silently_mirror_page_table = false;
// Multi-process state

@ -34,7 +34,7 @@ ResultVal<VirtualFile> RomFSFactory::OpenCurrentProcess() {
if (!updatable)
return MakeResult<VirtualFile>(file);
const PatchManager patch_manager(Core::CurrentProcess()->program_id);
const PatchManager patch_manager(Core::CurrentProcess()->GetTitleID());
return MakeResult<VirtualFile>(patch_manager.PatchRomFS(file, ivfc_offset));
}

@ -81,7 +81,7 @@ std::string SaveDataFactory::GetFullPath(SaveDataSpaceId space, SaveDataType typ
// According to switchbrew, if a save is of type SaveData and the title id field is 0, it should
// be interpreted as the title id of the current process.
if (type == SaveDataType::SaveData && title_id == 0)
title_id = Core::CurrentProcess()->program_id;
title_id = Core::CurrentProcess()->GetTitleID();
std::string out;

@ -587,7 +587,7 @@ static void HandleQuery() {
strlen("Xfer:features:read:target.xml:")) == 0) {
SendReply(target_xml);
} else if (strncmp(query, "Offsets", strlen("Offsets")) == 0) {
const VAddr base_address = Core::CurrentProcess()->vm_manager.GetCodeRegionBaseAddress();
const VAddr base_address = Core::CurrentProcess()->VMManager().GetCodeRegionBaseAddress();
std::string buffer = fmt::format("TextSeg={:0x}", base_address);
SendReply(buffer.c_str());
} else if (strncmp(query, "fThreadInfo", strlen("fThreadInfo")) == 0) {
@ -909,7 +909,7 @@ static void ReadMemory() {
SendReply("E01");
}
const auto& vm_manager = Core::CurrentProcess()->vm_manager;
const auto& vm_manager = Core::CurrentProcess()->VMManager();
if (addr < vm_manager.GetCodeRegionBaseAddress() ||
addr >= vm_manager.GetMapRegionEndAddress()) {
return SendReply("E00");

@ -135,6 +135,16 @@ public:
return HANDLE_TYPE;
}
/// Gets a reference to the process' memory manager.
Kernel::VMManager& VMManager() {
return vm_manager;
}
/// Gets a const reference to the process' memory manager.
const Kernel::VMManager& VMManager() const {
return vm_manager;
}
/// Gets the current status of the process
ProcessStatus GetStatus() const {
return status;
@ -145,6 +155,40 @@ public:
return process_id;
}
/// Gets the title ID corresponding to this process.
u64 GetTitleID() const {
return program_id;
}
/// Gets the resource limit descriptor for this process
ResourceLimit& GetResourceLimit() {
return *resource_limit;
}
/// Gets the resource limit descriptor for this process
const ResourceLimit& GetResourceLimit() const {
return *resource_limit;
}
/// Gets the default CPU ID for this process
u8 GetDefaultProcessorID() const {
return ideal_processor;
}
/// Gets the bitmask of allowed CPUs that this process' threads can run on.
u32 GetAllowedProcessorMask() const {
return allowed_processor_mask;
}
/// Gets the bitmask of allowed thread priorities.
u32 GetAllowedThreadPriorityMask() const {
return allowed_thread_priority_mask;
}
u32 IsVirtualMemoryEnabled() const {
return is_virtual_address_memory_enabled;
}
/**
* Loads process-specifics configuration info with metadata provided
* by an executable.
@ -153,30 +197,6 @@ public:
*/
void LoadFromMetadata(const FileSys::ProgramMetadata& metadata);
/// Title ID corresponding to the process
u64 program_id;
/// Resource limit descriptor for this process
SharedPtr<ResourceLimit> resource_limit;
/// The process may only call SVCs which have the corresponding bit set.
std::bitset<0x80> svc_access_mask;
/// Maximum size of the handle table for the process.
unsigned int handle_table_size = 0x200;
/// Special memory ranges mapped into this processes address space. This is used to give
/// processes access to specific I/O regions and device memory.
boost::container::static_vector<AddressMapping, 8> address_mappings;
ProcessFlags flags;
/// Kernel compatibility version for this process
u16 kernel_version = 0;
/// The default CPU for this process, threads are scheduled on this cpu by default.
u8 ideal_processor = 0;
/// Bitmask of allowed CPUs that this process' threads can run on. TODO(Subv): Actually parse
/// this value from the process header.
u32 allowed_processor_mask = THREADPROCESSORID_DEFAULT_MASK;
u32 allowed_thread_priority_mask = 0xFFFFFFFF;
u32 is_virtual_address_memory_enabled = 0;
/**
* Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
* to this process.
@ -212,18 +232,43 @@ public:
ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size);
VMManager vm_manager;
private:
explicit Process(KernelCore& kernel);
~Process() override;
/// Memory manager for this process.
Kernel::VMManager vm_manager;
/// Current status of the process
ProcessStatus status;
/// The ID of this process
u32 process_id = 0;
/// Title ID corresponding to the process
u64 program_id;
/// Resource limit descriptor for this process
SharedPtr<ResourceLimit> resource_limit;
/// The process may only call SVCs which have the corresponding bit set.
std::bitset<0x80> svc_access_mask;
/// Maximum size of the handle table for the process.
u32 handle_table_size = 0x200;
/// Special memory ranges mapped into this processes address space. This is used to give
/// processes access to specific I/O regions and device memory.
boost::container::static_vector<AddressMapping, 8> address_mappings;
ProcessFlags flags;
/// Kernel compatibility version for this process
u16 kernel_version = 0;
/// The default CPU for this process, threads are scheduled on this cpu by default.
u8 ideal_processor = 0;
/// Bitmask of allowed CPUs that this process' threads can run on. TODO(Subv): Actually parse
/// this value from the process header.
u32 allowed_processor_mask = THREADPROCESSORID_DEFAULT_MASK;
u32 allowed_thread_priority_mask = 0xFFFFFFFF;
u32 is_virtual_address_memory_enabled = 0;
// Memory used to back the allocations in the regular heap. A single vector is used to cover
// the entire virtual address space extents that bound the allocations, including any holes.
// This makes deallocation and reallocation of holes fast and keeps process memory contiguous

@ -88,7 +88,7 @@ void Scheduler::SwitchContext(Thread* new_thread) {
if (previous_process != current_thread->owner_process) {
Core::CurrentProcess() = current_thread->owner_process;
SetCurrentPageTable(&Core::CurrentProcess()->vm_manager.page_table);
SetCurrentPageTable(&Core::CurrentProcess()->VMManager().page_table);
}
cpu_core.LoadContext(new_thread->context);

@ -35,11 +35,11 @@ SharedPtr<SharedMemory> SharedMemory::Create(KernelCore& kernel, SharedPtr<Proce
// Refresh the address mappings for the current process.
if (Core::CurrentProcess() != nullptr) {
Core::CurrentProcess()->vm_manager.RefreshMemoryBlockMappings(
Core::CurrentProcess()->VMManager().RefreshMemoryBlockMappings(
shared_memory->backing_block.get());
}
} else {
auto& vm_manager = shared_memory->owner_process->vm_manager;
auto& vm_manager = shared_memory->owner_process->VMManager();
// The memory is already available and mapped in the owner process.
auto vma = vm_manager.FindVMA(address);
@ -73,7 +73,7 @@ SharedPtr<SharedMemory> SharedMemory::CreateForApplet(
shared_memory->backing_block = std::move(heap_block);
shared_memory->backing_block_offset = offset;
shared_memory->base_address =
kernel.CurrentProcess()->vm_manager.GetHeapRegionBaseAddress() + offset;
kernel.CurrentProcess()->VMManager().GetHeapRegionBaseAddress() + offset;
return shared_memory;
}
@ -107,7 +107,7 @@ ResultCode SharedMemory::Map(Process* target_process, VAddr address, MemoryPermi
VAddr target_address = address;
// Map the memory block into the target process
auto result = target_process->vm_manager.MapMemoryBlock(
auto result = target_process->VMManager().MapMemoryBlock(
target_address, backing_block, backing_block_offset, size, MemoryState::Shared);
if (result.Failed()) {
LOG_ERROR(
@ -117,14 +117,14 @@ ResultCode SharedMemory::Map(Process* target_process, VAddr address, MemoryPermi
return result.Code();
}
return target_process->vm_manager.ReprotectRange(target_address, size,
return target_process->VMManager().ReprotectRange(target_address, size,
ConvertPermissions(permissions));
}
ResultCode SharedMemory::Unmap(Process* target_process, VAddr address) {
// TODO(Subv): Verify what happens if the application tries to unmap an address that is not
// mapped to a SharedMemory.
return target_process->vm_manager.UnmapRange(address, size);
return target_process->VMManager().UnmapRange(address, size);
}
VMAPermission SharedMemory::ConvertPermissions(MemoryPermission permission) {

@ -51,7 +51,7 @@ static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
}
auto& process = *Core::CurrentProcess();
const VAddr heap_base = process.vm_manager.GetHeapRegionBaseAddress();
const VAddr heap_base = process.VMManager().GetHeapRegionBaseAddress();
CASCADE_RESULT(*heap_addr,
process.HeapAllocate(heap_base, heap_size, VMAPermission::ReadWrite));
return RESULT_SUCCESS;
@ -327,14 +327,14 @@ static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id)
info_sub_id, handle);
const auto& current_process = Core::CurrentProcess();
const auto& vm_manager = current_process->vm_manager;
const auto& vm_manager = current_process->VMManager();
switch (static_cast<GetInfoType>(info_id)) {
case GetInfoType::AllowedCpuIdBitmask:
*result = current_process->allowed_processor_mask;
*result = current_process->GetAllowedProcessorMask();
break;
case GetInfoType::AllowedThreadPrioBitmask:
*result = current_process->allowed_thread_priority_mask;
*result = current_process->GetAllowedThreadPriorityMask();
break;
case GetInfoType::MapRegionBaseAddr:
*result = vm_manager.GetMapRegionBaseAddress();
@ -386,10 +386,10 @@ static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id)
*result = vm_manager.GetNewMapRegionSize();
break;
case GetInfoType::IsVirtualAddressMemoryEnabled:
*result = current_process->is_virtual_address_memory_enabled;
*result = current_process->IsVirtualMemoryEnabled();
break;
case GetInfoType::TitleId:
*result = current_process->program_id;
*result = current_process->GetTitleID();
break;
case GetInfoType::PrivilegedProcessId:
LOG_WARNING(Kernel_SVC,
@ -444,8 +444,8 @@ static ResultCode SetThreadPriority(Handle handle, u32 priority) {
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
SharedPtr<ResourceLimit>& resource_limit = Core::CurrentProcess()->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceType::Priority) > priority) {
const ResourceLimit& resource_limit = Core::CurrentProcess()->GetResourceLimit();
if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_NOT_AUTHORIZED;
}
@ -519,9 +519,9 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_i
if (!process) {
return ERR_INVALID_HANDLE;
}
auto vma = process->vm_manager.FindVMA(addr);
auto vma = process->VMManager().FindVMA(addr);
memory_info->attributes = 0;
if (vma == Core::CurrentProcess()->vm_manager.vma_map.end()) {
if (vma == Core::CurrentProcess()->VMManager().vma_map.end()) {
memory_info->base_address = 0;
memory_info->permission = static_cast<u32>(VMAPermission::None);
memory_info->size = 0;
@ -568,14 +568,14 @@ static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, V
return ERR_INVALID_THREAD_PRIORITY;
}
SharedPtr<ResourceLimit>& resource_limit = Core::CurrentProcess()->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceType::Priority) > priority) {
const ResourceLimit& resource_limit = Core::CurrentProcess()->GetResourceLimit();
if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_NOT_AUTHORIZED;
}
if (processor_id == THREADPROCESSORID_DEFAULT) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = Core::CurrentProcess()->ideal_processor;
processor_id = Core::CurrentProcess()->GetDefaultProcessorID();
ASSERT(processor_id != THREADPROCESSORID_DEFAULT);
}
@ -902,10 +902,10 @@ static ResultCode SetThreadCoreMask(Handle thread_handle, u32 core, u64 mask) {
}
if (core == static_cast<u32>(THREADPROCESSORID_DEFAULT)) {
ASSERT(thread->owner_process->ideal_processor !=
ASSERT(thread->owner_process->GetDefaultProcessorID() !=
static_cast<u8>(THREADPROCESSORID_DEFAULT));
// Set the target CPU to the one specified in the process' exheader.
core = thread->owner_process->ideal_processor;
core = thread->owner_process->GetDefaultProcessorID();
mask = 1ull << core;
}

@ -259,10 +259,10 @@ void Thread::BoostPriority(u32 priority) {
SharedPtr<Thread> SetupMainThread(KernelCore& kernel, VAddr entry_point, u32 priority,
Process& owner_process) {
// Setup page table so we can write to memory
SetCurrentPageTable(&owner_process.vm_manager.page_table);
SetCurrentPageTable(&owner_process.VMManager().page_table);
// Initialize new "main" thread
const VAddr stack_top = owner_process.vm_manager.GetTLSIORegionEndAddress();
const VAddr stack_top = owner_process.VMManager().GetTLSIORegionEndAddress();
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0, THREADPROCESSORID_0,
stack_top, &owner_process);

@ -51,7 +51,7 @@ enum class FatalType : u32 {
};
static void GenerateErrorReport(ResultCode error_code, const FatalInfo& info) {
const auto title_id = Core::CurrentProcess()->program_id;
const auto title_id = Core::CurrentProcess()->GetTitleID();
std::string crash_report =
fmt::format("Yuzu {}-{} crash report\n"
"Title ID: {:016x}\n"

@ -317,7 +317,7 @@ void PL_U::GetSharedMemoryAddressOffset(Kernel::HLERequestContext& ctx) {
void PL_U::GetSharedMemoryNativeHandle(Kernel::HLERequestContext& ctx) {
// Map backing memory for the font data
Core::CurrentProcess()->vm_manager.MapMemoryBlock(SHARED_FONT_MEM_VADDR, impl->shared_font, 0,
Core::CurrentProcess()->VMManager().MapMemoryBlock(SHARED_FONT_MEM_VADDR, impl->shared_font, 0,
SHARED_FONT_MEM_SIZE,
Kernel::MemoryState::Shared);

@ -132,7 +132,7 @@ ResultStatus AppLoader_DeconstructedRomDirectory::Load(Kernel::Process& process)
process.LoadFromMetadata(metadata);
// Load NSO modules
const VAddr base_address = process.vm_manager.GetCodeRegionBaseAddress();
const VAddr base_address = process.VMManager().GetCodeRegionBaseAddress();
VAddr next_load_addr = base_address;
for (const auto& module : {"rtld", "main", "subsdk0", "subsdk1", "subsdk2", "subsdk3",
"subsdk4", "subsdk5", "subsdk6", "subsdk7", "sdk"}) {

@ -395,7 +395,7 @@ ResultStatus AppLoader_ELF::Load(Kernel::Process& process) {
if (buffer.size() != file->GetSize())
return ResultStatus::ErrorIncorrectELFFileSize;
const VAddr base_address = process.vm_manager.GetCodeRegionBaseAddress();
const VAddr base_address = process.VMManager().GetCodeRegionBaseAddress();
ElfReader elf_reader(&buffer[0]);
SharedPtr<CodeSet> codeset = elf_reader.LoadInto(base_address);
codeset->name = file->GetName();

@ -181,7 +181,7 @@ ResultStatus AppLoader_NRO::Load(Kernel::Process& process) {
}
// Load NRO
const VAddr base_address = process.vm_manager.GetCodeRegionBaseAddress();
const VAddr base_address = process.VMManager().GetCodeRegionBaseAddress();
if (!LoadNro(file, base_address)) {
return ResultStatus::ErrorLoadingNRO;

@ -159,7 +159,7 @@ ResultStatus AppLoader_NSO::Load(Kernel::Process& process) {
}
// Load module
const VAddr base_address = process.vm_manager.GetCodeRegionBaseAddress();
const VAddr base_address = process.VMManager().GetCodeRegionBaseAddress();
LoadModule(file, base_address);
LOG_DEBUG(Loader, "loaded module {} @ 0x{:X}", file->GetName(), base_address);

@ -119,7 +119,7 @@ void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPoin
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vm_manager = process.vm_manager;
auto& vm_manager = process.VMManager();
auto it = vm_manager.FindVMA(vaddr);
ASSERT(it != vm_manager.vma_map.end());
@ -214,7 +214,7 @@ void Write(const VAddr vaddr, const T data) {
}
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table;
const auto& page_table = process.VMManager().page_table;
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
if (page_pointer)
@ -363,7 +363,7 @@ void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
}
};
const auto& vm_manager = Core::CurrentProcess()->vm_manager;
const auto& vm_manager = Core::CurrentProcess()->VMManager();
CheckRegion(vm_manager.GetCodeRegionBaseAddress(), vm_manager.GetCodeRegionEndAddress());
CheckRegion(vm_manager.GetHeapRegionBaseAddress(), vm_manager.GetHeapRegionEndAddress());
@ -387,7 +387,7 @@ u64 Read64(const VAddr addr) {
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
const auto& page_table = process.VMManager().page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
@ -452,7 +452,7 @@ void Write64(const VAddr addr, const u64 data) {
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
const auto& page_table = process.VMManager().page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
@ -498,7 +498,7 @@ void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t
}
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
const auto& page_table = process.VMManager().page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
@ -540,7 +540,7 @@ void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std:
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
const auto& page_table = process.VMManager().page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;

@ -16,7 +16,7 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
: mutable_memory(mutable_memory_), test_memory(std::make_shared<TestMemory>(this)) {
Core::CurrentProcess() = Kernel::Process::Create(kernel, "");
page_table = &Core::CurrentProcess()->vm_manager.page_table;
page_table = &Core::CurrentProcess()->VMManager().page_table;
std::fill(page_table->pointers.begin(), page_table->pointers.end(), nullptr);
page_table->special_regions.clear();

@ -622,9 +622,9 @@ void GMainWindow::BootGame(const QString& filename) {
std::string title_name;
const auto res = Core::System::GetInstance().GetGameName(title_name);
if (res != Loader::ResultStatus::Success) {
const u64 program_id = Core::System::GetInstance().CurrentProcess()->program_id;
const u64 title_id = Core::System::GetInstance().CurrentProcess()->GetTitleID();
const auto [nacp, icon_file] = FileSys::PatchManager(program_id).GetControlMetadata();
const auto [nacp, icon_file] = FileSys::PatchManager(title_id).GetControlMetadata();
if (nacp != nullptr)
title_name = nacp->GetApplicationName();