commit
d852c4ecc7
@ -1 +1 @@
|
|||||||
Subproject commit 676254f71e0a7ef0aca8acce078d3c3dc80ccf70
|
Subproject commit 445cba0b2ff8d348368e32698e4760a670260bfc
|
@ -0,0 +1,87 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project
|
||||||
|
// Licensed under GPLv2
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common_types.h"
|
||||||
|
#include "memory_util.h"
|
||||||
|
|
||||||
|
// Everything that needs to generate code should inherit from this.
|
||||||
|
// You get memory management for free, plus, you can use all emitter functions without
|
||||||
|
// having to prefix them with gen-> or something similar.
|
||||||
|
// Example implementation:
|
||||||
|
// class JIT : public CodeBlock<ARMXEmitter> {}
|
||||||
|
template<class T> class CodeBlock : public T, NonCopyable
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
// A privately used function to set the executable RAM space to something invalid.
|
||||||
|
// For debugging usefulness it should be used to set the RAM to a host specific breakpoint instruction
|
||||||
|
virtual void PoisonMemory() = 0;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
u8 *region;
|
||||||
|
size_t region_size;
|
||||||
|
|
||||||
|
public:
|
||||||
|
CodeBlock() : region(nullptr), region_size(0) {}
|
||||||
|
virtual ~CodeBlock() { if (region) FreeCodeSpace(); }
|
||||||
|
|
||||||
|
// Call this before you generate any code.
|
||||||
|
void AllocCodeSpace(int size)
|
||||||
|
{
|
||||||
|
region_size = size;
|
||||||
|
region = (u8*)AllocateExecutableMemory(region_size);
|
||||||
|
T::SetCodePtr(region);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Always clear code space with breakpoints, so that if someone accidentally executes
|
||||||
|
// uninitialized, it just breaks into the debugger.
|
||||||
|
void ClearCodeSpace()
|
||||||
|
{
|
||||||
|
PoisonMemory();
|
||||||
|
ResetCodePtr();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
|
||||||
|
void FreeCodeSpace()
|
||||||
|
{
|
||||||
|
#ifdef __SYMBIAN32__
|
||||||
|
ResetExecutableMemory(region);
|
||||||
|
#else
|
||||||
|
FreeMemoryPages(region, region_size);
|
||||||
|
#endif
|
||||||
|
region = nullptr;
|
||||||
|
region_size = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool IsInSpace(const u8 *ptr)
|
||||||
|
{
|
||||||
|
return (ptr >= region) && (ptr < (region + region_size));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cannot currently be undone. Will write protect the entire code region.
|
||||||
|
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
|
||||||
|
void WriteProtect()
|
||||||
|
{
|
||||||
|
WriteProtectMemory(region, region_size, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ResetCodePtr()
|
||||||
|
{
|
||||||
|
T::SetCodePtr(region);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetSpaceLeft() const
|
||||||
|
{
|
||||||
|
return region_size - (T::GetCodePtr() - region);
|
||||||
|
}
|
||||||
|
|
||||||
|
u8 *GetBasePtr() {
|
||||||
|
return region;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetOffset(const u8 *ptr) const {
|
||||||
|
return ptr - region;
|
||||||
|
}
|
||||||
|
};
|
@ -1,78 +0,0 @@
|
|||||||
// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
|
|
||||||
// Licensed under GPLv2 or any later version
|
|
||||||
// Refer to the license.txt file included.
|
|
||||||
|
|
||||||
|
|
||||||
// Detect the cpu, so we'll know which optimizations to use
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
enum CPUVendor
|
|
||||||
{
|
|
||||||
VENDOR_INTEL = 0,
|
|
||||||
VENDOR_AMD = 1,
|
|
||||||
VENDOR_ARM = 2,
|
|
||||||
VENDOR_OTHER = 3,
|
|
||||||
};
|
|
||||||
|
|
||||||
struct CPUInfo
|
|
||||||
{
|
|
||||||
CPUVendor vendor;
|
|
||||||
|
|
||||||
char cpu_string[0x21];
|
|
||||||
char brand_string[0x41];
|
|
||||||
bool OS64bit;
|
|
||||||
bool CPU64bit;
|
|
||||||
bool Mode64bit;
|
|
||||||
|
|
||||||
bool HTT;
|
|
||||||
int num_cores;
|
|
||||||
int logical_cpu_count;
|
|
||||||
|
|
||||||
bool bSSE;
|
|
||||||
bool bSSE2;
|
|
||||||
bool bSSE3;
|
|
||||||
bool bSSSE3;
|
|
||||||
bool bPOPCNT;
|
|
||||||
bool bSSE4_1;
|
|
||||||
bool bSSE4_2;
|
|
||||||
bool bLZCNT;
|
|
||||||
bool bSSE4A;
|
|
||||||
bool bAVX;
|
|
||||||
bool bAES;
|
|
||||||
bool bLAHFSAHF64;
|
|
||||||
bool bLongMode;
|
|
||||||
|
|
||||||
// ARM specific CPUInfo
|
|
||||||
bool bSwp;
|
|
||||||
bool bHalf;
|
|
||||||
bool bThumb;
|
|
||||||
bool bFastMult;
|
|
||||||
bool bVFP;
|
|
||||||
bool bEDSP;
|
|
||||||
bool bThumbEE;
|
|
||||||
bool bNEON;
|
|
||||||
bool bVFPv3;
|
|
||||||
bool bTLS;
|
|
||||||
bool bVFPv4;
|
|
||||||
bool bIDIVa;
|
|
||||||
bool bIDIVt;
|
|
||||||
bool bArmV7; // enable MOVT, MOVW etc
|
|
||||||
|
|
||||||
// ARMv8 specific
|
|
||||||
bool bFP;
|
|
||||||
bool bASIMD;
|
|
||||||
|
|
||||||
// Call Detect()
|
|
||||||
explicit CPUInfo();
|
|
||||||
|
|
||||||
// Turn the cpu info into a string we can show
|
|
||||||
std::string Summarize();
|
|
||||||
|
|
||||||
private:
|
|
||||||
// Detects the various cpu features
|
|
||||||
void Detect();
|
|
||||||
};
|
|
||||||
|
|
||||||
extern CPUInfo cpu_info;
|
|
@ -0,0 +1,126 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#include <stdlib.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "common_funcs.h"
|
||||||
|
#include "common_types.h"
|
||||||
|
#include "hash.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
|
||||||
|
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
||||||
|
// domain. The author hereby disclaims copyright to this source code.
|
||||||
|
|
||||||
|
// Block read - if your platform needs to do endian-swapping or can only handle aligned reads, do
|
||||||
|
// the conversion here
|
||||||
|
|
||||||
|
static FORCE_INLINE u32 getblock32(const u32* p, int i) {
|
||||||
|
return p[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
static FORCE_INLINE u64 getblock64(const u64* p, int i) {
|
||||||
|
return p[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finalization mix - force all bits of a hash block to avalanche
|
||||||
|
|
||||||
|
static FORCE_INLINE u32 fmix32(u32 h) {
|
||||||
|
h ^= h >> 16;
|
||||||
|
h *= 0x85ebca6b;
|
||||||
|
h ^= h >> 13;
|
||||||
|
h *= 0xc2b2ae35;
|
||||||
|
h ^= h >> 16;
|
||||||
|
|
||||||
|
return h;
|
||||||
|
}
|
||||||
|
|
||||||
|
static FORCE_INLINE u64 fmix64(u64 k) {
|
||||||
|
k ^= k >> 33;
|
||||||
|
k *= 0xff51afd7ed558ccdllu;
|
||||||
|
k ^= k >> 33;
|
||||||
|
k *= 0xc4ceb9fe1a85ec53llu;
|
||||||
|
k ^= k >> 33;
|
||||||
|
|
||||||
|
return k;
|
||||||
|
}
|
||||||
|
|
||||||
|
// This is the 128-bit variant of the MurmurHash3 hash function that is targetted for 64-bit
|
||||||
|
// platforms (MurmurHash3_x64_128). It was taken from:
|
||||||
|
// https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
|
||||||
|
void MurmurHash3_128(const void* key, int len, u32 seed, void* out) {
|
||||||
|
const u8 * data = (const u8*)key;
|
||||||
|
const int nblocks = len / 16;
|
||||||
|
|
||||||
|
u64 h1 = seed;
|
||||||
|
u64 h2 = seed;
|
||||||
|
|
||||||
|
const u64 c1 = 0x87c37b91114253d5llu;
|
||||||
|
const u64 c2 = 0x4cf5ad432745937fllu;
|
||||||
|
|
||||||
|
// Body
|
||||||
|
|
||||||
|
const u64 * blocks = (const u64 *)(data);
|
||||||
|
|
||||||
|
for (int i = 0; i < nblocks; i++) {
|
||||||
|
u64 k1 = getblock64(blocks,i*2+0);
|
||||||
|
u64 k2 = getblock64(blocks,i*2+1);
|
||||||
|
|
||||||
|
k1 *= c1; k1 = _rotl64(k1,31); k1 *= c2; h1 ^= k1;
|
||||||
|
|
||||||
|
h1 = _rotl64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
|
||||||
|
|
||||||
|
k2 *= c2; k2 = _rotl64(k2,33); k2 *= c1; h2 ^= k2;
|
||||||
|
|
||||||
|
h2 = _rotl64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tail
|
||||||
|
|
||||||
|
const u8 * tail = (const u8*)(data + nblocks*16);
|
||||||
|
|
||||||
|
u64 k1 = 0;
|
||||||
|
u64 k2 = 0;
|
||||||
|
|
||||||
|
switch (len & 15) {
|
||||||
|
case 15: k2 ^= ((u64)tail[14]) << 48;
|
||||||
|
case 14: k2 ^= ((u64)tail[13]) << 40;
|
||||||
|
case 13: k2 ^= ((u64)tail[12]) << 32;
|
||||||
|
case 12: k2 ^= ((u64)tail[11]) << 24;
|
||||||
|
case 11: k2 ^= ((u64)tail[10]) << 16;
|
||||||
|
case 10: k2 ^= ((u64)tail[ 9]) << 8;
|
||||||
|
case 9: k2 ^= ((u64)tail[ 8]) << 0;
|
||||||
|
k2 *= c2; k2 = _rotl64(k2,33); k2 *= c1; h2 ^= k2;
|
||||||
|
|
||||||
|
case 8: k1 ^= ((u64)tail[ 7]) << 56;
|
||||||
|
case 7: k1 ^= ((u64)tail[ 6]) << 48;
|
||||||
|
case 6: k1 ^= ((u64)tail[ 5]) << 40;
|
||||||
|
case 5: k1 ^= ((u64)tail[ 4]) << 32;
|
||||||
|
case 4: k1 ^= ((u64)tail[ 3]) << 24;
|
||||||
|
case 3: k1 ^= ((u64)tail[ 2]) << 16;
|
||||||
|
case 2: k1 ^= ((u64)tail[ 1]) << 8;
|
||||||
|
case 1: k1 ^= ((u64)tail[ 0]) << 0;
|
||||||
|
k1 *= c1; k1 = _rotl64(k1,31); k1 *= c2; h1 ^= k1;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Finalization
|
||||||
|
|
||||||
|
h1 ^= len; h2 ^= len;
|
||||||
|
|
||||||
|
h1 += h2;
|
||||||
|
h2 += h1;
|
||||||
|
|
||||||
|
h1 = fmix64(h1);
|
||||||
|
h2 = fmix64(h2);
|
||||||
|
|
||||||
|
h1 += h2;
|
||||||
|
h2 += h1;
|
||||||
|
|
||||||
|
((u64*)out)[0] = h1;
|
||||||
|
((u64*)out)[1] = h2;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Common
|
@ -0,0 +1,25 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
|
||||||
|
void MurmurHash3_128(const void* key, int len, u32 seed, void* out);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Computes a 64-bit hash over the specified block of data
|
||||||
|
* @param data Block of data to compute hash over
|
||||||
|
* @param len Length of data (in bytes) to compute hash over
|
||||||
|
* @returns 64-bit hash value that was computed over the data block
|
||||||
|
*/
|
||||||
|
static inline u64 ComputeHash64(const void* data, int len) {
|
||||||
|
u64 res[2];
|
||||||
|
MurmurHash3_128(data, len, 0, res);
|
||||||
|
return res[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Common
|
@ -0,0 +1,680 @@
|
|||||||
|
// Copyright (C) 2003 Dolphin Project.
|
||||||
|
|
||||||
|
// This program is free software: you can redistribute it and/or modify
|
||||||
|
// it under the terms of the GNU General Public License as published by
|
||||||
|
// the Free Software Foundation, version 2.0 or later versions.
|
||||||
|
|
||||||
|
// This program is distributed in the hope that it will be useful,
|
||||||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
// GNU General Public License 2.0 for more details.
|
||||||
|
|
||||||
|
// A copy of the GPL 2.0 should have been included with the program.
|
||||||
|
// If not, see http://www.gnu.org/licenses/
|
||||||
|
|
||||||
|
// Official SVN repository and contact information can be found at
|
||||||
|
// http://code.google.com/p/dolphin-emu/
|
||||||
|
|
||||||
|
#include "abi.h"
|
||||||
|
#include "emitter.h"
|
||||||
|
|
||||||
|
using namespace Gen;
|
||||||
|
|
||||||
|
// Shared code between Win64 and Unix64
|
||||||
|
|
||||||
|
// Sets up a __cdecl function.
|
||||||
|
void XEmitter::ABI_EmitPrologue(int maxCallParams)
|
||||||
|
{
|
||||||
|
#ifdef _M_IX86
|
||||||
|
// Don't really need to do anything
|
||||||
|
#elif defined(ARCHITECTURE_x86_64)
|
||||||
|
#if _WIN32
|
||||||
|
int stacksize = ((maxCallParams + 1) & ~1) * 8 + 8;
|
||||||
|
// Set up a stack frame so that we can call functions
|
||||||
|
// TODO: use maxCallParams
|
||||||
|
SUB(64, R(RSP), Imm8(stacksize));
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
#error Arch not supported
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_EmitEpilogue(int maxCallParams)
|
||||||
|
{
|
||||||
|
#ifdef _M_IX86
|
||||||
|
RET();
|
||||||
|
#elif defined(ARCHITECTURE_x86_64)
|
||||||
|
#ifdef _WIN32
|
||||||
|
int stacksize = ((maxCallParams+1)&~1)*8 + 8;
|
||||||
|
ADD(64, R(RSP), Imm8(stacksize));
|
||||||
|
#endif
|
||||||
|
RET();
|
||||||
|
#else
|
||||||
|
#error Arch not supported
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef _M_IX86 // All32
|
||||||
|
|
||||||
|
// Shared code between Win32 and Unix32
|
||||||
|
void XEmitter::ABI_CallFunction(const void *func) {
|
||||||
|
ABI_AlignStack(0);
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
|
||||||
|
ABI_AlignStack(1 * 2);
|
||||||
|
PUSH(16, Imm16(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
|
||||||
|
ABI_AlignStack(1 * 2 + 1 * 4);
|
||||||
|
PUSH(16, Imm16(param2));
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 2 + 1 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
|
||||||
|
ABI_AlignStack(1 * 4);
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
|
||||||
|
ABI_AlignStack(2 * 4);
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(2 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
|
||||||
|
ABI_AlignStack(3 * 4);
|
||||||
|
PUSH(32, Imm32(param3));
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(3 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
|
||||||
|
ABI_AlignStack(3 * 4);
|
||||||
|
PUSH(32, ImmPtr(param3));
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(3 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4) {
|
||||||
|
ABI_AlignStack(4 * 4);
|
||||||
|
PUSH(32, ImmPtr(param4));
|
||||||
|
PUSH(32, Imm32(param3));
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, Imm32(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(4 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
|
||||||
|
ABI_AlignStack(1 * 4);
|
||||||
|
PUSH(32, ImmPtr(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
|
||||||
|
ABI_AlignStack(2 * 4);
|
||||||
|
PUSH(32, arg2);
|
||||||
|
PUSH(32, ImmPtr(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(2 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
|
||||||
|
ABI_AlignStack(3 * 4);
|
||||||
|
PUSH(32, arg3);
|
||||||
|
PUSH(32, arg2);
|
||||||
|
PUSH(32, ImmPtr(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(3 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
|
||||||
|
ABI_AlignStack(3 * 4);
|
||||||
|
PUSH(32, Imm32(param3));
|
||||||
|
PUSH(32, ImmPtr(param2));
|
||||||
|
PUSH(32, ImmPtr(param1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(3 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass a register as a parameter.
|
||||||
|
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
|
||||||
|
ABI_AlignStack(1 * 4);
|
||||||
|
PUSH(32, R(reg1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass two registers as parameters.
|
||||||
|
void XEmitter::ABI_CallFunctionRR(const void *func, Gen::X64Reg reg1, Gen::X64Reg reg2)
|
||||||
|
{
|
||||||
|
ABI_AlignStack(2 * 4);
|
||||||
|
PUSH(32, R(reg2));
|
||||||
|
PUSH(32, R(reg1));
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(2 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
|
||||||
|
{
|
||||||
|
ABI_AlignStack(2 * 4);
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, arg1);
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(2 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
|
||||||
|
{
|
||||||
|
ABI_AlignStack(3 * 4);
|
||||||
|
PUSH(32, Imm32(param3));
|
||||||
|
PUSH(32, Imm32(param2));
|
||||||
|
PUSH(32, arg1);
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(3 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
|
||||||
|
{
|
||||||
|
ABI_AlignStack(1 * 4);
|
||||||
|
PUSH(32, arg1);
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(1 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
|
||||||
|
{
|
||||||
|
ABI_AlignStack(2 * 4);
|
||||||
|
PUSH(32, arg2);
|
||||||
|
PUSH(32, arg1);
|
||||||
|
CALL(func);
|
||||||
|
ABI_RestoreStack(2 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
// Note: 4 * 4 = 16 bytes, so alignment is preserved.
|
||||||
|
PUSH(EBP);
|
||||||
|
PUSH(EBX);
|
||||||
|
PUSH(ESI);
|
||||||
|
PUSH(EDI);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
POP(EDI);
|
||||||
|
POP(ESI);
|
||||||
|
POP(EBX);
|
||||||
|
POP(EBP);
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
|
||||||
|
frameSize += 4; // reserve space for return address
|
||||||
|
unsigned int alignedSize =
|
||||||
|
#ifdef __GNUC__
|
||||||
|
(frameSize + 15) & -16;
|
||||||
|
#else
|
||||||
|
(frameSize + 3) & -4;
|
||||||
|
#endif
|
||||||
|
return alignedSize;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void XEmitter::ABI_AlignStack(unsigned int frameSize) {
|
||||||
|
// Mac OS X requires the stack to be 16-byte aligned before every call.
|
||||||
|
// Linux requires the stack to be 16-byte aligned before calls that put SSE
|
||||||
|
// vectors on the stack, but since we do not keep track of which calls do that,
|
||||||
|
// it is effectively every call as well.
|
||||||
|
// Windows binaries compiled with MSVC do not have such a restriction*, but I
|
||||||
|
// expect that GCC on Windows acts the same as GCC on Linux in this respect.
|
||||||
|
// It would be nice if someone could verify this.
|
||||||
|
// *However, the MSVC optimizing compiler assumes a 4-byte-aligned stack at times.
|
||||||
|
unsigned int fillSize =
|
||||||
|
ABI_GetAlignedFrameSize(frameSize) - (frameSize + 4);
|
||||||
|
if (fillSize != 0) {
|
||||||
|
SUB(32, R(ESP), Imm8(fillSize));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_RestoreStack(unsigned int frameSize) {
|
||||||
|
unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize);
|
||||||
|
alignedSize -= 4; // return address is POPped at end of call
|
||||||
|
if (alignedSize != 0) {
|
||||||
|
ADD(32, R(ESP), Imm8(alignedSize));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#else //64bit
|
||||||
|
|
||||||
|
// Common functions
|
||||||
|
void XEmitter::ABI_CallFunction(const void *func) {
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(64, R(ABI_PARAM3), ImmPtr(param3));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
MOV(64, R(ABI_PARAM4), ImmPtr(param4));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
|
||||||
|
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
|
||||||
|
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
|
||||||
|
if (!arg2.IsSimpleReg(ABI_PARAM2))
|
||||||
|
MOV(32, R(ABI_PARAM2), arg2);
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
|
||||||
|
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
|
||||||
|
if (!arg2.IsSimpleReg(ABI_PARAM2))
|
||||||
|
MOV(32, R(ABI_PARAM2), arg2);
|
||||||
|
if (!arg3.IsSimpleReg(ABI_PARAM3))
|
||||||
|
MOV(32, R(ABI_PARAM3), arg3);
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
|
||||||
|
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
|
||||||
|
MOV(64, R(ABI_PARAM2), ImmPtr(param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass a register as a parameter.
|
||||||
|
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
|
||||||
|
if (reg1 != ABI_PARAM1)
|
||||||
|
MOV(32, R(ABI_PARAM1), R(reg1));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass two registers as parameters.
|
||||||
|
void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
|
||||||
|
if (reg2 != ABI_PARAM1) {
|
||||||
|
if (reg1 != ABI_PARAM1)
|
||||||
|
MOV(64, R(ABI_PARAM1), R(reg1));
|
||||||
|
if (reg2 != ABI_PARAM2)
|
||||||
|
MOV(64, R(ABI_PARAM2), R(reg2));
|
||||||
|
} else {
|
||||||
|
if (reg2 != ABI_PARAM2)
|
||||||
|
MOV(64, R(ABI_PARAM2), R(reg2));
|
||||||
|
if (reg1 != ABI_PARAM1)
|
||||||
|
MOV(64, R(ABI_PARAM1), R(reg1));
|
||||||
|
}
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(32, R(ABI_PARAM1), arg1);
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(32, R(ABI_PARAM1), arg1);
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(64, R(ABI_PARAM3), Imm64(param3));
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(32, R(ABI_PARAM1), arg1);
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(32, R(ABI_PARAM1), arg1);
|
||||||
|
if (!arg2.IsSimpleReg(ABI_PARAM2))
|
||||||
|
MOV(32, R(ABI_PARAM2), arg2);
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL
|
||||||
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), ImmPtr(func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
} else {
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
|
||||||
|
return frameSize;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
|
||||||
|
// The Windows x64 ABI requires XMM6 - XMM15 to be callee saved. 10 regs.
|
||||||
|
// But, not saving XMM4 and XMM5 breaks things in VS 2010, even though they are volatile regs.
|
||||||
|
// Let's just save all 16.
|
||||||
|
const int XMM_STACK_SPACE = 16 * 16;
|
||||||
|
|
||||||
|
// Win64 Specific Code
|
||||||
|
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
//we only want to do this once
|
||||||
|
PUSH(RBX);
|
||||||
|
PUSH(RSI);
|
||||||
|
PUSH(RDI);
|
||||||
|
PUSH(RBP);
|
||||||
|
PUSH(R12);
|
||||||
|
PUSH(R13);
|
||||||
|
PUSH(R14);
|
||||||
|
PUSH(R15);
|
||||||
|
ABI_AlignStack(0);
|
||||||
|
|
||||||
|
// Do this after aligning, because before it's offset by 8.
|
||||||
|
SUB(64, R(RSP), Imm32(XMM_STACK_SPACE));
|
||||||
|
for (int i = 0; i < 16; ++i)
|
||||||
|
MOVAPS(MDisp(RSP, i * 16), (X64Reg)(XMM0 + i));
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
for (int i = 0; i < 16; ++i)
|
||||||
|
MOVAPS((X64Reg)(XMM0 + i), MDisp(RSP, i * 16));
|
||||||
|
ADD(64, R(RSP), Imm32(XMM_STACK_SPACE));
|
||||||
|
|
||||||
|
ABI_RestoreStack(0);
|
||||||
|
POP(R15);
|
||||||
|
POP(R14);
|
||||||
|
POP(R13);
|
||||||
|
POP(R12);
|
||||||
|
POP(RBP);
|
||||||
|
POP(RDI);
|
||||||
|
POP(RSI);
|
||||||
|
POP(RBX);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Win64 Specific Code
|
||||||
|
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
|
||||||
|
PUSH(RCX);
|
||||||
|
PUSH(RDX);
|
||||||
|
PUSH(RSI);
|
||||||
|
PUSH(RDI);
|
||||||
|
PUSH(R8);
|
||||||
|
PUSH(R9);
|
||||||
|
PUSH(R10);
|
||||||
|
PUSH(R11);
|
||||||
|
// TODO: Callers preserve XMM4-5 (XMM0-3 are args.)
|
||||||
|
ABI_AlignStack(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
|
||||||
|
ABI_RestoreStack(0);
|
||||||
|
POP(R11);
|
||||||
|
POP(R10);
|
||||||
|
POP(R9);
|
||||||
|
POP(R8);
|
||||||
|
POP(RDI);
|
||||||
|
POP(RSI);
|
||||||
|
POP(RDX);
|
||||||
|
POP(RCX);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
|
||||||
|
SUB(64, R(RSP), Imm8(0x28));
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
|
||||||
|
ADD(64, R(RSP), Imm8(0x28));
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
// Unix64 Specific Code
|
||||||
|
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
PUSH(RBX);
|
||||||
|
PUSH(RBP);
|
||||||
|
PUSH(R12);
|
||||||
|
PUSH(R13);
|
||||||
|
PUSH(R14);
|
||||||
|
PUSH(R15);
|
||||||
|
PUSH(R15); //just to align stack. duped push/pop doesn't hurt.
|
||||||
|
// TODO: XMM?
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
|
||||||
|
POP(R15);
|
||||||
|
POP(R15);
|
||||||
|
POP(R14);
|
||||||
|
POP(R13);
|
||||||
|
POP(R12);
|
||||||
|
POP(RBP);
|
||||||
|
POP(RBX);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
|
||||||
|
PUSH(RCX);
|
||||||
|
PUSH(RDX);
|
||||||
|
PUSH(RSI);
|
||||||
|
PUSH(RDI);
|
||||||
|
PUSH(R8);
|
||||||
|
PUSH(R9);
|
||||||
|
PUSH(R10);
|
||||||
|
PUSH(R11);
|
||||||
|
PUSH(R11);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
|
||||||
|
POP(R11);
|
||||||
|
POP(R11);
|
||||||
|
POP(R10);
|
||||||
|
POP(R9);
|
||||||
|
POP(R8);
|
||||||
|
POP(RDI);
|
||||||
|
POP(RSI);
|
||||||
|
POP(RDX);
|
||||||
|
POP(RCX);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
|
||||||
|
SUB(64, R(RSP), Imm8(0x08));
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
|
||||||
|
ADD(64, R(RSP), Imm8(0x08));
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // WIN32
|
||||||
|
|
||||||
|
#endif // 32bit
|
@ -0,0 +1,78 @@
|
|||||||
|
// Copyright (C) 2003 Dolphin Project.
|
||||||
|
|
||||||
|
// This program is free software: you can redistribute it and/or modify
|
||||||
|
// it under the terms of the GNU General Public License as published by
|
||||||
|
// the Free Software Foundation, version 2.0 or later versions.
|
||||||
|
|
||||||
|
// This program is distributed in the hope that it will be useful,
|
||||||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
// GNU General Public License 2.0 for more details.
|
||||||
|
|
||||||
|
// A copy of the GPL 2.0 should have been included with the program.
|
||||||
|
// If not, see http://www.gnu.org/licenses/
|
||||||
|
|
||||||
|
// Official SVN repository and contact information can be found at
|
||||||
|
// http://code.google.com/p/dolphin-emu/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
|
||||||
|
// x86/x64 ABI:s, and helpers to help follow them when JIT-ing code.
|
||||||
|
// All convensions return values in EAX (+ possibly EDX).
|
||||||
|
|
||||||
|
// Linux 32-bit, Windows 32-bit (cdecl, System V):
|
||||||
|
// * Caller pushes left to right
|
||||||
|
// * Caller fixes stack after call
|
||||||
|
// * function subtract from stack for local storage only.
|
||||||
|
// Scratch: EAX ECX EDX
|
||||||
|
// Callee-save: EBX ESI EDI EBP
|
||||||
|
// Parameters: -
|
||||||
|
|
||||||
|
// Windows 64-bit
|
||||||
|
// * 4-reg "fastcall" variant, very new-skool stack handling
|
||||||
|
// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
|
||||||
|
// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
|
||||||
|
// Scratch: RAX RCX RDX R8 R9 R10 R11
|
||||||
|
// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15
|
||||||
|
// Parameters: RCX RDX R8 R9, further MOV-ed
|
||||||
|
|
||||||
|
// Linux 64-bit
|
||||||
|
// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
|
||||||
|
// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11
|
||||||
|
// Callee-save: RBX RBP R12 R13 R14 R15
|
||||||
|
// Parameters: RDI RSI RDX RCX R8 R9
|
||||||
|
|
||||||
|
#ifdef _M_IX86 // 32 bit calling convention, shared by all
|
||||||
|
|
||||||
|
// 32-bit don't pass parameters in regs, but these are convenient to have anyway when we have to
|
||||||
|
// choose regs to put stuff in.
|
||||||
|
#define ABI_PARAM1 RCX
|
||||||
|
#define ABI_PARAM2 RDX
|
||||||
|
|
||||||
|
// There are no ABI_PARAM* here, since args are pushed.
|
||||||
|
// 32-bit bog standard cdecl, shared between linux and windows
|
||||||
|
// MacOSX 32-bit is same as System V with a few exceptions that we probably don't care much about.
|
||||||
|
|
||||||
|
#elif ARCHITECTURE_x86_64 // 64 bit calling convention
|
||||||
|
|
||||||
|
#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
|
||||||
|
|
||||||
|
#define ABI_PARAM1 RCX
|
||||||
|
#define ABI_PARAM2 RDX
|
||||||
|
#define ABI_PARAM3 R8
|
||||||
|
#define ABI_PARAM4 R9
|
||||||
|
|
||||||
|
#else //64-bit Unix (hopefully MacOSX too)
|
||||||
|
|
||||||
|
#define ABI_PARAM1 RDI
|
||||||
|
#define ABI_PARAM2 RSI
|
||||||
|
#define ABI_PARAM3 RDX
|
||||||
|
#define ABI_PARAM4 RCX
|
||||||
|
#define ABI_PARAM5 R8
|
||||||
|
#define ABI_PARAM6 R9
|
||||||
|
|
||||||
|
#endif // WIN32
|
||||||
|
|
||||||
|
#endif // X86
|
@ -0,0 +1,187 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project / 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include <cstring>
|
||||||
|
#include <string>
|
||||||
|
#include <thread>
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
|
||||||
|
#include "cpu_detect.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
|
||||||
|
#ifndef _MSC_VER
|
||||||
|
|
||||||
|
#ifdef __FreeBSD__
|
||||||
|
#include <sys/types.h>
|
||||||
|
#include <machine/cpufunc.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static inline void __cpuidex(int info[4], int function_id, int subfunction_id) {
|
||||||
|
#ifdef __FreeBSD__
|
||||||
|
// Despite the name, this is just do_cpuid() with ECX as second input.
|
||||||
|
cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info);
|
||||||
|
#else
|
||||||
|
info[0] = function_id; // eax
|
||||||
|
info[2] = subfunction_id; // ecx
|
||||||
|
__asm__(
|
||||||
|
"cpuid"
|
||||||
|
: "=a" (info[0]),
|
||||||
|
"=b" (info[1]),
|
||||||
|
"=c" (info[2]),
|
||||||
|
"=d" (info[3])
|
||||||
|
: "a" (function_id),
|
||||||
|
"c" (subfunction_id)
|
||||||
|
);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void __cpuid(int info[4], int function_id) {
|
||||||
|
return __cpuidex(info, function_id, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define _XCR_XFEATURE_ENABLED_MASK 0
|
||||||
|
static u64 _xgetbv(u32 index) {
|
||||||
|
u32 eax, edx;
|
||||||
|
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
|
||||||
|
return ((u64)edx << 32) | eax;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // ifndef _MSC_VER
|
||||||
|
|
||||||
|
// Detects the various CPU features
|
||||||
|
static CPUCaps Detect() {
|
||||||
|
CPUCaps caps = {};
|
||||||
|
|
||||||
|
caps.num_cores = std::thread::hardware_concurrency();
|
||||||
|
|
||||||
|
// Assumes the CPU supports the CPUID instruction. Those that don't would likely not support
|
||||||
|
// Citra at all anyway
|
||||||
|
|
||||||
|
int cpu_id[4];
|
||||||
|
memset(caps.brand_string, 0, sizeof(caps.brand_string));
|
||||||
|
|
||||||
|
// Detect CPU's CPUID capabilities and grab CPU string
|
||||||
|
__cpuid(cpu_id, 0x00000000);
|
||||||
|
u32 max_std_fn = cpu_id[0]; // EAX
|
||||||
|
|
||||||
|
std::memcpy(&caps.brand_string[0], &cpu_id[1], sizeof(int));
|
||||||
|
std::memcpy(&caps.brand_string[4], &cpu_id[3], sizeof(int));
|
||||||
|
std::memcpy(&caps.brand_string[8], &cpu_id[2], sizeof(int));
|
||||||
|
|
||||||
|
__cpuid(cpu_id, 0x80000000);
|
||||||
|
|
||||||
|
u32 max_ex_fn = cpu_id[0];
|
||||||
|
if (!strcmp(caps.brand_string, "GenuineIntel"))
|
||||||
|
caps.vendor = CPUVendor::INTEL;
|
||||||
|
else if (!strcmp(caps.brand_string, "AuthenticAMD"))
|
||||||
|
caps.vendor = CPUVendor::AMD;
|
||||||
|
else
|
||||||
|
caps.vendor = CPUVendor::OTHER;
|
||||||
|
|
||||||
|
// Set reasonable default brand string even if brand string not available
|
||||||
|
strcpy(caps.cpu_string, caps.brand_string);
|
||||||
|
|
||||||
|
// Detect family and other miscellaneous features
|
||||||
|
if (max_std_fn >= 1) {
|
||||||
|
__cpuid(cpu_id, 0x00000001);
|
||||||
|
|
||||||
|
if ((cpu_id[3] >> 25) & 1) caps.sse = true;
|
||||||
|
if ((cpu_id[3] >> 26) & 1) caps.sse2 = true;
|
||||||
|
if ((cpu_id[2]) & 1) caps.sse3 = true;
|
||||||
|
if ((cpu_id[2] >> 9) & 1) caps.ssse3 = true;
|
||||||
|
if ((cpu_id[2] >> 19) & 1) caps.sse4_1 = true;
|
||||||
|
if ((cpu_id[2] >> 20) & 1) caps.sse4_2 = true;
|
||||||
|
if ((cpu_id[2] >> 22) & 1) caps.movbe = true;
|
||||||
|
if ((cpu_id[2] >> 25) & 1) caps.aes = true;
|
||||||
|
|
||||||
|
if ((cpu_id[3] >> 24) & 1) {
|
||||||
|
caps.fxsave_fxrstor = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// AVX support requires 3 separate checks:
|
||||||
|
// - Is the AVX bit set in CPUID?
|
||||||
|
// - Is the XSAVE bit set in CPUID?
|
||||||
|
// - XGETBV result has the XCR bit set.
|
||||||
|
if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1)) {
|
||||||
|
if ((_xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) {
|
||||||
|
caps.avx = true;
|
||||||
|
if ((cpu_id[2] >> 12) & 1)
|
||||||
|
caps.fma = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (max_std_fn >= 7) {
|
||||||
|
__cpuidex(cpu_id, 0x00000007, 0x00000000);
|
||||||
|
// Can't enable AVX2 unless the XSAVE/XGETBV checks above passed
|
||||||
|
if ((cpu_id[1] >> 5) & 1)
|
||||||
|
caps.avx2 = caps.avx;
|
||||||
|
if ((cpu_id[1] >> 3) & 1)
|
||||||
|
caps.bmi1 = true;
|
||||||
|
if ((cpu_id[1] >> 8) & 1)
|
||||||
|
caps.bmi2 = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
caps.flush_to_zero = caps.sse;
|
||||||
|
|
||||||
|
if (max_ex_fn >= 0x80000004) {
|
||||||
|
// Extract CPU model string
|
||||||
|
__cpuid(cpu_id, 0x80000002);
|
||||||
|
std::memcpy(caps.cpu_string, cpu_id, sizeof(cpu_id));
|
||||||
|
__cpuid(cpu_id, 0x80000003);
|
||||||
|
std::memcpy(caps.cpu_string + 16, cpu_id, sizeof(cpu_id));
|
||||||
|
__cpuid(cpu_id, 0x80000004);
|
||||||
|
std::memcpy(caps.cpu_string + 32, cpu_id, sizeof(cpu_id));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (max_ex_fn >= 0x80000001) {
|
||||||
|
// Check for more features
|
||||||
|
__cpuid(cpu_id, 0x80000001);
|
||||||
|
if (cpu_id[2] & 1) caps.lahf_sahf_64 = true;
|
||||||
|
if ((cpu_id[2] >> 5) & 1) caps.lzcnt = true;
|
||||||
|
if ((cpu_id[2] >> 16) & 1) caps.fma4 = true;
|
||||||
|
if ((cpu_id[3] >> 29) & 1) caps.long_mode = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
return caps;
|
||||||
|
}
|
||||||
|
|
||||||
|
const CPUCaps& GetCPUCaps() {
|
||||||
|
static CPUCaps caps = Detect();
|
||||||
|
return caps;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string GetCPUCapsString() {
|
||||||
|
auto caps = GetCPUCaps();
|
||||||
|
|
||||||
|
std::string sum(caps.cpu_string);
|
||||||
|
sum += " (";
|
||||||
|
sum += caps.brand_string;
|
||||||
|
sum += ")";
|
||||||
|
|
||||||
|
if (caps.sse) sum += ", SSE";
|
||||||
|
if (caps.sse2) {
|
||||||
|
sum += ", SSE2";
|
||||||
|
if (!caps.flush_to_zero) sum += " (without DAZ)";
|
||||||
|
}
|
||||||
|
|
||||||
|
if (caps.sse3) sum += ", SSE3";
|
||||||
|
if (caps.ssse3) sum += ", SSSE3";
|
||||||
|
if (caps.sse4_1) sum += ", SSE4.1";
|
||||||
|
if (caps.sse4_2) sum += ", SSE4.2";
|
||||||
|
if (caps.avx) sum += ", AVX";
|
||||||
|
if (caps.avx2) sum += ", AVX2";
|
||||||
|
if (caps.bmi1) sum += ", BMI1";
|
||||||
|
if (caps.bmi2) sum += ", BMI2";
|
||||||
|
if (caps.fma) sum += ", FMA";
|
||||||
|
if (caps.aes) sum += ", AES";
|
||||||
|
if (caps.movbe) sum += ", MOVBE";
|
||||||
|
if (caps.long_mode) sum += ", 64-bit support";
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Common
|
@ -0,0 +1,66 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project / 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
|
||||||
|
/// x86/x64 CPU vendors that may be detected by this module
|
||||||
|
enum class CPUVendor {
|
||||||
|
INTEL,
|
||||||
|
AMD,
|
||||||
|
OTHER,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// x86/x64 CPU capabilities that may be detected by this module
|
||||||
|
struct CPUCaps {
|
||||||
|
CPUVendor vendor;
|
||||||
|
char cpu_string[0x21];
|
||||||
|
char brand_string[0x41];
|
||||||
|
int num_cores;
|
||||||
|
bool sse;
|
||||||
|
bool sse2;
|
||||||
|
bool sse3;
|
||||||
|
bool ssse3;
|
||||||
|
bool sse4_1;
|
||||||
|
bool sse4_2;
|
||||||
|
bool lzcnt;
|
||||||
|
bool avx;
|
||||||
|
bool avx2;
|
||||||
|
bool bmi1;
|
||||||
|
bool bmi2;
|
||||||
|
bool fma;
|
||||||
|
bool fma4;
|
||||||
|
bool aes;
|
||||||
|
|
||||||
|
// Support for the FXSAVE and FXRSTOR instructions
|
||||||
|
bool fxsave_fxrstor;
|
||||||
|
|
||||||
|
bool movbe;
|
||||||
|
|
||||||
|
// This flag indicates that the hardware supports some mode in which denormal inputs and outputs
|
||||||
|
// are automatically set to (signed) zero.
|
||||||
|
bool flush_to_zero;
|
||||||
|
|
||||||
|
// Support for LAHF and SAHF instructions in 64-bit mode
|
||||||
|
bool lahf_sahf_64;
|
||||||
|
|
||||||
|
bool long_mode;
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets the supported capabilities of the host CPU
|
||||||
|
* @return Reference to a CPUCaps struct with the detected host CPU capabilities
|
||||||
|
*/
|
||||||
|
const CPUCaps& GetCPUCaps();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Gets a string summary of the name and supported capabilities of the host CPU
|
||||||
|
* @return String summary
|
||||||
|
*/
|
||||||
|
std::string GetCPUCapsString();
|
||||||
|
|
||||||
|
} // namespace Common
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,145 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
#include <unordered_map>
|
||||||
|
|
||||||
|
#include "common/hash.h"
|
||||||
|
#include "common/make_unique.h"
|
||||||
|
#include "common/profiler.h"
|
||||||
|
|
||||||
|
#include "video_core/debug_utils/debug_utils.h"
|
||||||
|
#include "video_core/pica.h"
|
||||||
|
#include "video_core/video_core.h"
|
||||||
|
|
||||||
|
#include "shader.h"
|
||||||
|
#include "shader_interpreter.h"
|
||||||
|
|
||||||
|
#ifdef ARCHITECTURE_x86_64
|
||||||
|
#include "shader_jit_x64.h"
|
||||||
|
#endif // ARCHITECTURE_x86_64
|
||||||
|
|
||||||
|
namespace Pica {
|
||||||
|
|
||||||
|
namespace Shader {
|
||||||
|
|
||||||
|
#ifdef ARCHITECTURE_x86_64
|
||||||
|
static std::unordered_map<u64, CompiledShader*> shader_map;
|
||||||
|
static JitCompiler jit;
|
||||||
|
static CompiledShader* jit_shader;
|
||||||
|
#endif // ARCHITECTURE_x86_64
|
||||||
|
|
||||||
|
void Setup(UnitState& state) {
|
||||||
|
#ifdef ARCHITECTURE_x86_64
|
||||||
|
if (VideoCore::g_shader_jit_enabled) {
|
||||||
|
u64 cache_key = (Common::ComputeHash64(&g_state.vs.program_code, sizeof(g_state.vs.program_code)) ^
|
||||||
|
Common::ComputeHash64(&g_state.vs.swizzle_data, sizeof(g_state.vs.swizzle_data)) ^
|
||||||
|
g_state.regs.vs.main_offset);
|
||||||
|
|
||||||
|
auto iter = shader_map.find(cache_key);
|
||||||
|
if (iter != shader_map.end()) {
|
||||||
|
jit_shader = iter->second;
|
||||||
|
} else {
|
||||||
|
jit_shader = jit.Compile();
|
||||||
|
shader_map.emplace(cache_key, jit_shader);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // ARCHITECTURE_x86_64
|
||||||
|
}
|
||||||
|
|
||||||
|
void Shutdown() {
|
||||||
|
shader_map.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
static Common::Profiling::TimingCategory shader_category("Vertex Shader");
|
||||||
|
|
||||||
|
OutputVertex Run(UnitState& state, const InputVertex& input, int num_attributes) {
|
||||||
|
auto& config = g_state.regs.vs;
|
||||||
|
auto& setup = g_state.vs;
|
||||||
|
|
||||||
|
Common::Profiling::ScopeTimer timer(shader_category);
|
||||||
|
|
||||||
|
state.program_counter = config.main_offset;
|
||||||
|
state.debug.max_offset = 0;
|
||||||
|
state.debug.max_opdesc_id = 0;
|
||||||
|
|
||||||
|
// Setup input register table
|
||||||
|
const auto& attribute_register_map = config.input_register_map;
|
||||||
|
|
||||||
|
if (num_attributes > 0) state.registers.input[attribute_register_map.attribute0_register] = input.attr[0];
|
||||||
|
if (num_attributes > 1) state.registers.input[attribute_register_map.attribute1_register] = input.attr[1];
|
||||||
|
if (num_attributes > 2) state.registers.input[attribute_register_map.attribute2_register] = input.attr[2];
|
||||||
|
if (num_attributes > 3) state.registers.input[attribute_register_map.attribute3_register] = input.attr[3];
|
||||||
|
if (num_attributes > 4) state.registers.input[attribute_register_map.attribute4_register] = input.attr[4];
|
||||||
|
if (num_attributes > 5) state.registers.input[attribute_register_map.attribute5_register] = input.attr[5];
|
||||||
|
if (num_attributes > 6) state.registers.input[attribute_register_map.attribute6_register] = input.attr[6];
|
||||||
|
if (num_attributes > 7) state.registers.input[attribute_register_map.attribute7_register] = input.attr[7];
|
||||||
|
if (num_attributes > 8) state.registers.input[attribute_register_map.attribute8_register] = input.attr[8];
|
||||||
|
if (num_attributes > 9) state.registers.input[attribute_register_map.attribute9_register] = input.attr[9];
|
||||||
|
if (num_attributes > 10) state.registers.input[attribute_register_map.attribute10_register] = input.attr[10];
|
||||||
|
if (num_attributes > 11) state.registers.input[attribute_register_map.attribute11_register] = input.attr[11];
|
||||||
|
if (num_attributes > 12) state.registers.input[attribute_register_map.attribute12_register] = input.attr[12];
|
||||||
|
if (num_attributes > 13) state.registers.input[attribute_register_map.attribute13_register] = input.attr[13];
|
||||||
|
if (num_attributes > 14) state.registers.input[attribute_register_map.attribute14_register] = input.attr[14];
|
||||||
|
if (num_attributes > 15) state.registers.input[attribute_register_map.attribute15_register] = input.attr[15];
|
||||||
|
|
||||||
|
state.conditional_code[0] = false;
|
||||||
|
state.conditional_code[1] = false;
|
||||||
|
|
||||||
|
#ifdef ARCHITECTURE_x86_64
|
||||||
|
if (VideoCore::g_shader_jit_enabled)
|
||||||
|
jit_shader(&state.registers);
|
||||||
|
else
|
||||||
|
RunInterpreter(state);
|
||||||
|
#else
|
||||||
|
RunInterpreter(state);
|
||||||
|
#endif // ARCHITECTURE_x86_64
|
||||||
|
|
||||||
|
#if PICA_DUMP_SHADERS
|
||||||
|
DebugUtils::DumpShader(setup.program_code.data(), state.debug.max_offset, setup.swizzle_data.data(),
|
||||||
|
state.debug.max_opdesc_id, config.main_offset,
|
||||||
|
g_state.regs.vs_output_attributes); // TODO: Don't hardcode VS here
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Setup output data
|
||||||
|
OutputVertex ret;
|
||||||
|
// TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
|
||||||
|
// figure out what those circumstances are and enable the remaining outputs then.
|
||||||
|
for (int i = 0; i < 7; ++i) {
|
||||||
|
const auto& output_register_map = g_state.regs.vs_output_attributes[i]; // TODO: Don't hardcode VS here
|
||||||
|
|
||||||
|
u32 semantics[4] = {
|
||||||
|
output_register_map.map_x, output_register_map.map_y,
|
||||||
|
output_register_map.map_z, output_register_map.map_w
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int comp = 0; comp < 4; ++comp) {
|
||||||
|
float24* out = ((float24*)&ret) + semantics[comp];
|
||||||
|
if (semantics[comp] != Regs::VSOutputAttributes::INVALID) {
|
||||||
|
*out = state.registers.output[i][comp];
|
||||||
|
} else {
|
||||||
|
// Zero output so that attributes which aren't output won't have denormals in them,
|
||||||
|
// which would slow us down later.
|
||||||
|
memset(out, 0, sizeof(*out));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
ret.color[i] = float24::FromFloat32(
|
||||||
|
std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
|
||||||
|
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
|
||||||
|
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
|
||||||
|
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Shader
|
||||||
|
|
||||||
|
} // namespace Pica
|
@ -0,0 +1,169 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <boost/container/static_vector.hpp>
|
||||||
|
#include <nihstro/shader_binary.h>
|
||||||
|
|
||||||
|
#include "common/common_funcs.h"
|
||||||
|
#include "common/common_types.h"
|
||||||
|
#include "common/vector_math.h"
|
||||||
|
|
||||||
|
#include "video_core/pica.h"
|
||||||
|
|
||||||
|
using nihstro::RegisterType;
|
||||||
|
using nihstro::SourceRegister;
|
||||||
|
using nihstro::DestRegister;
|
||||||
|
|
||||||
|
namespace Pica {
|
||||||
|
|
||||||
|
namespace Shader {
|
||||||
|
|
||||||
|
struct InputVertex {
|
||||||
|
Math::Vec4<float24> attr[16];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct OutputVertex {
|
||||||
|
OutputVertex() = default;
|
||||||
|
|
||||||
|
// VS output attributes
|
||||||
|
Math::Vec4<float24> pos;
|
||||||
|
Math::Vec4<float24> dummy; // quaternions (not implemented, yet)
|
||||||
|
Math::Vec4<float24> color;
|
||||||
|
Math::Vec2<float24> tc0;
|
||||||
|
Math::Vec2<float24> tc1;
|
||||||
|
float24 pad[6];
|
||||||
|
Math::Vec2<float24> tc2;
|
||||||
|
|
||||||
|
// Padding for optimal alignment
|
||||||
|
float24 pad2[4];
|
||||||
|
|
||||||
|
// Attributes used to store intermediate results
|
||||||
|
|
||||||
|
// position after perspective divide
|
||||||
|
Math::Vec3<float24> screenpos;
|
||||||
|
float24 pad3;
|
||||||
|
|
||||||
|
// Linear interpolation
|
||||||
|
// factor: 0=this, 1=vtx
|
||||||
|
void Lerp(float24 factor, const OutputVertex& vtx) {
|
||||||
|
pos = pos * factor + vtx.pos * (float24::FromFloat32(1) - factor);
|
||||||
|
|
||||||
|
// TODO: Should perform perspective correct interpolation here...
|
||||||
|
tc0 = tc0 * factor + vtx.tc0 * (float24::FromFloat32(1) - factor);
|
||||||
|
tc1 = tc1 * factor + vtx.tc1 * (float24::FromFloat32(1) - factor);
|
||||||
|
tc2 = tc2 * factor + vtx.tc2 * (float24::FromFloat32(1) - factor);
|
||||||
|
|
||||||
|
screenpos = screenpos * factor + vtx.screenpos * (float24::FromFloat32(1) - factor);
|
||||||
|
|
||||||
|
color = color * factor + vtx.color * (float24::FromFloat32(1) - factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Linear interpolation
|
||||||
|
// factor: 0=v0, 1=v1
|
||||||
|
static OutputVertex Lerp(float24 factor, const OutputVertex& v0, const OutputVertex& v1) {
|
||||||
|
OutputVertex ret = v0;
|
||||||
|
ret.Lerp(factor, v1);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
|
||||||
|
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This structure contains the state information that needs to be unique for a shader unit. The 3DS
|
||||||
|
* has four shader units that process shaders in parallel. At the present, Citra only implements a
|
||||||
|
* single shader unit that processes all shaders serially. Putting the state information in a struct
|
||||||
|
* here will make it easier for us to parallelize the shader processing later.
|
||||||
|
*/
|
||||||
|
struct UnitState {
|
||||||
|
struct Registers {
|
||||||
|
// The registers are accessed by the shader JIT using SSE instructions, and are therefore
|
||||||
|
// required to be 16-byte aligned.
|
||||||
|
Math::Vec4<float24> MEMORY_ALIGNED16(input[16]);
|
||||||
|
Math::Vec4<float24> MEMORY_ALIGNED16(output[16]);
|
||||||
|
Math::Vec4<float24> MEMORY_ALIGNED16(temporary[16]);
|
||||||
|
} registers;
|
||||||
|
static_assert(std::is_pod<Registers>::value, "Structure is not POD");
|
||||||
|
|
||||||
|
u32 program_counter;
|
||||||
|
bool conditional_code[2];
|
||||||
|
|
||||||
|
// Two Address registers and one loop counter
|
||||||
|
// TODO: How many bits do these actually have?
|
||||||
|
s32 address_registers[3];
|
||||||
|
|
||||||
|
enum {
|
||||||
|
INVALID_ADDRESS = 0xFFFFFFFF
|
||||||
|
};
|
||||||
|
|
||||||
|
struct CallStackElement {
|
||||||
|
u32 final_address; // Address upon which we jump to return_address
|
||||||
|
u32 return_address; // Where to jump when leaving scope
|
||||||
|
u8 repeat_counter; // How often to repeat until this call stack element is removed
|
||||||
|
u8 loop_increment; // Which value to add to the loop counter after an iteration
|
||||||
|
// TODO: Should this be a signed value? Does it even matter?
|
||||||
|
u32 loop_address; // The address where we'll return to after each loop iteration
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: Is there a maximal size for this?
|
||||||
|
boost::container::static_vector<CallStackElement, 16> call_stack;
|
||||||
|
|
||||||
|
struct {
|
||||||
|
u32 max_offset; // maximum program counter ever reached
|
||||||
|
u32 max_opdesc_id; // maximum swizzle pattern index ever used
|
||||||
|
} debug;
|
||||||
|
|
||||||
|
static int InputOffset(const SourceRegister& reg) {
|
||||||
|
switch (reg.GetRegisterType()) {
|
||||||
|
case RegisterType::Input:
|
||||||
|
return (int)offsetof(UnitState::Registers, input) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
|
||||||
|
|
||||||
|
case RegisterType::Temporary:
|
||||||
|
return (int)offsetof(UnitState::Registers, temporary) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
|
||||||
|
|
||||||
|
default:
|
||||||
|
UNREACHABLE();
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static int OutputOffset(const DestRegister& reg) {
|
||||||
|
switch (reg.GetRegisterType()) {
|
||||||
|
case RegisterType::Output:
|
||||||
|
return (int)offsetof(UnitState::Registers, output) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
|
||||||
|
|
||||||
|
case RegisterType::Temporary:
|
||||||
|
return (int)offsetof(UnitState::Registers, temporary) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
|
||||||
|
|
||||||
|
default:
|
||||||
|
UNREACHABLE();
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Performs any shader unit setup that only needs to happen once per shader (as opposed to once per
|
||||||
|
* vertex, which would happen within the `Run` function).
|
||||||
|
* @param state Shader unit state, must be setup per shader and per shader unit
|
||||||
|
*/
|
||||||
|
void Setup(UnitState& state);
|
||||||
|
|
||||||
|
/// Performs any cleanup when the emulator is shutdown
|
||||||
|
void Shutdown();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Runs the currently setup shader
|
||||||
|
* @param state Shader unit state, must be setup per shader and per shader unit
|
||||||
|
* @param input Input vertex into the shader
|
||||||
|
* @param num_attributes The number of vertex shader attributes
|
||||||
|
* @return The output vertex, after having been processed by the vertex shader
|
||||||
|
*/
|
||||||
|
OutputVertex Run(UnitState& state, const InputVertex& input, int num_attributes);
|
||||||
|
|
||||||
|
} // namespace Shader
|
||||||
|
|
||||||
|
} // namespace Pica
|
@ -0,0 +1,19 @@
|
|||||||
|
// Copyright 2014 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "video_core/pica.h"
|
||||||
|
|
||||||
|
#include "shader.h"
|
||||||
|
|
||||||
|
namespace Pica {
|
||||||
|
|
||||||
|
namespace Shader {
|
||||||
|
|
||||||
|
void RunInterpreter(UnitState& state);
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
} // namespace
|
@ -0,0 +1,675 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include <smmintrin.h>
|
||||||
|
|
||||||
|
#include "common/x64/abi.h"
|
||||||
|
#include "common/x64/cpu_detect.h"
|
||||||
|
#include "common/x64/emitter.h"
|
||||||
|
|
||||||
|
#include "shader.h"
|
||||||
|
#include "shader_jit_x64.h"
|
||||||
|
|
||||||
|
namespace Pica {
|
||||||
|
|
||||||
|
namespace Shader {
|
||||||
|
|
||||||
|
using namespace Gen;
|
||||||
|
|
||||||
|
typedef void (JitCompiler::*JitFunction)(Instruction instr);
|
||||||
|
|
||||||
|
const JitFunction instr_table[64] = {
|
||||||
|
&JitCompiler::Compile_ADD, // add
|
||||||
|
&JitCompiler::Compile_DP3, // dp3
|
||||||
|
&JitCompiler::Compile_DP4, // dp4
|
||||||
|
nullptr, // dph
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // ex2
|
||||||
|
nullptr, // lg2
|
||||||
|
nullptr, // unknown
|
||||||
|
&JitCompiler::Compile_MUL, // mul
|
||||||
|
nullptr, // lge
|
||||||
|
nullptr, // slt
|
||||||
|
&JitCompiler::Compile_FLR, // flr
|
||||||
|
&JitCompiler::Compile_MAX, // max
|
||||||
|
&JitCompiler::Compile_MIN, // min
|
||||||
|
&JitCompiler::Compile_RCP, // rcp
|
||||||
|
&JitCompiler::Compile_RSQ, // rsq
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
&JitCompiler::Compile_MOVA, // mova
|
||||||
|
&JitCompiler::Compile_MOV, // mov
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // dphi
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // sgei
|
||||||
|
&JitCompiler::Compile_SLTI, // slti
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
nullptr, // unknown
|
||||||
|
&JitCompiler::Compile_NOP, // nop
|
||||||
|
&JitCompiler::Compile_END, // end
|
||||||
|
nullptr, // break
|
||||||
|
&JitCompiler::Compile_CALL, // call
|
||||||
|
&JitCompiler::Compile_CALLC, // callc
|
||||||
|
&JitCompiler::Compile_CALLU, // callu
|
||||||
|
&JitCompiler::Compile_IF, // ifu
|
||||||
|
&JitCompiler::Compile_IF, // ifc
|
||||||
|
&JitCompiler::Compile_LOOP, // loop
|
||||||
|
nullptr, // emit
|
||||||
|
nullptr, // sete
|
||||||
|
&JitCompiler::Compile_JMP, // jmpc
|
||||||
|
&JitCompiler::Compile_JMP, // jmpu
|
||||||
|
&JitCompiler::Compile_CMP, // cmp
|
||||||
|
&JitCompiler::Compile_CMP, // cmp
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // madi
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
&JitCompiler::Compile_MAD, // mad
|
||||||
|
};
|
||||||
|
|
||||||
|
// The following is used to alias some commonly used registers. Generally, RAX-RDX and XMM0-XMM3 can
|
||||||
|
// be used as scratch registers within a compiler function. The other registers have designated
|
||||||
|
// purposes, as documented below:
|
||||||
|
|
||||||
|
/// Pointer to the uniform memory
|
||||||
|
static const X64Reg UNIFORMS = R9;
|
||||||
|
/// The two 32-bit VS address offset registers set by the MOVA instruction
|
||||||
|
static const X64Reg ADDROFFS_REG_0 = R10;
|
||||||
|
static const X64Reg ADDROFFS_REG_1 = R11;
|
||||||
|
/// VS loop count register
|
||||||
|
static const X64Reg LOOPCOUNT_REG = R12;
|
||||||
|
/// Current VS loop iteration number (we could probably use LOOPCOUNT_REG, but this quicker)
|
||||||
|
static const X64Reg LOOPCOUNT = RSI;
|
||||||
|
/// Number to increment LOOPCOUNT_REG by on each loop iteration
|
||||||
|
static const X64Reg LOOPINC = RDI;
|
||||||
|
/// Result of the previous CMP instruction for the X-component comparison
|
||||||
|
static const X64Reg COND0 = R13;
|
||||||
|
/// Result of the previous CMP instruction for the Y-component comparison
|
||||||
|
static const X64Reg COND1 = R14;
|
||||||
|
/// Pointer to the UnitState instance for the current VS unit
|
||||||
|
static const X64Reg REGISTERS = R15;
|
||||||
|
/// SIMD scratch register
|
||||||
|
static const X64Reg SCRATCH = XMM0;
|
||||||
|
/// Loaded with the first swizzled source register, otherwise can be used as a scratch register
|
||||||
|
static const X64Reg SRC1 = XMM1;
|
||||||
|
/// Loaded with the second swizzled source register, otherwise can be used as a scratch register
|
||||||
|
static const X64Reg SRC2 = XMM2;
|
||||||
|
/// Loaded with the third swizzled source register, otherwise can be used as a scratch register
|
||||||
|
static const X64Reg SRC3 = XMM3;
|
||||||
|
/// Constant vector of [1.0f, 1.0f, 1.0f, 1.0f], used to efficiently set a vector to one
|
||||||
|
static const X64Reg ONE = XMM14;
|
||||||
|
/// Constant vector of [-0.f, -0.f, -0.f, -0.f], used to efficiently negate a vector with XOR
|
||||||
|
static const X64Reg NEGBIT = XMM15;
|
||||||
|
|
||||||
|
/// Raw constant for the source register selector that indicates no swizzling is performed
|
||||||
|
static const u8 NO_SRC_REG_SWIZZLE = 0x1b;
|
||||||
|
/// Raw constant for the destination register enable mask that indicates all components are enabled
|
||||||
|
static const u8 NO_DEST_REG_MASK = 0xf;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Loads and swizzles a source register into the specified XMM register.
|
||||||
|
* @param instr VS instruction, used for determining how to load the source register
|
||||||
|
* @param src_num Number indicating which source register to load (1 = src1, 2 = src2, 3 = src3)
|
||||||
|
* @param src_reg SourceRegister object corresponding to the source register to load
|
||||||
|
* @param dest Destination XMM register to store the loaded, swizzled source register
|
||||||
|
*/
|
||||||
|
void JitCompiler::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg, X64Reg dest) {
|
||||||
|
X64Reg src_ptr;
|
||||||
|
int src_offset;
|
||||||
|
|
||||||
|
if (src_reg.GetRegisterType() == RegisterType::FloatUniform) {
|
||||||
|
src_ptr = UNIFORMS;
|
||||||
|
src_offset = src_reg.GetIndex() * sizeof(float24) * 4;
|
||||||
|
} else {
|
||||||
|
src_ptr = REGISTERS;
|
||||||
|
src_offset = UnitState::InputOffset(src_reg);
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned operand_desc_id;
|
||||||
|
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD ||
|
||||||
|
instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
|
||||||
|
// The MAD and MADI instructions do not use the address offset registers, so loading the
|
||||||
|
// source is a bit simpler here
|
||||||
|
|
||||||
|
operand_desc_id = instr.mad.operand_desc_id;
|
||||||
|
|
||||||
|
// Load the source
|
||||||
|
MOVAPS(dest, MDisp(src_ptr, src_offset));
|
||||||
|
} else {
|
||||||
|
operand_desc_id = instr.common.operand_desc_id;
|
||||||
|
|
||||||
|
const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed));
|
||||||
|
unsigned offset_src = is_inverted ? 2 : 1;
|
||||||
|
|
||||||
|
if (src_num == offset_src && instr.common.address_register_index != 0) {
|
||||||
|
switch (instr.common.address_register_index) {
|
||||||
|
case 1: // address offset 1
|
||||||
|
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_0, 1, src_offset));
|
||||||
|
break;
|
||||||
|
case 2: // address offset 2
|
||||||
|
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_1, 1, src_offset));
|
||||||
|
break;
|
||||||
|
case 3: // adddress offet 3
|
||||||
|
MOVAPS(dest, MComplex(src_ptr, LOOPCOUNT_REG, 1, src_offset));
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
UNREACHABLE();
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Load the source
|
||||||
|
MOVAPS(dest, MDisp(src_ptr, src_offset));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
SwizzlePattern swiz = { g_state.vs.swizzle_data[operand_desc_id] };
|
||||||
|
|
||||||
|
// Generate instructions for source register swizzling as needed
|
||||||
|
u8 sel = swiz.GetRawSelector(src_num);
|
||||||
|
if (sel != NO_SRC_REG_SWIZZLE) {
|
||||||
|
// Selector component order needs to be reversed for the SHUFPS instruction
|
||||||
|
sel = ((sel & 0xc0) >> 6) | ((sel & 3) << 6) | ((sel & 0xc) << 2) | ((sel & 0x30) >> 2);
|
||||||
|
|
||||||
|
// Shuffle inputs for swizzle
|
||||||
|
SHUFPS(dest, R(dest), sel);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the source register should be negated, flip the negative bit using XOR
|
||||||
|
const bool negate[] = { swiz.negate_src1, swiz.negate_src2, swiz.negate_src3 };
|
||||||
|
if (negate[src_num - 1]) {
|
||||||
|
XORPS(dest, R(NEGBIT));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_DestEnable(Instruction instr,X64Reg src) {
|
||||||
|
DestRegister dest;
|
||||||
|
unsigned operand_desc_id;
|
||||||
|
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD ||
|
||||||
|
instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
|
||||||
|
operand_desc_id = instr.mad.operand_desc_id;
|
||||||
|
dest = instr.mad.dest.Value();
|
||||||
|
} else {
|
||||||
|
operand_desc_id = instr.common.operand_desc_id;
|
||||||
|
dest = instr.common.dest.Value();
|
||||||
|
}
|
||||||
|
|
||||||
|
SwizzlePattern swiz = { g_state.vs.swizzle_data[operand_desc_id] };
|
||||||
|
|
||||||
|
// If all components are enabled, write the result to the destination register
|
||||||
|
if (swiz.dest_mask == NO_DEST_REG_MASK) {
|
||||||
|
// Store dest back to memory
|
||||||
|
MOVAPS(MDisp(REGISTERS, UnitState::OutputOffset(dest)), src);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
// Not all components are enabled, so mask the result when storing to the destination register...
|
||||||
|
MOVAPS(SCRATCH, MDisp(REGISTERS, UnitState::OutputOffset(dest)));
|
||||||
|
|
||||||
|
if (Common::GetCPUCaps().sse4_1) {
|
||||||
|
u8 mask = ((swiz.dest_mask & 1) << 3) | ((swiz.dest_mask & 8) >> 3) | ((swiz.dest_mask & 2) << 1) | ((swiz.dest_mask & 4) >> 1);
|
||||||
|
BLENDPS(SCRATCH, R(src), mask);
|
||||||
|
} else {
|
||||||
|
MOVAPS(XMM4, R(src));
|
||||||
|
UNPCKHPS(XMM4, R(SCRATCH)); // Unpack X/Y components of source and destination
|
||||||
|
UNPCKLPS(SCRATCH, R(src)); // Unpack Z/W components of source and destination
|
||||||
|
|
||||||
|
// Compute selector to selectively copy source components to destination for SHUFPS instruction
|
||||||
|
u8 sel = ((swiz.DestComponentEnabled(0) ? 1 : 0) << 0) |
|
||||||
|
((swiz.DestComponentEnabled(1) ? 3 : 2) << 2) |
|
||||||
|
((swiz.DestComponentEnabled(2) ? 0 : 1) << 4) |
|
||||||
|
((swiz.DestComponentEnabled(3) ? 2 : 3) << 6);
|
||||||
|
SHUFPS(SCRATCH, R(XMM4), sel);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Store dest back to memory
|
||||||
|
MOVAPS(MDisp(REGISTERS, UnitState::OutputOffset(dest)), SCRATCH);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_EvaluateCondition(Instruction instr) {
|
||||||
|
// Note: NXOR is used below to check for equality
|
||||||
|
switch (instr.flow_control.op) {
|
||||||
|
case Instruction::FlowControlType::Or:
|
||||||
|
MOV(32, R(RAX), R(COND0));
|
||||||
|
MOV(32, R(RBX), R(COND1));
|
||||||
|
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
|
||||||
|
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1));
|
||||||
|
OR(32, R(RAX), R(RBX));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case Instruction::FlowControlType::And:
|
||||||
|
MOV(32, R(RAX), R(COND0));
|
||||||
|
MOV(32, R(RBX), R(COND1));
|
||||||
|
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
|
||||||
|
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1));
|
||||||
|
AND(32, R(RAX), R(RBX));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case Instruction::FlowControlType::JustX:
|
||||||
|
MOV(32, R(RAX), R(COND0));
|
||||||
|
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case Instruction::FlowControlType::JustY:
|
||||||
|
MOV(32, R(RAX), R(COND1));
|
||||||
|
XOR(32, R(RAX), Imm32(instr.flow_control.refy.Value() ^ 1));
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_UniformCondition(Instruction instr) {
|
||||||
|
int offset = offsetof(decltype(g_state.vs.uniforms), b) + (instr.flow_control.bool_uniform_id * sizeof(bool));
|
||||||
|
CMP(sizeof(bool) * 8, MDisp(UNIFORMS, offset), Imm8(0));
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_ADD(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
ADDPS(SRC1, R(SRC2));
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_DP3(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
|
||||||
|
if (Common::GetCPUCaps().sse4_1) {
|
||||||
|
DPPS(SRC1, R(SRC2), 0x7f);
|
||||||
|
} else {
|
||||||
|
MULPS(SRC1, R(SRC2));
|
||||||
|
|
||||||
|
MOVAPS(SRC2, R(SRC1));
|
||||||
|
SHUFPS(SRC2, R(SRC2), _MM_SHUFFLE(1, 1, 1, 1));
|
||||||
|
|
||||||
|
MOVAPS(SRC3, R(SRC1));
|
||||||
|
SHUFPS(SRC3, R(SRC3), _MM_SHUFFLE(2, 2, 2, 2));
|
||||||
|
|
||||||
|
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0));
|
||||||
|
ADDPS(SRC1, R(SRC2));
|
||||||
|
ADDPS(SRC1, R(SRC3));
|
||||||
|
}
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_DP4(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
|
||||||
|
if (Common::GetCPUCaps().sse4_1) {
|
||||||
|
DPPS(SRC1, R(SRC2), 0xff);
|
||||||
|
} else {
|
||||||
|
MULPS(SRC1, R(SRC2));
|
||||||
|
|
||||||
|
MOVAPS(SRC2, R(SRC1));
|
||||||
|
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY
|
||||||
|
ADDPS(SRC1, R(SRC2));
|
||||||
|
|
||||||
|
MOVAPS(SRC2, R(SRC1));
|
||||||
|
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX
|
||||||
|
ADDPS(SRC1, R(SRC2));
|
||||||
|
}
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MUL(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
MULPS(SRC1, R(SRC2));
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_FLR(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
|
||||||
|
if (Common::GetCPUCaps().sse4_1) {
|
||||||
|
ROUNDFLOORPS(SRC1, R(SRC1));
|
||||||
|
} else {
|
||||||
|
CVTPS2DQ(SRC1, R(SRC1));
|
||||||
|
CVTDQ2PS(SRC1, R(SRC1));
|
||||||
|
}
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MAX(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
MAXPS(SRC1, R(SRC2));
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MIN(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
MINPS(SRC1, R(SRC2));
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MOVA(Instruction instr) {
|
||||||
|
SwizzlePattern swiz = { g_state.vs.swizzle_data[instr.common.operand_desc_id] };
|
||||||
|
|
||||||
|
if (!swiz.DestComponentEnabled(0) && !swiz.DestComponentEnabled(1)) {
|
||||||
|
return; // NoOp
|
||||||
|
}
|
||||||
|
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
|
||||||
|
// Convert floats to integers (only care about X and Y components)
|
||||||
|
CVTPS2DQ(SRC1, R(SRC1));
|
||||||
|
|
||||||
|
// Get result
|
||||||
|
MOVQ_xmm(R(RAX), SRC1);
|
||||||
|
|
||||||
|
// Handle destination enable
|
||||||
|
if (swiz.DestComponentEnabled(0) && swiz.DestComponentEnabled(1)) {
|
||||||
|
// Move and sign-extend low 32 bits
|
||||||
|
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX));
|
||||||
|
|
||||||
|
// Move and sign-extend high 32 bits
|
||||||
|
SHR(64, R(RAX), Imm8(32));
|
||||||
|
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX));
|
||||||
|
|
||||||
|
// Multiply by 16 to be used as an offset later
|
||||||
|
SHL(64, R(ADDROFFS_REG_0), Imm8(4));
|
||||||
|
SHL(64, R(ADDROFFS_REG_1), Imm8(4));
|
||||||
|
} else {
|
||||||
|
if (swiz.DestComponentEnabled(0)) {
|
||||||
|
// Move and sign-extend low 32 bits
|
||||||
|
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX));
|
||||||
|
|
||||||
|
// Multiply by 16 to be used as an offset later
|
||||||
|
SHL(64, R(ADDROFFS_REG_0), Imm8(4));
|
||||||
|
} else if (swiz.DestComponentEnabled(1)) {
|
||||||
|
// Move and sign-extend high 32 bits
|
||||||
|
SHR(64, R(RAX), Imm8(32));
|
||||||
|
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX));
|
||||||
|
|
||||||
|
// Multiply by 16 to be used as an offset later
|
||||||
|
SHL(64, R(ADDROFFS_REG_1), Imm8(4));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MOV(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_SLTI(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1i, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src2i, SRC2);
|
||||||
|
|
||||||
|
CMPSS(SRC1, R(SRC2), CMP_LT);
|
||||||
|
ANDPS(SRC1, R(ONE));
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_RCP(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
|
||||||
|
// TODO(bunnei): RCPPS is a pretty rough approximation, this might cause problems if Pica
|
||||||
|
// performs this operation more accurately. This should be checked on hardware.
|
||||||
|
RCPPS(SRC1, R(SRC1));
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_RSQ(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
|
||||||
|
// TODO(bunnei): RSQRTPS is a pretty rough approximation, this might cause problems if Pica
|
||||||
|
// performs this operation more accurately. This should be checked on hardware.
|
||||||
|
RSQRTPS(SRC1, R(SRC1));
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_NOP(Instruction instr) {
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_END(Instruction instr) {
|
||||||
|
ABI_PopAllCalleeSavedRegsAndAdjustStack();
|
||||||
|
RET();
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_CALL(Instruction instr) {
|
||||||
|
unsigned offset = instr.flow_control.dest_offset;
|
||||||
|
while (offset < (instr.flow_control.dest_offset + instr.flow_control.num_instructions)) {
|
||||||
|
Compile_NextInstr(&offset);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_CALLC(Instruction instr) {
|
||||||
|
Compile_EvaluateCondition(instr);
|
||||||
|
FixupBranch b = J_CC(CC_Z, true);
|
||||||
|
Compile_CALL(instr);
|
||||||
|
SetJumpTarget(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_CALLU(Instruction instr) {
|
||||||
|
Compile_UniformCondition(instr);
|
||||||
|
FixupBranch b = J_CC(CC_Z, true);
|
||||||
|
Compile_CALL(instr);
|
||||||
|
SetJumpTarget(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_CMP(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
|
||||||
|
|
||||||
|
static const u8 cmp[] = { CMP_EQ, CMP_NEQ, CMP_LT, CMP_LE, CMP_NLE, CMP_NLT };
|
||||||
|
|
||||||
|
if (instr.common.compare_op.x == instr.common.compare_op.y) {
|
||||||
|
// Compare X-component and Y-component together
|
||||||
|
CMPPS(SRC1, R(SRC2), cmp[instr.common.compare_op.x]);
|
||||||
|
|
||||||
|
MOVQ_xmm(R(COND0), SRC1);
|
||||||
|
MOV(64, R(COND1), R(COND0));
|
||||||
|
} else {
|
||||||
|
// Compare X-component
|
||||||
|
MOVAPS(SCRATCH, R(SRC1));
|
||||||
|
CMPSS(SCRATCH, R(SRC2), cmp[instr.common.compare_op.x]);
|
||||||
|
|
||||||
|
// Compare Y-component
|
||||||
|
CMPPS(SRC1, R(SRC2), cmp[instr.common.compare_op.y]);
|
||||||
|
|
||||||
|
MOVQ_xmm(R(COND0), SCRATCH);
|
||||||
|
MOVQ_xmm(R(COND1), SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
SHR(32, R(COND0), Imm8(31));
|
||||||
|
SHR(64, R(COND1), Imm8(63));
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_MAD(Instruction instr) {
|
||||||
|
Compile_SwizzleSrc(instr, 1, instr.mad.src1, SRC1);
|
||||||
|
|
||||||
|
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI) {
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.mad.src2i, SRC2);
|
||||||
|
Compile_SwizzleSrc(instr, 3, instr.mad.src3i, SRC3);
|
||||||
|
} else {
|
||||||
|
Compile_SwizzleSrc(instr, 2, instr.mad.src2, SRC2);
|
||||||
|
Compile_SwizzleSrc(instr, 3, instr.mad.src3, SRC3);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Common::GetCPUCaps().fma) {
|
||||||
|
VFMADD213PS(SRC1, SRC2, R(SRC3));
|
||||||
|
} else {
|
||||||
|
MULPS(SRC1, R(SRC2));
|
||||||
|
ADDPS(SRC1, R(SRC3));
|
||||||
|
}
|
||||||
|
|
||||||
|
Compile_DestEnable(instr, SRC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_IF(Instruction instr) {
|
||||||
|
ASSERT_MSG(instr.flow_control.dest_offset > *offset_ptr, "Backwards if-statements not supported");
|
||||||
|
|
||||||
|
// Evaluate the "IF" condition
|
||||||
|
if (instr.opcode.Value() == OpCode::Id::IFU) {
|
||||||
|
Compile_UniformCondition(instr);
|
||||||
|
} else if (instr.opcode.Value() == OpCode::Id::IFC) {
|
||||||
|
Compile_EvaluateCondition(instr);
|
||||||
|
}
|
||||||
|
FixupBranch b = J_CC(CC_Z, true);
|
||||||
|
|
||||||
|
// Compile the code that corresponds to the condition evaluating as true
|
||||||
|
Compile_Block(instr.flow_control.dest_offset - 1);
|
||||||
|
|
||||||
|
// If there isn't an "ELSE" condition, we are done here
|
||||||
|
if (instr.flow_control.num_instructions == 0) {
|
||||||
|
SetJumpTarget(b);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
FixupBranch b2 = J(true);
|
||||||
|
|
||||||
|
SetJumpTarget(b);
|
||||||
|
|
||||||
|
// This code corresponds to the "ELSE" condition
|
||||||
|
// Comple the code that corresponds to the condition evaluating as false
|
||||||
|
Compile_Block(instr.flow_control.dest_offset + instr.flow_control.num_instructions - 1);
|
||||||
|
|
||||||
|
SetJumpTarget(b2);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_LOOP(Instruction instr) {
|
||||||
|
ASSERT_MSG(instr.flow_control.dest_offset > *offset_ptr, "Backwards loops not supported");
|
||||||
|
ASSERT_MSG(!looping, "Nested loops not supported");
|
||||||
|
|
||||||
|
looping = true;
|
||||||
|
|
||||||
|
int offset = offsetof(decltype(g_state.vs.uniforms), i) + (instr.flow_control.int_uniform_id * sizeof(Math::Vec4<u8>));
|
||||||
|
MOV(32, R(LOOPCOUNT), MDisp(UNIFORMS, offset));
|
||||||
|
MOV(32, R(LOOPCOUNT_REG), R(LOOPCOUNT));
|
||||||
|
SHR(32, R(LOOPCOUNT_REG), Imm8(8));
|
||||||
|
AND(32, R(LOOPCOUNT_REG), Imm32(0xff)); // Y-component is the start
|
||||||
|
MOV(32, R(LOOPINC), R(LOOPCOUNT));
|
||||||
|
SHR(32, R(LOOPINC), Imm8(16));
|
||||||
|
MOVZX(32, 8, LOOPINC, R(LOOPINC)); // Z-component is the incrementer
|
||||||
|
MOVZX(32, 8, LOOPCOUNT, R(LOOPCOUNT)); // X-component is iteration count
|
||||||
|
ADD(32, R(LOOPCOUNT), Imm8(1)); // Iteration count is X-component + 1
|
||||||
|
|
||||||
|
auto loop_start = GetCodePtr();
|
||||||
|
|
||||||
|
Compile_Block(instr.flow_control.dest_offset);
|
||||||
|
|
||||||
|
ADD(32, R(LOOPCOUNT_REG), R(LOOPINC)); // Increment LOOPCOUNT_REG by Z-component
|
||||||
|
SUB(32, R(LOOPCOUNT), Imm8(1)); // Increment loop count by 1
|
||||||
|
J_CC(CC_NZ, loop_start); // Loop if not equal
|
||||||
|
|
||||||
|
looping = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_JMP(Instruction instr) {
|
||||||
|
ASSERT_MSG(instr.flow_control.dest_offset > *offset_ptr, "Backwards jumps not supported");
|
||||||
|
|
||||||
|
if (instr.opcode.Value() == OpCode::Id::JMPC)
|
||||||
|
Compile_EvaluateCondition(instr);
|
||||||
|
else if (instr.opcode.Value() == OpCode::Id::JMPU)
|
||||||
|
Compile_UniformCondition(instr);
|
||||||
|
else
|
||||||
|
UNREACHABLE();
|
||||||
|
|
||||||
|
FixupBranch b = J_CC(CC_NZ, true);
|
||||||
|
|
||||||
|
Compile_Block(instr.flow_control.dest_offset);
|
||||||
|
|
||||||
|
SetJumpTarget(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_Block(unsigned stop) {
|
||||||
|
// Save current offset pointer
|
||||||
|
unsigned* prev_offset_ptr = offset_ptr;
|
||||||
|
unsigned offset = *prev_offset_ptr;
|
||||||
|
|
||||||
|
while (offset <= stop)
|
||||||
|
Compile_NextInstr(&offset);
|
||||||
|
|
||||||
|
// Restore current offset pointer
|
||||||
|
offset_ptr = prev_offset_ptr;
|
||||||
|
*offset_ptr = offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Compile_NextInstr(unsigned* offset) {
|
||||||
|
offset_ptr = offset;
|
||||||
|
|
||||||
|
Instruction instr = *(Instruction*)&g_state.vs.program_code[(*offset_ptr)++];
|
||||||
|
OpCode::Id opcode = instr.opcode.Value();
|
||||||
|
auto instr_func = instr_table[static_cast<unsigned>(opcode)];
|
||||||
|
|
||||||
|
if (instr_func) {
|
||||||
|
// JIT the instruction!
|
||||||
|
((*this).*instr_func)(instr);
|
||||||
|
} else {
|
||||||
|
// Unhandled instruction
|
||||||
|
LOG_CRITICAL(HW_GPU, "Unhandled instruction: 0x%02x (0x%08x)", instr.opcode.Value(), instr.hex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
CompiledShader* JitCompiler::Compile() {
|
||||||
|
const u8* start = GetCodePtr();
|
||||||
|
const auto& code = g_state.vs.program_code;
|
||||||
|
unsigned offset = g_state.regs.vs.main_offset;
|
||||||
|
|
||||||
|
ABI_PushAllCalleeSavedRegsAndAdjustStack();
|
||||||
|
|
||||||
|
MOV(PTRBITS, R(REGISTERS), R(ABI_PARAM1));
|
||||||
|
MOV(PTRBITS, R(UNIFORMS), ImmPtr(&g_state.vs.uniforms));
|
||||||
|
|
||||||
|
// Zero address/loop registers
|
||||||
|
XOR(64, R(ADDROFFS_REG_0), R(ADDROFFS_REG_0));
|
||||||
|
XOR(64, R(ADDROFFS_REG_1), R(ADDROFFS_REG_1));
|
||||||
|
XOR(64, R(LOOPCOUNT_REG), R(LOOPCOUNT_REG));
|
||||||
|
|
||||||
|
// Used to set a register to one
|
||||||
|
static const __m128 one = { 1.f, 1.f, 1.f, 1.f };
|
||||||
|
MOV(PTRBITS, R(RAX), ImmPtr(&one));
|
||||||
|
MOVAPS(ONE, MDisp(RAX, 0));
|
||||||
|
|
||||||
|
// Used to negate registers
|
||||||
|
static const __m128 neg = { -0.f, -0.f, -0.f, -0.f };
|
||||||
|
MOV(PTRBITS, R(RAX), ImmPtr(&neg));
|
||||||
|
MOVAPS(NEGBIT, MDisp(RAX, 0));
|
||||||
|
|
||||||
|
looping = false;
|
||||||
|
|
||||||
|
while (offset < g_state.vs.program_code.size()) {
|
||||||
|
Compile_NextInstr(&offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
return (CompiledShader*)start;
|
||||||
|
}
|
||||||
|
|
||||||
|
JitCompiler::JitCompiler() {
|
||||||
|
AllocCodeSpace(1024 * 1024 * 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void JitCompiler::Clear() {
|
||||||
|
ClearCodeSpace();
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Shader
|
||||||
|
|
||||||
|
} // namespace Pica
|
@ -0,0 +1,79 @@
|
|||||||
|
// Copyright 2015 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <nihstro/shader_bytecode.h>
|
||||||
|
|
||||||
|
#include "common/x64/emitter.h"
|
||||||
|
|
||||||
|
#include "video_core/pica.h"
|
||||||
|
|
||||||
|
#include "shader.h"
|
||||||
|
|
||||||
|
using nihstro::Instruction;
|
||||||
|
using nihstro::OpCode;
|
||||||
|
using nihstro::SwizzlePattern;
|
||||||
|
|
||||||
|
namespace Pica {
|
||||||
|
|
||||||
|
namespace Shader {
|
||||||
|
|
||||||
|
using CompiledShader = void(void* registers);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This class implements the shader JIT compiler. It recompiles a Pica shader program into x86_64
|
||||||
|
* code that can be executed on the host machine directly.
|
||||||
|
*/
|
||||||
|
class JitCompiler : public Gen::XCodeBlock {
|
||||||
|
public:
|
||||||
|
JitCompiler();
|
||||||
|
|
||||||
|
CompiledShader* Compile();
|
||||||
|
|
||||||
|
void Clear();
|
||||||
|
|
||||||
|
void Compile_ADD(Instruction instr);
|
||||||
|
void Compile_DP3(Instruction instr);
|
||||||
|
void Compile_DP4(Instruction instr);
|
||||||
|
void Compile_MUL(Instruction instr);
|
||||||
|
void Compile_FLR(Instruction instr);
|
||||||
|
void Compile_MAX(Instruction instr);
|
||||||
|
void Compile_MIN(Instruction instr);
|
||||||
|
void Compile_RCP(Instruction instr);
|
||||||
|
void Compile_RSQ(Instruction instr);
|
||||||
|
void Compile_MOVA(Instruction instr);
|
||||||
|
void Compile_MOV(Instruction instr);
|
||||||
|
void Compile_SLTI(Instruction instr);
|
||||||
|
void Compile_NOP(Instruction instr);
|
||||||
|
void Compile_END(Instruction instr);
|
||||||
|
void Compile_CALL(Instruction instr);
|
||||||
|
void Compile_CALLC(Instruction instr);
|
||||||
|
void Compile_CALLU(Instruction instr);
|
||||||
|
void Compile_IF(Instruction instr);
|
||||||
|
void Compile_LOOP(Instruction instr);
|
||||||
|
void Compile_JMP(Instruction instr);
|
||||||
|
void Compile_CMP(Instruction instr);
|
||||||
|
void Compile_MAD(Instruction instr);
|
||||||
|
|
||||||
|
private:
|
||||||
|
void Compile_Block(unsigned stop);
|
||||||
|
void Compile_NextInstr(unsigned* offset);
|
||||||
|
|
||||||
|
void Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg, Gen::X64Reg dest);
|
||||||
|
void Compile_DestEnable(Instruction instr, Gen::X64Reg dest);
|
||||||
|
|
||||||
|
void Compile_EvaluateCondition(Instruction instr);
|
||||||
|
void Compile_UniformCondition(Instruction instr);
|
||||||
|
|
||||||
|
/// Pointer to the variable that stores the current Pica code offset. Used to handle nested code blocks.
|
||||||
|
unsigned* offset_ptr = nullptr;
|
||||||
|
|
||||||
|
/// Set to true if currently in a loop, used to check for the existence of nested loops
|
||||||
|
bool looping = false;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // Shader
|
||||||
|
|
||||||
|
} // Pica
|
@ -1,73 +0,0 @@
|
|||||||
// Copyright 2014 Citra Emulator Project
|
|
||||||
// Licensed under GPLv2 or any later version
|
|
||||||
// Refer to the license.txt file included.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <type_traits>
|
|
||||||
|
|
||||||
#include "common/vector_math.h"
|
|
||||||
|
|
||||||
#include "pica.h"
|
|
||||||
|
|
||||||
namespace Pica {
|
|
||||||
|
|
||||||
namespace VertexShader {
|
|
||||||
|
|
||||||
struct InputVertex {
|
|
||||||
Math::Vec4<float24> attr[16];
|
|
||||||
};
|
|
||||||
|
|
||||||
struct OutputVertex {
|
|
||||||
OutputVertex() = default;
|
|
||||||
|
|
||||||
// VS output attributes
|
|
||||||
Math::Vec4<float24> pos;
|
|
||||||
Math::Vec4<float24> dummy; // quaternions (not implemented, yet)
|
|
||||||
Math::Vec4<float24> color;
|
|
||||||
Math::Vec2<float24> tc0;
|
|
||||||
Math::Vec2<float24> tc1;
|
|
||||||
float24 pad[6];
|
|
||||||
Math::Vec2<float24> tc2;
|
|
||||||
|
|
||||||
// Padding for optimal alignment
|
|
||||||
float24 pad2[4];
|
|
||||||
|
|
||||||
// Attributes used to store intermediate results
|
|
||||||
|
|
||||||
// position after perspective divide
|
|
||||||
Math::Vec3<float24> screenpos;
|
|
||||||
float24 pad3;
|
|
||||||
|
|
||||||
// Linear interpolation
|
|
||||||
// factor: 0=this, 1=vtx
|
|
||||||
void Lerp(float24 factor, const OutputVertex& vtx) {
|
|
||||||
pos = pos * factor + vtx.pos * (float24::FromFloat32(1) - factor);
|
|
||||||
|
|
||||||
// TODO: Should perform perspective correct interpolation here...
|
|
||||||
tc0 = tc0 * factor + vtx.tc0 * (float24::FromFloat32(1) - factor);
|
|
||||||
tc1 = tc1 * factor + vtx.tc1 * (float24::FromFloat32(1) - factor);
|
|
||||||
tc2 = tc2 * factor + vtx.tc2 * (float24::FromFloat32(1) - factor);
|
|
||||||
|
|
||||||
screenpos = screenpos * factor + vtx.screenpos * (float24::FromFloat32(1) - factor);
|
|
||||||
|
|
||||||
color = color * factor + vtx.color * (float24::FromFloat32(1) - factor);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Linear interpolation
|
|
||||||
// factor: 0=v0, 1=v1
|
|
||||||
static OutputVertex Lerp(float24 factor, const OutputVertex& v0, const OutputVertex& v1) {
|
|
||||||
OutputVertex ret = v0;
|
|
||||||
ret.Lerp(factor, v1);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
|
|
||||||
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
|
|
||||||
|
|
||||||
OutputVertex RunShader(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const State::ShaderSetup& setup);
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
Loading…
Reference in New Issue